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Abstract—In recent years cloud services have gained much
attention as a result of their availability, scalability, and low
cost. One use of these services has been for the execution of sci-
entific workflows as part of Big Data Analytics, which are em-
ployed in a diverse range of fields including astronomy, physics,
seismology, and bioinformatics. There has been much research
on heuristic scheduling algorithms for these workflows due to
the problem’s inherent complexity, however existing work has
mainly considered execution in a utility grid environment using
a generic distributed framework. For our research, we consider
the ever-increasingly popular Apache Hadoop framework for
scheduling workflow onto resources rented from cloud service
providers. Contrary to other distributed frameworks, the
Hadoop MapReduce model imposes a functional style onto
application definition, and as such presents an interesting and
unapproached challenge for workflow scheduling. Investigated
in our work is budget-constrained workflow scheduling on
the Hadoop MapReduce platform, wherein we devise both
an optimal and a heuristic approach to minimize workflow
makespan while satisfying a given budget constraint. We have
implemented modifications to the Apache Hadoop framework
to allow fully integrated workflow scheduling. These modifi-
cations are novel and have led to the completion of the first
generic workflow scheduler fully integrated with the Apache
Hadoop framework. Both the framework modifications and
the proposed scheduler implementation have been extensively
tested via execution on multiple workflow applications, which
demonstrates the ability of our implementation to handle all
possible workflow substructures. Results from our empirical
studies further establish these facts.

Keywords-Scientific Workflow; Cloud Service; Hadoop;
MapReduce; Scheduling Algorithm.

I. INTRODUCTION

In recent years, a great deal of data processing has moved

to distributed processing platforms. This migration has been

caused by several factors. One such factor is dataset size,

which has been constantly growing as companies are able

to gather more data relevant to their interests. One example

is user engagement and usage patterns gathered by a game

studio wanting to keep its subscribers. Other situations are

not as novel, such as the tasks of website indexing or log

processing. However, these tasks are still necessary, and

therefore require innovation when older methods are unable

to scale with dataset size. Another factor in the movement to

distributed processing has been the low cost of commodity

hardware brought on by the ubiquity of personal computers.

Lastly, the emergence and adoption of distributed computing

frameworks allow lower entrance barriers to distributed

execution of programs.

As cloud computing is hailed as an emerging driving force

of the next innovation wave, it has been forming the basis

for many novel applications across a wide range of fields

from business workflows, engineering activities to scientific

computing. One of the applications is the workflow compu-
tation that in general consists of a set of data dependent jobs,

forming a directed acyclic graph (DAG) to carry out a com-

plex computational process. Generally, the computation of a

worflow-based workload would require a sufficient amount

of computing resources, and the execution of the jobs are

scheduled to different servers for a cost-effective computing.

Nowadays, Cloud Service Providers (CSPs) allow users

to allocate (virtual) machines with different performance

configurations according to “pay-as-you-go” billing model.

Thus, the ability to provide resources-on-demand (aka the

elasticity of resources), is unprecedented in the history of

information technology. The cloud platforms offer a new

paradigm so that users with different requirements can be

fully satisfied at cost of difference expenses.

Many distributed computing frameworks have been devel-

oped in the last decade, though few have reached widespread

adoption. The frameworks themselves generally allow the

management and administration of executable programs that

process data, often known as applications or jobs. Several

frameworks also allow the execution of sequences of jobs

known as workflows. Some commonly used frameworks

include systems such as Apache Hadoop, CloudBATCH,

DAGMAN/Condor/Pegasus, and VGE [1], [2], [3]. Among
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these, the most popular is Apache Hadoop, as it has seen

deployment onto clusters owned by companies such as

Amazon, Google, Microsoft, and Yahoo!. Many complex

data processing jobs have recently been implemented on

distributed computing frameworks. For instance, Apache

Hadoop is used for tasks such as social network mining, log

processing, video analysis, image analysis, search indexing,

recommendation systems, web indexing, and execution of

large-scale scientific applications [4], [5]. As a result of the

popularity of the Apache Hadoop framework, many schedul-

ing algorithms have been proposed to optimize different

aspects of job execution. The first of these algorithms are

the Capacity and Fair schedulers developed by Yahoo! and

Facebook, respectively [6]. These were then followed by

research efforts dealing with issues such as data locality and

node heterogeneity [5], [7], [4], [8].

Regardless of the framework, efficient scheduling is an

important requirement. Schedulers themselves vary accord-

ing to many properties. For instance, they can work to

schedule individual jobs, sets of individual jobs (batch

scheduling), or sets of jobs connected by dependencies.

Additionally, schedulers can take into consideration con-

straints specified by the job’s executor. These vary, though

typically pertain to deadline or budget constraints. Deadline

constraints specified to a scheduler instruct it to attempt

to complete job execution within the specified time con-

straint, whereas budget constraints instruct it to complete

job execution while satisfying a monetary constraint. Bud-

get constraints are relatively new, and have been adopted

as more users of distributed computing frameworks have

decided to rent resources as opposed to purchasing them.

This requirement for temporary resources has driven the

emergence of Infrastructure as a Service (IaaS) platforms,

which allow users to rent a number of different resources

for a specific time period, each of which are priced propor-

tionally to their processing power. This in turn has created

a demand for budget-constrained scheduling. We believe

that due to the widespread adoption of these products the

requirement for efficient budget-constrained scheduling will

only grow. Thus, this paper focuses on the creation of a

scheduler for the Apache Hadoop framework that allows for

the specification and use of budget constraints. As many

types of resources are available from IaaS providers, our

scheduler is also written to handle execution on a set of

heterogeneous resources.

As workflow scheduling is not implemented in the Apache

Hadoop framework, several workflow engines exist to pro-

vide this functionality; the three main ones being Oozie,

Azkaban, and Luigi [9]. These schedulers do have several

shortcomings however, especially when considering the need

for budget-constrained scheduling seen in recent years. Most

importantly, none of these schedulers allow for constraints

to be defined, causing them to be unrelated to the main

goal of our work. Secondly, the workflow engines all handle

the executed workflow themselves, while passing individual

jobs to Hadoop for execution. As a result, any possible

optimizations available through scheduling the jobs as a

single unit are lost. Furthermore, workflow engines do not

determine the method of scheduling used by Hadoop. As

such, the scheduler used by Hadoop could unknowingly

decrease the efficiency of workflow execution.

Along with the lack of feature-rich workflow engines

for Hadoop, no budget-constrained workflow schedulers for

Hadoop have been proposed in the literature. This is perhaps

a result of the complexity of workflow scheduling, as optimal

scheduling is an NP-complete problem, and is additionally

non-approximable [10], [11], [12], [13], [14], [15], [16].

Specifically, our main objective of workflow scheduling is

to minimize computational execution time of the abstract

workflow DAG generated from jobs and their constituent

tasks. To achieve this objective, the tasks represented as

nodes in the DAG must be mapped to resources that satisfy

these constraints. It is this mapping problem that is in general

NP-complete, and thus also the reason we propose a greedy

heuristic.

Considering that many scientific applications require

workflow scheduling which considers both execution time

and cost, a concrete implementation of budget-constrained

scheduling would prove extremely useful [17]. Such an

implementation would also be practical for both users of the

distributed framework, and for IaaS providers. For instance,

users of cloud services would be given peace of mind

through assurance of a particular cost for the work they

require. Along with this, they would also be able to maintain

control over the total cost for workflow execution. Providers

of IaaS systems would also benefit through more efficient

resource use, as they would be able to serve more cus-

tomers, and thus outcompete competitors through superior

economies of scale. It is for these reasons that we propose in

this work both modifications to the Apache Hadoop frame-

work to allow integrated generic workflow scheduling, and

introduce a novel budget-constrained workflow scheduling

algorithm for the Apache Hadoop framework in an IaaS

cloud environment.

II. PROBLEM FORMULATION

A. Environment Setup and Assumptions

Our assumed execution environment consists of a number

of virtual machines rented from an IaaS provider. As we

rent the resources, we can assume that the cluster is not

shared with other users, and that there are no other programs

running that would monopolize resources. Different types

of virtual machines can be rented based on our needs,

allowing for creation of a heterogeneous set of resources

for computation. Of course, the provider charges different

service rates for these provisioned machines, which are

proportional to their attributes (such as processing power

and amount of memory) [15]. We also note that even though
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some providers dynamically alter service rates based on

market demands, we assume a static pay-per-use rate during

scheduling as it is the most common pricing model [18].

We consider an environment wherein the Apache Hadoop

framework is run on the rented machines, and focus on the

use of MapReduce for workflow scheduling. As mentioned

previously, workflow scheduling on Hadoop is not much

studied, with only a few approaches considered [19], [20],

[21], [22]. Concerning these studies, only [22] considers

scheduling in a budget-constrained environment. In their

research however, the authors also constrict the scheduled

workflows to a simple fork & join structure. Following from

the research in [22], we also consider budget-constrained

workflow scheduling, though assume no artificial limitations

on input workflows.

As we consider general workflows which comprise a set of

interdependent jobs, we can represent workflows as DAGs.

For our problem, we define a DAG as a directed graph

comprising a single connected component that contains no

cycles. DAGs consist of a set of vertices (nodes) V along

with a set of edges E, and can be formally defined as a

tuple G = (V,E). When a DAG represents a workflow, each

vertex vi ∈ V , 1 ≤ i ≤ |V | represents a job in the workflow.

Edges are denoted by e(i, j), and correspond to the path

from vi to vj . This path represents either a control or data

dependency constraint which requires vj finish execution

before vi begins execution. Using this notation vi is called

a parent of vj , and vj a child of vi. When edges and

vertices in the DAG are given weightings, they represent the

communication cost and processing cost, respectively. Costs

are usually representative of time, though they may also be

considered as monetary cost if the environment takes into

account budget constraints during scheduling.

Mainly due to the fact that Hadoop abstracts the task of

data organization throughout the cluster nodes, we do not

consider the cost or time of data transmission in our model.

However, as the resources rented from an IaaS provider are

supplied with root access, we can assume complete control

over the resources. This assumption also allows us to assume

control over the configuration of the Apache Hadoop frame-

work, and as such we can configure the number of map and

reduce slots provided by different resources. Additionally,

control over the Hadoop configuration allows the number of

map tasks created for a job to be selected. The number of

virtual machines available to rent from the IaaS provider

is also assumed to be configurable, and only limited by

the given budget constraints. Therefore, we can assume that

machines (slots) are never competed for by more than a

single task.

Our algorithm assumes scheduling of a single workflow

at a time, each of which has access to all resources provided

by the Hadoop cluster. For our tests we mainly execute

the SIPHT workflow, as shown in Figure 1. To produce a

schedule for the input workflow, we assume that dependency

Patser

Patser-Concat

Transterm

Findterm

RNA-Motif

Blast

SRNA

FFN-Parse

Blast-Synteny

Blast-Candidate

Blast-QRNA

Blast-Paralogues

SRNA-Annotate

Last-Transfer

Figure 1: A simplified SIPHT workflow. The job type is

represented by node colour in the workflow DAG.

information is provided at the beginning of execution along

with all required data files and individual jobs. Individual

task processing times are also assumed to be known (and can

be calculated by various methods), where tasks split from

the same job are generally assumed to be homogeneous in

both execution time and resource utilization. Task processing

times are modelled along with their cost for each machine

type, with the information stored in a table.

B. Formulation

Similar to the algorithms proposed in [22], we consider

makespan minimization through reduction of task execution

time. In particular, tasks that lie on the critical path(s)

of the workflow DAG have their execution time reduced

through rescheduling on faster, more expensive machines.

To accomplish this, we consider the workflow as consisting

of k stages, where a single stage Ss is defined as the

set of all map (or reduce) tasks in a single job: Ss =
{τs1, τs2, . . . , τsns}, where 0 < s ≤ k, and ns tasks exist

in stage Ss. We also denote the total number of tasks in

the workflow as nτ . Decomposition of the workflow in this

manner is permitted by data-flow constraints caused by the

framework. Specifically, since all map tasks of a job Jj must

complete before any reduce tasks of Jj can begin, and all

reduce tasks of a job Jj must complete before the map tasks

of any successor of Jj can begin, we can group these tasks

together with regards to execution time and priority.

As the cost and execution time of tasks in a workflow

are determined by the machine they are scheduled on, we

need to account for this in our model. For each task,

we store this information in a time-price table, as shown

in Table I. The table contains the time (t) and price (p)

information with regards to all Mu | 0 < u ≤ nm available

machine/resource types for a specific stage Ss and task τsτ .

For ease of notation, the table has task execution times sorted

in increasing order and task cost in decreasing order.

C. Stage Optimization

Since our algorithm is driven by the provided budget

constraint, we can use its value to select valid machine types

14351435

Authorized licensed use limited to: Carleton University. Downloaded on June 18,2020 at 01:47:39 UTC from IEEE Xplore.  Restrictions apply. 



Time-Price Table

t1sτ t2sτ · · · tnm
sτ

p1sτ p2sτ · · · pnm
sτ

Table I: The time-price table for a single task τsτ contains

time and price information for each Mu , 0 < u ≤ nm.

for a particular task. For instance, if given a budget Bsτ for a

task τsτ , valid machines u ∈Mu are those in the time-price

table whose cost is less than the budget: pusτ < Bsτ . Using

the same table, we can compute the shortest time to finish

a task when given a budget by selecting the most expensive

machine that costs less than the budget. We can compute

this time as

Tsτ (Bsτ ) = tusτ | pu−1sτ > Bsτ > pu+1sτ . (1)

Using this information, we can determine how to compute

the execution time of a single stage Ss with respect to a

given budget Bs. As all tasks in a stage must finish for

the stage to complete, and since all tasks are independent

within that stage, we can define the stage makespan as the

maximum execution time of all tasks in the stage:

Ts(Bs) = max
0<τ≤ns

{Tsτ (Bsτ )}. (2)

Consequently, to decrease the stage execution time we

simply reschedule the task with maximum execution time.

D. Workflow Optimization

To minimize the workflow makespan we need to de-

termine a method to calculate the makespan value with

respect to the budget constraint B. Given that the workflow

makespan is equivalent to the execution time of the longest

path, we can find which stages to optimize by determining

the DAG’s critical path. Since our workflow is arbitrary

however, we must also consider that there may exist multiple

critical paths. To find a single critical path we first modify

the DAG to contain a single entry and exit node, after which

a single-source longest-path algorithm can be run between

these nodes to find the critical path. Overall, all steps in the

process have at most linear computational complexity with

respect to the input workflow DAG size. Throughout this

paper, we consider our workflow G = (V,E) to consist of

|V | = k stages (nodes) and |E| dependencies (edges).

We begin by modifying the arbitrary workflow DAG G to

contain only a single entry and exit node. To do this we first

find all entry and exit nodes in the workflow DAG. After

locating these nodes, all existing entry (exit, respectively)

nodes are then connected to a single new zero-cost entry

(exit, respectively) node in the DAG. As stated in [13], [23],

[24], [25], [15], [14], adding these new nodes does not affect

schedule length. Finding all entry and exit nodes takes |V |
time, as all nodes must be visited to determine existence

of dependencies or successors. Adding the new nodes and

edges takes O(1)+O(|E|) time in the worst case (assuming

adjacency list storage).

Generally, graph edges are required to be weighted for

execution of a shortest or longest path-finding algorithm.

However in our case, for each edge e(u, v), u, v ∈ V
we can simply use the weight of v as the edge weight

ew(u, v) = Tv(Bv). As an edge stores the incoming (from)

and outgoing (to) vertices, this retrieval takes O(1) time for

the lookup of the vertex along with its attribute.

Theorem 1: Let G = (V,E) be a node-weighted DAG,

and let the weight for any node u ∈ V be defined as uw.

Also assume that G contains a single entry node s and a

single exit node t, where sw = 0 and tw = 0. The results of

a deterministic shortest-path algorithm SP on G using node

weights is equivalent to the results of the same algorithm

run on G using edge weights after setting each edge weight

e(u, v), u, v ∈ V to vw.

Proof: Consider an execution of SP on G = (V,E)
from s to t using node weights. As SP is deterministic,

the same shortest path is returned for any run of SP on G,

even if there exist multiple shortest paths in G. We denote

the returned shortest path as P , and its weight as Pw. Since

the shortest path is from s to t, both weights sw = 0 and

tw = 0 are included in Pw. Therefore, Pw =
∑

u∈P uw =∑
u∈P\{s,t} uw.

Consider now an execution of SP on G from s to t using

edge weights, where the weight of e(u, v) = vw ∀ u, v ∈
V . We denote the returned shortest path as P ′, and its weight

by P ′w. Since there does not exist an edge e(u, s) | u ∈ V ,

sw is not included in P ′w. This not an issue, as sw also does

not contribute any weight to Pw. In P ′, there must be an

edge e(u, t) | u ∈ V , as the shortest path runs from s to

t. However, as the weight of e(u, t) = 0, its inclusion does

not contribute to P ′w. For any other edge e(u, v) | u, v ∈ V
where e(u, v) ∈ P ′, the algorithm must have traversed the

path from u� v, and as such visits both e(u, v) and v. Note

that as the graph is a DAG, no other edge e(x, v) | x, v ∈ V
can be selected for inclusion in P ′ after the selection of

e(u, v). This ensures that vw is not considered more than

once via the weights of any edges e(x, v).
Therefore, as selection of an edge e(u, v) represents the

traversal from u � v, consideration of either the assigned

edge weight of e(u, v) or the node weight vw is equivalent.

At this point we can consider G equivalent to an edge-

weighted DAG. The next step taken is to run a topological

sort on G, which orders nodes such that each node’s depen-

dencies occur before the node itself appears in the ordering.

A topological ordering can be found in O(|V | + |E|) time

using a modified DFS, and as such has complexity linear in

the size of the DAG.

To compute the path weight information a single-source

longest-path algorithm is employed, which uses the DAG’s

topological ordering to run in linear time. The algorithm
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works by iteratively updating longest path information as

it visits new nodes, with the topological ordering allowing

all dependencies of a node to have path weight information

computed before the node itself. Due to this, each node must

only be visited once. Path weight information is updated

for a node using the relax function, which throughout the

algorithm is executed |V | times, overall visiting |E| edges.

Therefore the total time taken to relax all edges is O(|V |+
|E|), while initialization takes linear time for the topological

sort, and |V | time for variable initialization.

To prove a linear running time for the algorithm, we

consider an argument by contradiction regarding the number

of calls to relax. Assume that there exists an execution of

our algorithm in which there are more than |V | calls to the

relax function. As a result, there must exist a node v ∈ V
that is relaxed more than once. Since nodes are relaxed to

update their weight according to maximum path distance

among their dependencies, this must mean that v’s distance

from the entry node s must have been updated more than

once due to one of its dependencies having its weighting

updated. Otherwise, v would already have a correct weight,

and would not have needed to be updated again after the

first relaxation. This implies that v was relaxed before one

of its dependencies. However, as the topological sort returns

nodes in an ordering where all dependencies occur before

their successors, it is impossible for any dependency of v to

be relaxed after v. As such, v must have a correct weighting

after its first relaxation, and therefore is only relaxed once.

After path weight information is computed, we can now

determine which stages lie on the critical path(s). Beginning

from the exit node, or sink, we traverse back along the

critical paths using a modified BFS. More specifically, edges

traversed are selected by considering only the node(s) of

maximum value among all predecessors. These traversed

nodes (stages) are added as they are found to a set of critical

stages, which are returned when the function completes. The

algorithm runs in O(|V |+ |E|) time in the worst case; when

all nodes lie on the critical path(s), this forces all vertices to

be visited by traversal along all edges. For instance, consider

the nodes which can be added to the vertices set. These are

selected as the predecessors of the current nodes in vertices.

Since the graph is acyclic, no node can be added to vertices
more than once. Similarly, since only incoming edges to

a node are traversed, no edge can be traversed more than

once. Therefore, this portion of the algorithm has a linear

time complexity of O(|V |+ |E|).
III. GREEDY SCHEDULING ALGORITHM DESCRIPTION

AND THEORETICAL ANALYSIS

In this section, we introduce a heuristic that iteratively

reschedules tasks from stages on the workflow’s critical

path(s). We begin by considering the applicability of the

globally optimal algorithm proposed in [22] to our modified

problem. Following this, we also considered several other

possible methods for computation of an optimal scheduling.

For the heuristic, selection of tasks for rescheduling is based

on a utility value that accounts for changes in both the

workflow cost and makespan caused by the reschedule. The

principal goal for our algorithms is to efficiently distribute

budget over the individual stages (and tasks), such that the

makespan of the workflow is minimized while the total

cost is within the given budget constraint. For the input

workflow DAG G, task execution information is recorded

as attributes on tasks themselves. As such, we denote the

list of tasks in the workflow as G.τ . Indexing into this list

allows the price, time, and machine attributes to be set and

retrieved. For instance, price information for a task Γ (or

an index i) can be set by the statement G.τΓ.p = price
(or G.τi.p = price). Additionally, we also assume that the

G.τexit attribute contains the workflow’s exit stage. As we

add the exit stage to the workflow ourselves, this attribute

is trivial to define. Also used in the algorithms is the time-

price table, denoted by TP . The table is accessed to select

either a p or t function for execution, which return the price

or time, respectively. Similar to the original time-price table

introduced in Section II-B, the p and t functions require as

input a task τ and a machine Mu.

Scheduling begins with an initial assignment of all tasks

to the least expensive resource type and is followed by

rescheduling of select stages on the critical path, based

on prospective changes to makespan and cost. The initial

assignment simply ensures that the given budget is valid for

the input workflow, along with establishing a base configu-

ration to build from. After this step the algorithm proceeds

in an iterative manner, selecting a stage on the critical

path to have its slowest task rescheduled. This rescheduling

has the potential to alter the workflow’s critical paths, and

as such recomputation of the critical path is necessary.

Stage selection is based on the relative improvement of

schedule makespan with respect to cost increase, compared

against other eligible stages (those on the critical path). As

mentioned the rescheduling is done iteratively, and executes

until there is either insufficient budget left for rescheduling,

or until there are no tasks left that can be rescheduled. The

pseudocode for this algorithm is shown in Algorithm 1, with

an explanation forthwith.

To direct stage selection, we denote the utility of a task

τ in stage s as vsτ , calculated by

vsτ =
min {(tusτ − tu−1sτ ), (tusτ − tu

′
sτ ′)}

pu−1sτ − pusτ
(3)

if there exists more than one task in a stage. Otherwise,

utility is given by

vsτ =
tusτ − tu−1sτ

pu−1sτ − pusτ
. (4)

In Equation 3, the slowest task τ is assumed to be currently

assigned to the machine u, whereas the second-slowest task

14371437
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Figure 2: Task execution times before rescheduling are

shown in grey, with shorter, rescheduled execution times

shown in blue. In (a), rescheduling τ allows τ ′ to become

the slowest task. However it is possible, as in (b), for τ to

continue to be the slowest task in a stage.

τ ′ is assigned to u′. Also recall that the time-price table is

sorted, with times in increasing order and cost in decreasing

order. The meaning of this equation is visualized in Figure 2,

which shows a bar chart representing the makespan of

tasks in a single stage. For example, consider the difference

between part (a) and (b). In (a), rescheduling the slowest

task causes the bottleneck to change to the second-slowest

task. However in (b), rescheduling the slowest task does

not change which task is limiting the stage makespan. It is

because of these two separate cases that the minimum execu-

tion time decrease between the slowest and second-slowest

tasks is used by the equation, as this allows realization of

the actual time speedup caused by rescheduling.

Algorithm 1 accepts as arguments the workflow DAG G,

set of machines M , time-price table TP , and a budget B.

It begins by performing an initial scheduling in the for loop

on Line 3. This initialization assigns the least expensive

machine type to each task in the workflow, along with

updating the time and price information for the task. As

this task-resource mapping is being performed, the schedule

cost is also recorded so that it can be reconciled against the

input budget B later in the algorithm.

The main while loop begins on Line 13, where it re-

peatedly reschedules tasks until no budget remains. Within

the main execution loop several functions are first called to

configure the graph weightings, and then to calculate the

critical stages. The first of these functions updates stage

weights to be the maximum weight of their composite tasks.

In addition to updating stage weight information, the UP-
DATE STAGE TIMES function is also modified in this case

to record for each stage the slowest task and second-slowest

task. The following two functions serve to calculate the

critical stages, first by determining makespan information,

and then using the computed information to ascertain which

stages lie on the critical path(s). Following computation of

the critical stages, utility values are computed in the for

loop beginning on Line 18. In this for loop the slowest and

second-slowest tasks are retrieved for each stage, and then

are used in conjunction with the time-price table to calculate

Algorithm 1 A greedy scheduling algorithm.

1: procedure SCHEDULE HEURISTIC(G,M, TP,B)

2: cost = 0
3: for i ∈ G.nτ do � O(nτ )

4: G.τi.m = Mnm−1
5: G.τi.p = TP.p(G.τi, G.τi.m)

6: G.τi.t = TP.t(G.τi, G.τi.m)

7: cost ≥ G.τi.t

8: end for
9: B ≤ cost

10: if B < 0 then
11: return None
12: end if
13: while B ≥ 0 do � O(nτ × nm)

14: UPDATE STAGE TIMES(G) � O(|V | + |E| + nτ )

15: distances = CALCULATE CRITICAL(G) � O(|V | + |E|)
16: Scritical = GET CRITICAL STAGES(G,G.τexit, distances) � O(|V | + |E|)
17: v = ∅
18: for Ss ∈ Scritical do � O(|V |)
19: (Γ, γ) = (Ss.slowest, Ss.second slowest)

20: X = (TP.t(Γ, G.τΓ.m) − TP.t(Γ, G.τΓ.m − 1))

21: Y = (TP.t(Γ, G.τΓ.m) − TP.t(γ,G.τγ.m))

22: v[Γ] =
min {X,Y }

TP.p(Γ,G.τΓ.m−1)−TP.p(Γ,G.τΓ.m)

23: end for
24: while v �= ∅ do � O(|V | log |V |)
25: Γ = maxτ∈v.keys(){v[τ]}
26: new price = TP.p(Γ, G.τΓ.m − 1)

27: old price = TP.p(Γ, G.τΓ.m)

28: if B < (new price − old price) then
29: v.remove(Γ)

30: else
31: G.τΓ.m ≤ 1

32: G.τΓ.p = TP.p(Γ, G.τΓ.m)

33: G.τΓ.t = TP.t(Γ, G.τΓ.m)

34: B ≤ (new price − old price)

35: break
36: end if
37: end while
38: if v = ∅ then
39: return G
40: end if
41: end while

42: end procedure

each stage’s utility.

At this point the while loop on Line 24 is entered, where

the critical stages’ utility values are iterated through, as

orderd by descending utility values. For each utility value

the corresponding task Γ is retrieved and analyzed. Since

the utility value only ensures that the most cost-efficient

task is selected, it is still possible that the magnitude of

the cost is greater than allowed. Thus, the change in price

caused by rescheduling is computed and compared against

the available budget. If the budget is insufficient then the

task is discarded while the algorithm continues on to the

next task. Otherwise, we reschedule the task onto a more

powerful machine, update the related attributes, and break

out of the inner loop to allow critical path information to be

recomputed. The algorithm exits based upon the condition

on Line 38; if no critical stages can be rescheduled then the

workflow makespan cannot be decreased any further, and so

the algorithm exits.

Theorem 2: The running time of Algorithm 1 is O(nτ +
(nτ × nm)× (|V | log |V |+ |V |+ |E|+ nτ )).

Proof: The algorithm begins with an initialization loop

on Line 3. The loop runs once for each of the nτ tasks in

the workflow DAG G = (V,E). In each iteration it does a

constant amount of work to initialize the machine type, price,

and time of each task. As well, an initial cost is calculated.

As a constant amount of work is done in each of the nτ
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loop iterations, the initialization stage takes O(nτ ) time.

Next, we consider the execution time of the main while

loop on Line 13. As a bound on the running time, we know

that the maximum number of times the loop can run is

related to the number of times rescheduling can occur, as

this is also the maximum number of times that the budget

can be updated. Specifically, since each of the nτ tasks can

be rescheduled nm−1 times, the loop must execute less than

nτ × (nm − 1) times. Therefore, the outer loop executes at

most O(nτ × nm) times.

The first computation within the outer while loop up-

dates the stage times. This is accomplished by the UP-
DATE STAGE TIMES function, whose run time was derived

as O(|V |+ |E|+ nτ ). In this instance however, it has been

modified to record both the slowest and second slowest tasks

of each stage. To find the these tasks for a particular stage,

the algorithm needs to iterate over all tasks belonging to

the stage. However, since all tasks are already visited for

computation of the stage’s execution time, this addition only

adds a constant amount of work for each task visited, leaving

the total execution time unmodified. As such, the run time

of the algorithm is O(|V |+ |E|+ nτ ).

After the stage times are updated the critical path in-

formation is computed and then retrieved. As shown in

subsection II-D, both algorithms take O(|V |+ |E|) time.

To place an upper bound on the inner for loop, we realize

that as the workflow DAG is arbitrary there is no guarantee

on the number of stages which comprise the critical path(s).

As a result, all stages can in fact lie on the critical path,

causing the loop to execute |V | times in the worst case. For

each iteration of this loop, stage utilities are computed in

constant time. Therefore, the inner for loop takes at most

O(|V |) time to execute in the worst case.

The inner while loop can execute at most |V | times,

assuming that for each stage the cost for rescheduling is

found to be larger than the available budget. Within the loop

at each iteration, we first retrieve the task with maximum

utility, and then compare its current and new execution

prices using information from the time-price table. The

lookup of information from the time-price table along with

all subsequent operations take O(1) time. To obtain tasks

ordered by their utilities, we use a priority queue structure

to allow retrieval in O(1) time, albeit with an overhead of

log |V | time for initialization in the worst case. However,

this is much more efficient than a linear search, which would

take O(|V |) time per iteration. Therefore, the execution time

of the inner while loop is at most O(|V | log |V |).
Overall, the algorithm’s time is therefore O(nτ + (nτ ×

nm)× (|V | log |V |+ |V |+ |E|+nτ )). Simplifying this, we

can both remove the non-dominant terms and assume that

the number of machines nm is bounded by a small integer

constant (4 in our experiments) to give a resultant time of

O(nτ × (|V | log |V |+ |E|+ nτ )).

IV. IMPLEMENTATION

Implementation of the proposed algorithm was

carried out in Hadoop version 1.2.1. It includes

the addition of several packages, with around 8500

lines of code added in total. This included creation

of the org.apache.hadoop.mapred.workflow,

org.apache.hadoop.mapred.workflow.schedulers,

and org.apache.hadoop.mapred.workflow.scheduling
packages. Several existing classes were also

modified to allow workflow execution. In this

case, the main modifications were made to the

org.apache.hadoop.mapred.core.util.RunJar,

org.apache.hadoop.mapred.JobTracker, and

org.apache.hadoop.mapred.JobClient classes. For

testing of the implementation, classes were also added to the

new packages org.apache.hadoop.workflow.examples
and org.apache.hadoop.workflow.examples.jobs. The

changes made along with the method of execution are

briefly reviewed in this section.

We consider the result of a single heartbeat message sent

from a TaskTracker node to the JobTracker. These heartbeat

messages are sent repeatedly after framework initialization,

and allow regular communication with the JobTracker in

order to synchronize status information, and for task assign-

ment. While handling a message, the JobTracker delegates

task assignment to the current task scheduler. The sched-

uler itself operates alongside the JobTracker on the server

node, and is constructed via reflection from a configuration

property during startup. When initialized the task scheduler

creates listeners, which it then adds to the JobTracker. It is

these listeners that the JobTracker and task scheduler use

to control scheduling, as they notified when jobs are added,

changed, or removed. As a result, when the JobTracker calls

the scheduler to assign tasks to the TaskTracker the currently

submitted jobs can be retrieved from a listener and used to

determine which and how many tasks should be executed.

The implementation of workflow scheduling attempts

to take advantage of the current job scheduling features

as much as possible. As a result, it follows the same

basic pattern as job scheduling. Modifications include a

customized listener which listens for both job events and

workflow events (addition, modification, removal), and the

scheduler itself which launches executable workflow jobs as

well as assigning tasks to querying TaskTrackers. Due to

the complexity of workflow scheduling, our assumptions of

known data, and the constraint requirements, much of the

scheduling decisions are delegated to an additional Schedul-
ingPlan class. The class is instantiated on the client machine

during workflow submission, where it generates the plan

based on cluster properties. The plan is then passed to the

scheduler (via the JobTracker) during workflow submission,

and used to decide how to run both workflow jobs and their

composite tasks.
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V. EMPIRICAL EVALUATION

A. Test Setup

In the related literature there exist many different test

configurations proposed for validation of modifications to

the Hadoop framework. The authors of [5] utilize a cluster

of 800 virtual machines on Amazon EC2 (spread over 160

dedicated physical machines). At the other end of the spec-

trum, [26] employs a 30-node cluster on Amazon EC2, with

nodes split evenly between three different machine types.

Lastly, the authors of [27] propose the most convincing

configuration. In their work, three different configurations

are tested on Amazon EC2. Each configuration varies in

both the total number of machines (68, 97, and 99) and

the composition (between two different machine types).

Comparing their configuration to a 2010 survey outlining

the average Hadoop cluster size as 66 nodes, this seems to

be an excellent cluster size [28].

Using these figures, we decided on a cluster size of 81

nodes, all located in one Amazon EC2 region for the purpose

of minimizing data transfer times. The size was selected

due to the figures proposed in [28], along with the cluster

configuration used in [27]. Another factor in the decision of

overall cluster size is the fact that many large companies are

continuing to grow their Hadoop clusters, and as a result the

average as of 2010 has likely also increased.

With regards to machine types, Amazon EC2 offers many

machines suitable for different computational situations [29].

As an overview, they provide instances optimized for any

of compute, memory, Graphics Processing Unit (GPU), or

storage scenarios. They also offer instances suitable for

general-purpose computation, which are the types that we

employ in our tests. Altogether, we utilize four different

machine types within the EC2 m3 family: m3.medium,

m3.large, m3.xlarge, and m3.2xlarge.

We base our selected machine distribution on the in-

sight that composition in a production cluster is often

not balanced; as machines become obsolete or otherwise

are decommissioned, they are replaced by newer machines

which have more computational power. With this in mind,

we propose a test configuration comprising 30 m3.medium
nodes, 25 m3.large nodes, 21 m3.xlarge nodes, and 5

m3.2xlarge nodes. A single node of type m3.xlarge is used

as the master (JobTracker), while the remaining nodes are

retained as slaves to take on the role of TaskTrackers.

B. Workflow Configuration & Job Definition

Apart from configuration of the cluster environment, the

other main testing decision is which workflow to test with.

Originally we selected both the SIPHT and LIGO workflows.

The aforementioned workflows were mainly selected for two

reasons. First, they both contain all workflow substructures.

Second, both workflows are sufficiently large at 31 jobs

for SIPHT and 40 jobs for LIGO. In addition to these
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Figure 3: The actual and computed time for execution

of the SIPHT workflow are shown according to different

budget amounts. The proposed greedy scheduler was used

for execution on our modified Hadoop framework.

properties, SIPHT was constructed to use two separate input

directories, and the LIGO workflow is actually defined as

two DAGs contained in a single graph. These properties

together cover all edge cases to be tested with the workflow

scheduling modifications made to the Hadoop framework.

In this paper, we report testing of our modifications to

the Hadoop framework and the proposed scheduler on the

final 81-node cluster were accomplished with the SIPHT

workflow.

C. Workflow Scheduling Experiments

We first collected task times for use in the time-price table

on a per-machine-type basis for each machine type utilized

in the 81-node test cluster, as calculated from statistically av-

eraged historical data. We then executed the greedy budget-

constrained workflow scheduler on the SIPHT workflow

using our modified Hadoop framework. This execution was

run 5 times for 8 budget values within the range $0.129 to

$0.16. The budgets were selected such that the range covered

from an infeasible amount (budget is less than workflow cost

when using only the least expensive machine type) up to an

amount larger than the highest cost selected by the scheduler

(all tasks assigned to the most expensive machine type).

Within these boundaries, additional values were selected

at even intervals between the boundary values. For each

run the computed execution cost and time were recorded,

along with the actual time and machine type mapping. The

metric logging code used during task time collection was

also used during testing, and along with the machine type

mapping allowed us to compute the actual cost of workflow

execution. The values for these runs were then averaged to

a single value for each budget value, the results of which

are displayed in Figure 3 and Figure 4.

Figure 3 shows both the execution time computed by the

greedy scheduler and the actual execution time as recorded

during testing. From these two figures, we observe that

the actual execution time was generally 35 seconds above
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Figure 4: The actual and computed cost for execution

of the SIPHT workflow are shown according to different

budget amounts. The proposed greedy scheduler was used

for execution on our modified Hadoop framework.

the computed execution time. As mentioned previously,

and as shown through earlier testing in Section V-B, the

data transfer times experienced during execution are not

insignificant. Specifically, they will vary depending upon

where the data is placed in relation to the node selected

for task execution. Since these data transfer times are not

considered by the greedy scheduler, it is easy to realize this

as the main source of the disparity.

Figure 4 similarly shows both the execution time com-

puted by the greedy scheduler and the actual cost as com-

puted from testing. As expected, both cost values increase as

the budget increases, while still remaining below the budget

amount. However, the actual cost is generally $0.03 below

the computed cost. The most likely reason is rounding errors

seen with float values at the higher precision required for

these computations. As for the local minimum appearing

when the budget equals $0.15, we suspect from comparison

with Figure 3 that the change in budget allowed for a

larger number of less expensive machines to be selected

(or a smaller number of more expensive machines), causing

a tradeoff between execution time and cost to occur. In

reality, workflows are generally larger in size and comprise

jobs with longer execution times. As such, less precision

is required, and the difference between computed cost and

actual computed cost seen in these experiments will not

manifest.

VI. CONCLUSION

In recent years cloud services - such as those supplied by

IaaS providers - have been gaining traction, mainly due to

their availability, scalability, and low cost. This increase in

the use of cloud services, combined with the proliferation of

distributed computing frameworks and widespread adoption

of Apache Hadoop in particular has allowed more users

to take advantage of the benefits of distributed computing.

However, the combination of Apache Hadoop with execu-

tion of applications on rented infrastructure reveals several

important, unimplemented features.

To address these issues, we have implemented modifi-

cations to the Apache Hadoop framework to allow fully

integrated workflow scheduling. Additionally, we have de-

veloped and tested a greedy budget-constrained scheduling

algorithm against several workflows, as well as developing

both a progress-based and an optimal brute-force algorithm.

These modifications are novel and have led to the com-

pletion of the first generic workflow scheduler fully inte-

grated with the Apache Hadoop framework. Moreover, our

greedy budget-constrained algorithm is the first scheduler for

Apache Hadoop that both deals with budget constraints and

executes workflows. Both the framework modifications and

the greedy scheduler implementation have been extensively

tested via execution on multiple workflow applications,

which demonstrates the ability of our implementation to

handle all possible workflow substructures. Results from our

empirical studies establish these facts, given that the greedy

scheduler both executes correctly, and produces an expected

makespan and cost according to various budget constraint

values.
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