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Abstract—In the context of Hadoop, recent studies show that
the shuffle operation accounts for as much as a third of the
completion time of a MapReduce job. Consequently, the shuffle
phase constitutes a crucial aspect of the scheduling of such jobs.

During a shuffle phase, the job scheduler assigns reduce tasks
to a set of reduce nodes. This may require multiple intermediate
data items which share a key to be relocated to this new set
of reduce nodes. In turn, this could cause a large volume of
simultaneous data relocations within the network. Intuitively, a
reduce task experiences shorter access latency if its required
items are available locally or in close proximity. This, however,
may also result in a hotspot in the network due to imbalanced
traffic, as well as the imbalance of the workload on different
nodes, regardless of their homogeneity.

In this paper, we study data relocation incurred during the
shuffle stage in the MapReduce framework. Within an arbitrary
network, we aim at a) minimizing the overall network traffic,
b) achieving workload balancing, and c) eliminating network
hotspots, in order to improve the overall performance. Our
contribution consists of the development of a scheduler that
satisfies these three goals. We then present an in-depth simu-
lation. Our results show that, for arbitrary network topologies,
our Smart Shuffling Scheduler systematically outperforms the
CoGRS scheduler in terms of hotspot elimination as well as
reduce task load balancing, while ensuring traffic caused by
data relocation is low. Not only does our algorithm handle
any topology but also its benefits are inversely proportional
to the inter-node connectivity of the network topology: the
lower this connectivity, the better our algorithm. In particular,
for the tree topology commonly used within data centres, our
proposed scheduler offers significant improvements over the
CoGRS scheduler.

I. INTRODUCTION

The International Data Corporation estimates that, by 2020,

the digital universe will grow up to 4 × 1022 bytes. Big

Data Analytics and clouds are energizing organizations across

diverse industries in that they present an enormous opportunity

to make these organizations more agile, more efficient and

more competitive. Improving the infrastructure that enables

analytics through an architecture optimized for big data is a

most pressing and challenging concern for computer science

researchers.

Hadoop MapReduce is a software framework for easily

writing applications which process big data in-parallel on large

scale clusters of commodity hardware in a reliable manner. It

has become the de facto research prototype on which many

studies are conducted. The MapReduce framework was first

advocated by Google in 2004 as a programming model for

its internal massive data processing [8]. Since then it has

been widely discussed and accepted as the most popular

paradigm for data intensive processing in different contexts,

e.g. Halim et al. propose an improvement for the maximum

flow algorithm with the help of MapReduce framework. This

improvement rests on the fact that increased graph size have

greatly comprised the efficient of memory-resident algorithms.

Although the new algorithm has quadratic runtime complexity,

it is able to show the ability to compute the large real-

world graphs in an efficient way [14]. Therefore there are

many implementations of this framework in both industry and

academia (such as Hadoop [1], Dryad [17], Greenplum [2]),

each with its own strengths and weaknesses. We thus use the

terminology of the Hadoop community in the rest of this paper,

and focus here mostly on the related works built using Hadoop

implementations.

A. Background

From an abstract viewpoint, a MapReduce job essentially

consists of two sets of tasks: map tasks and reduce tasks, as

shown in Figure 1. The executions of both sets of tasks are

synchronized into a map stage followed by a reduce stage.

In the map stage, the entire dataset is partitioned into smaller

chunks in forms of key-value pairs, each chunk being assigned

to a map slot for partial computation results. The map stage

ends up with a set of intermediate key-value pairs on each map

node that may have several map slots available. Each of a key-

value pair is further shuffled based on the intermediate keys
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Fig. 1. MapReduce framework.

into a set of scheduled reduce slots on reduce nodes where the

received pairs are aggregated to obtain the final results. For

an iterative MapReduce job, the final results could be tentative

and further partitioned and shuffled into a new set of map slots

for the next round of the computation.

Hadoop MapReduce is made up of an execution runtime and

a distributed file system. The execution runtime is responsible

for job scheduling and execution. It is governed by one

master node called JobTracker and multiple slave nodes called

TaskTrackers. The distributed file system, referred to as HDFS,

is used to store and transfer input and output data of jobs that

are being processed across nodes. When a JobTracker receives

a submitted job, it first splits the job into a number of map

and reduce tasks and then put them into the map queue and

the reduce queue, respectively. The existing job schedulers

schedule map and reduce tasks separately and distribute the

results to TaskTrackers that are on disjoint map and reduce

nodes. As with most distributed systems, the performance of

the task scheduler greatly affects the execution time of each

specific job.

Hadoop MapReduce provides a FIFO-based default sched-

uler at job level [9], while at task level, it offers developers

a TaskScheduler interface to allow customer designed sched-

ulers. By default, each job will use the whole set of nodes in

a cluster and execute the jobs in the order of submission. In

order to overcome this inadequate strategy and share fairly

the cluster nodes among jobs, users over time and data

locality [13], Facebook and Yahoo! leveraged the interface

to implement Fair Scheduler [3], [26], Capacity Scheduler [4]

and Delay Scheduler [29] respectively.

Given the dependencies between different phases of a

MapReduce job, MapReduce framework has presented several

significant challenges in performance optimization. One of

them is the shuffle operation which assumes simultaneous

possession of multiple resources to transfer the intermediate

results of the map phase to the processors performing the

reduce tasks. Recent studies by Chowdhury et al. [7] have

shown that the shuffle operation accounts for as much as a

third of the completion time of a MapReduce job. As such,

the shuffle phase has to be taken into consideration carefully

in the scheduling problem.

During a shuffle phase, job scheduler assign reduce tasks to

a set of reduce nodes. This may request multiple intermediate

data items (with the same key-value) to be relocated to this

new set of reduce nodes. This could cause a large volume of

data relocation in the network at the same time. Intuitively, a

reduce task would experience shorter access latency if required

items were placed locally or in its closer proximity, but it can

also result in hotspot (i.e., overloaded links) in the network

due to imbalanced traffic, as well as the imbalance of the

workload on different nodes, regardless of their homogeneity.

Therefore, scheduling the reduce tasks to appropriate machine

would minimize the total network traffics (globally and lo-

cally), balance the workload and hence improve the overall

performance. It is well known that all data centres today

have very symmetric topologies, yet, having a single solution

that can handle various symmetric network topologies without

requiring the knowledge of the topology a priori constitutes

a major improvement over the existing solutions that are

targeting specific topologies.

B. Our Contribution

In this paper, we address this problem by carefully schedul-

ing the reduce tasks in appropriate locations to reduce the

network hotspots and balance the node workload while min-

imizing the overall traffic. We introduce a Smart Shuffling

Scheduler in order to satisfy these three goals. Our in-depth

simulation results show that, for arbitrary network topologies,

our Smart Shuffling Scheduler systematically outperforms the

Random and CoGRS scheduler in terms of hotspot elimination

as well as reduce task load balancing, while ensuring traffic

caused by data relocation is low. Not only does our algo-

rithm handle any topology but also its benefits are inversely

proportional to the inter-node connectivity of the network

topology: our algorithm performs the best in tree topology

that is commonly adopted in data centres.

II. RELATED WORK

Chen et al. [6] consider the problem of jointly scheduling

all three phases of the MapReduce process with a view of

understanding the theoretical complexity of the joint schedul-

ing. The value of the research is the guaranteed approximation

algorithms and several heuristics as well to solve the joint

scheduling problem. Although result allow us to gain deep

insight of this problem, the model in the shuffle phase is

simplified for easy analysis, and not fully practical to manifest

the reality.

Many efforts to optimize the shuffle phase are mainly either

on data placements [5], [10], [27] or on the reduce task

scheduling [15], [24], [25], both with a goal to improve the
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data locality whereby reducing the amount of data that needs

to be moved in a shuffle phase. However, in the former case,

focus is put on MapReduce in heterogeneous environments

where the compute nodes are typical virtual machines con-

nected via an overlay network. For example, in [27], Xie et

al. address the problem of how to place data across nodes in

such a way that each node in a heterogeneous environment

has a balanced data processing load. In [10], Eltabakh et.

al introduce CoHadoop, a lightweight extension of Hadoop

that allows applications to control where data are stored, and

furthermore, leverage the hints from the applications to co-

locate the related files in order to improve the efficiency of the

garget network. In both cases as well as algorithm presented

in [21], the environment on which the MapReduce framework

is deployed is quite similar to ours as the compute nodes in

the virtual cluster nodes may be connected in an arbitrary way.

The latter case usually optimize the scheduling of reduce

tasks by maximizing the local data accesses. A typical ex-

ample is the Center-of-Gravity Reduce Scheduler (CoGRS),

a locality-aware and skew-aware reduce task scheduler, pro-

posed by Hammoud et al. [15], [16], concerning MapRe-

duce network traffic. In an attempt to exploit data locality,

CoGRS schedules each reduce task at its center-of-gravity

node, which is computed after considering partitioning skew

as well. Although CoGRS can minimize the overall network

traffic, it is not always useful to address the hotspot problem

on network links and node workload balancing problem due to

the heterogeneous network traffic in the shuffle phase, which

is specifically the problems that we aim to solve in this paper.

Tan et al. [25] also consider the optimization of reduce task

scheduling. They extend the idea of CoGRS to their Waiting

Scheduler, which couples the progresses of both map and

reduce tasks jointly to alleviate starvation, and optimizes the

data locality. Significant improvements in job response times

is demonstrated through experiments.

Xu et al. [28] study the severity of network hotspots in

racks when the network is shared among various MapReduce

applications. To deal with this issue, they develop a model

to analyze the relationship between job completion time and

the assignment of both map and reduce tasks across racks.

They further design a network-aware task assignment strategy

to shorten the completion time of MapReduce jobs in shared

cluster nodes. Our proposed research focus on reducing the

network hotspots in shuffle phase while minimizing the net-

work traffic and balance the workload of nodes in clusters.

More importantly, we consider the underlying networks in a

more general form, instead of a simple tree topology often

adopted within a data center.

There are several other related works on network-aware

scheduling of MapReduce jobs [5], [18], [23], but none of

them focus on reducing network hotspots while minimizing

the network traffic while balancing the node workload. For

example, Kondikoppa et. al [18] add network awareness in

Hadoop to help place the map tasks close to is data splits

over federated clusters. Similarly, Arasnal et al. [5] propose

several enhancements to data placing algorithms in Hadoop

such that the load is distributed across the nodes evenly, a goal

also pursued in [27]. In [23], Qin et al. present a heuristic

bandwidth-aware task scheduler BASS. In [19], Lai et al.

introduce a scheduling algorithms are proposed with a constant

approximation bound to balance the server workloads and,

at the same time to meet the response time requirements of

MapReduce jobs

Unlike aforementioned research, Li et al. [20] adopt a

different way to address various computing constraints other

than the network bandwidth. To this end, they propose, CAM,

a cloud platform that provides an innovative resource scheduler

particularly designed for hosting MapReduce applications in

the cloud.

Palanisamy et al. [22] presents Purlieus, a resource al-

location system. The work considers data placement and

Virtual Machine placement through three criteria: Job spe-

cific locality-awareness, load awareness and Job-specific data

replication. However, those criteria are established under many

conditions. Such as, the job specific locality-awareness needs

typical data as a benchmark or monitors the execution of a job,

which is not always easily available. Load awareness has sim-

ilar problem. Moreover, the performance of the solution rests

on the appropriateness of the classification of the Job specific

locality-awareness. Unfortunately, according to the definition

of Job specific locality-awareness: reduce-input heavy and

map-and-reduce-input heavy are often hard to classify among

many similar jobs.

In [15], Hammoud et al. suggest to place every reduce task

at “centrality” of intermediate data to minimize the network

traffics whereby they propose Center-of-gravity reduce task
scheduling algorithm.

The proposed solution has two unsolved problems. First, the

selected target node may not have available reduce slot for the

scheduled reducer. Second, the network contention incurred by

the data transfers is not considered. Due to the unpredictable

locations of the intermediate files as well as their partition

skews, it is highly possible for the network traffic to have

an uneven distribution, which would introduce hotpots in the

network, and thus low the network resource utilization, com-

promising the benefits of the CoGRS algorithm. An illustrative

example is shown in Figure 2 where the map results (only

keys are shown) are generated at 7 nodes and among those

with key=3 are shuffled to the selected node for the reduce

task.

In this example, given the shortest path routing, all key 3s

except the one at E are passed over link (S2, C) to node

C, which would become a hotspot to degrade the network

performance. To remove or mitigate this phenomenon, in spite

of extra one hop, selecting the route over switches S3 and S4
to node C for key 3 at node B would be a better solution.

Tan et al. notice this first problem. The improved algorithms

presented in [25] has been used in their Waiting Scheduling
for reduce task scheduling with data locality. To our best

knowledge, no one so far has studied the second problem.
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Fig. 2. An example of hotspots in a network. The intermediate key-value
pairs are generated by map tasks at 5 nodes that are connected by 4 switches
(S1−−S4), each only showing the keys in parentheses (left sub-graph). The
right sub-graph shows how key 3 is shuffled from nodes A,B,C,D and E
to the selected reduce task at C according to the shortest path routing (dashed
red lines), and how link (S2, C) becomes a hotspot link (bold red line).

III. MODEL, ASSUMPTION AND PROBLEM DEFINITION

Let G(E, V ) denote an arbitrary network topology, where

a link (u, v) ∈ E represents a network link and u, v ∈ V
represent network nodes. |E|=e is the number of edges and

|V | = n is the number of nodes in G. A Task Tracker (TT )

is available on each u ∈ V sending heartbeats to a central

Job Tracker J. Let (TT1, TT2, · · · , TTΔ) represent a list of

nodes/job trackers that has at least one available slot that can

process a Reduce Task.

There are m Reduce Tasks, RT1 · · · RTm, each of which

is waiting to be processed on its destination node DRTx
(1 �

x � m) during the Reduce phase. In order to perform each

such reduce task RTx, data need to be transferred from a list

of feeding nodes to the candidate destination node DRTx . Let

RTxFy denote the yth feeding node of RTx, where 0 < y � n.

For each such feeding node RTxFy of RTx, let ω(RTxFy)
denote its Partition Size, that is the intermediate outputs from

a feeding node after the Map phase. Zx denotes the number

of feeding nodes of RTx, where 1 � x � m.

Let ψ(RTxFy, DRTx) and d(ψ(RTxFy, DRTx)) denote a

shortest path between the yth feeding node of RTx and its

destination node DRTx
(1 � x � m) and the length (number

of hops) of this path respectively.

We define the Actual Weight (AW) of a link L = (u, v) ∈ E
as the following:

W (u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑x
i=1

∑y
i=1 1 if (u, v) ∈ ψ(RTxFy, DRTx

)

(1 � x < m and 0 < y � n)

0 otherwise

In order to minimize the network traffic, we always try to

send a package of intermediate data from its feeding node to

the destination node (i.e. the ideal node that will process the

reduce task during reduce phase) of its reduce task through

a shortest path. We call each of such path an Intermediate
Data Relocation Path. We say a link L’s actual weight is 1
if L is on such a shortest path. Obviously, L may not only

be on several intermediate data relocation paths of a specific

reduce task, but also on the intermediate data relocation paths

of multiple reduce tasks. The actual weight of link L is the

total number of times all intermediate data relocation paths of

all reduce tasks that passes through L.

α =

x∑
i=1

Zx/e

α represents an average weight of a link L, that is the total

number of intermediate data relocation paths of all reduce

tasks in the entire network over the total number of links on

these paths.

Similarly, we define the Actual Workload (AL) of a node

u ∈ V as follows:

Ł(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑x
i=1

∑y
i=1 ω(RTxFy) if u is the DRTx of RTx

(1 � x � m, 1 � y � n)

0 otherwise

Theoretically, node u can be the destination node of several

reduce tasks depending on the available reduce slot on it.

Hence, we calculate the total size of intermediate data of all

reduce tasks that has node u as its destination node. In other

words, if we call Ł(RTx), the sum of the partition sizes of

all feeding nodes of each specific reduce task RTx the total
intermediate data items, then the actual workload of node u
ALu is the sum of total intermediate data items of all reduce

tasks that has u as its (candidate) destination node.

β =

Δ∑
i=1

Ł(RTi)/Δ

β represents the average workload per node, that is the ratio

between the total intermediate data items of all reduce tasks

in a Job Tracker and Δ, that is the number of nodes that has

a reduce task slot available and has sent a request to the Job

Tracker.

The scheduler that we propose aim at finding a set of nodes

as targets, on which to process reduce tasks in job i that

satisfies the following requirements:

Min (aA ∗ bB ∗ cC), where

A = max |W (u, v)− α|

B = max |
m∑

x=1

Ł(RTx)− β|

C =
x∑

i=1

y∑
i=1

d(ψ(RTxFy, DRTx
)) ∗ ω(RTxFy)
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A represents the largest link weight difference, B is used

to represent the biggest node load difference andC is used

to calculate the overall intermediate data items that need to

be relocated from any feeding node to a destination node of

all reduce tasks registered in the Job Tracker. We explain the

details in the next section.

IV. ALGORITHM Smart Shuffling

A. General Description

Our proposed scheduler aim at suggesting a list of destina-

tion nodes, referred to as Candidate Group in our algorithm

description, each of which process a reduce task of a specific

job registered on the Job Tracker. This scheduler can be easily

adjusted to the meet the needs of the customers who may either

value the node workload balance more than the existence of

the network hotspot or the overall intermediate data relocation

level, or prefer to eliminate the network hotspot or value

the data locality more than the two other facts which focus

on reducing the overall job processing time. We use a, b, c,
(0 < a, b, c ≤ 1) as the weight of:

• A: the largest link weight difference, that is the difference

between 1). the actual weight of a link that appears on

at least one Intermediate Data Relocation Path of any

reduce task and 2). the average weight of a link L in the

network; and

• B: the biggest node load difference, that is the difference

between 1). the actual workload of a candidate node,

on which there is at least one reduce task that will be

scheduled, and 2). the average amount of intermediate

data of all reduce tasks being spread to the nodes that

has a reduce task slot available and has sent a request to

the Job Tracker; and

• C: the overall intermediate data size, that is the sum of all

the intermediate data items of all reduce tasks registered

in the Job Tracker multiply the distance that each data

item needs to travel in order to arrive at its reduce task’s

destination node.

respectively.

Assuming that we value each of these three aspects: link

hotspot elimination, node workload balance and data locality

equality, we will choose the set of candidate nodes that returns

the minimal values of A, B and C. Changing the coefficients

a, b and c will allow us to change the weights of each aspects

that changes the overall performance accordingly. Such setup

clearly indicates the tradeoffs between these three above-

mentioned performance impact factors (see Algorithm 1 for

more detail).

In order to maximize the data locality and minimize the data

relocation caused during Shuffle stage, we first incorporate

the idea proposed by Hammoud et al. [15]. Hammoud et al.

pointed out in [15]: in principle and verified empirically as

well, the Center-of-Gravity (COG) of a reduce task R (CoGR)

is always one of R’s feeding nodes since it is less expensive

to access data locally than to shuffle them over the network.

As the first step of our scheduling algorithm we first calculate

a list of Candidate Node List for each reduce task RTi that

may be considered as its destination node DRTx during the

Reduce phase. It is important to know the fact that not all

COG happen to be a node with available slots to process at

least one reduce task. Consequently, the task tracker on such a

node would have not sent out a reduce task request to the job

tracker. This situation was overlooked by the CoGR scheduler.

We choose a node cn as a Candidate Node of a specific reduce

task RTi, if:

• cn is a feeding node of reduce task RTi and cn’s task

tracker has sent out a reduce task request; or,

• cn’s task tracker has sent out a reduce task request and cn
is the closest node to one of the feeding nodes of reduce

task RTi’ that is not a candidate node.

Algorithm 1 Smart Shuffling Scheduler

1: procedure CanSelection(CandidateGroup(cRt1, cRt2....cRti))
2: for each candidate group do
3: Execute Procedure Link Weight Calculation and return

Max |LinkWeight− α| to A
4: Execute Procedure Node Load Calculation and return

Max |workload− β| to B
5: Execute Procedure Overall Intermediate Data Reloca-

tion Calculation and return Sum Data relocation to C
6: end for
7: The candidate group (CN1j , CN2j , CN3j , ..., CNij) that

returns the Min (aA ∗ bB ∗ cC) is the list of destination nodes
for the reduce tasks that needs to be processed.

8: end procedure

B. Detailed Description and Simulation Detail

Procedure Candidate Group Selection (Algorithm 2) de-

scribes how each candidate group is selected.

Algorithm 2 Candidate Group Selection

1: procedure CanSelection(TaskRq, FeedingNodes,ReduceTask)
2: for Every Feeding Node FNij ∈ RTi do
3: if FNij ∈ TaskRq then
4: Add FN to Candidate Node List of RTi

5: else
6: Calculate the distance between all nodes in TaskRq

with FNij

7: Add the node with the minimal distance to this
Candidate List of RTi

8: end if
9: end for

10: for Every Candidate Node List do
11: Choose one CNij and added it to Candidate Group
12: end for
13: Return Candidate Group
14: end procedure

Procedure Link Weight Calculation (Algorithm 3) describes

how ‘A’ value is calculated for each selected candidate group.

As we have mentioned earlier, shortest path is always used to
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send a package of intermediate data from its feeding node to

the destination node of its reduce task, in order to minimize

the network traffic. In our algorithm, we use Floyd-Warshall

algorithm [12] to calculate the route that any intermediate

data item travels from a feeding node of a reduce task to its

destination node.

Algorithm 3 Link Weight Calculation

1: procedure CanSelection(Candidate Group(...))
2: AW ← ∅

3: AW (Lj)← ∅

4: for each link Lj do
5: for each Candidate destination node CNij in the Candi-

date Group do
6: Calculate a set of Intermediate Data Relocation Paths:
Pi

7: if Lj ∈ Pi then
8: AW (Lj) + +
9: end if

10: α =
∑x

i=1 Zx/e
11: if α exists then
12: AW ← |AW (Lj)− α|
13: end if
14: end for
15: Return maxAW
16: end for
17: end procedure

Procedures Node Workload Calculation (Algorithm 4) and

Overall Intermediate Data Relocation Calculation (Algorithm

5) describe how ‘B’ and ‘C’ values are calculated respectively

for each selected candidate group.

Algorithm 4 Procedure Node Load Calculation
1: procedure CanSelection(CandidateGroup(...))
2: AL(CNij)← ∅ � the actual workload of each candidate

destination node CNij

3: AW ← ∅

4: for each Candidate destination node CNij in the Candidate
Group do

5: for every reduce task RTx that has CNij as its candidate
destination node do

6: Ł(RTx)+ = Ł(RT(x− 1)) � Calculate the total
intermediate data items of this reduce task

7: end for
8: x + +
9: β =

∑Δ
x=1 Ł(RTx)/Δ

10: if β exists then
11: AW ← |AL(cRt)− β|
12: end if
13: end for
14: Return max AW
15: end procedure

Algorithm 5 Overall Intermediate Data Relocation Calculation

1: procedure CanSelection(CandidateGroup(...))
2: PartitionSize(RTxFy)← ∅ � the partition size of all

feeding nodes of Reduce task RTx

3: DR← ∅

4: for each Candidate destination node CNij in the Candidate
Group do

5: for every reduce task RTx that has CNij as its candidate
destination node do

6: Calculate Intermediate Data Relocation Path PCNij

between RTxFy and CNij � RTxFy is the yth feeding node
of RTx

7: if PCNij is not empty then
8: DR+ = PCNij ∗ PartitionSize(RTxFy) �

calculate the overall intermediate data items that need to be
relocation

9: end if
10: end for
11: end for
12: Return DR
13: end procedure

V. EMPIRICAL EVALUATION

A. Experiment Setup

Due to the inaccessibility of arbitrary topology network with

large number of nodes, we use simulation study to verify

and validate the proposed scheduler, study its performance

and compare the results to Center-of-gravity reduce task
scheduler (CoGRS) presented in [15] by Hammoud et al.

and a Random Scheduler (RS). In all our experiment, we use

a = 1; b = 1; c = 1 as the coefficients of A,B and C assuming

all these three aspects are equally important.

First of all, we execute our Smart Shuffling algorithm in

arbitrary networks. When generating an arbitrary network

topology, we use Erdös-Rényi’s model [11], in which p the

probability of choosing an edge. In our simulation, we choose

p = 0.05, 0.06, 0.07 and 0.08. Under this setup, we conducted

the following three experiments:

1) E-1: we collect the values of minA ∗B ∗ C, when a).

the value of p, b). the number of reduce tasks and c). a

list of feeding nodes of each reduce task are given, in

an arbitrary network with node numbers vary from 100
to 400.

2) E-2: we repeat E-1 in other arbitrary networks generated

using different p values.

3) E-3: we compare our results collected from E-1 and E-2

to the one of Random Scheduler
In these above mentioned experiments, the number of

reduce tasks and each of their feeding nodes are randomly

generated. We also randomly assign nodes to send the reduce

task requests and/or as the feeding node of a randomly

chosen reduce task at hand. In the simulation running Random

Scheduler, we keep the reduce task and each of their feeding

nodes number the same as when we run our Smart Shuffling

Scheduler (SSS) in the same networks. In the Random Sched-
uler, we randomly assign nodes as the destination node to
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run a reduce task. Results and their analysis are explained in

subsection V-B.

We then study the performance of our proposed algorithm

in tree networks, that is commonly used within data cen-

tres. Furthermore, we compare our results in both arbitrary

networks and different tree topology networks against the

results of Random Scheduler and Center-of-gravity reduce
task scheduler. Experiment results, comparative analyses are

explained in detail in the following subsection.

B. Results Analyses and Comparative Evaluation

1) Overall Performance Comparison SSS VS RS:

a) E-1: : Figure 3 to 6 show the overall performance of

both SS and Random schedulers in arbitrary networks with

node numbers vary from 100 to 400 and network connectivity

factor p vary from 0.05 to 0.08. Results show that:

• regardless the network connectivity, SSS consistently

outperform RS;

• not only does SSS handle any topology but also its bene-

fits are inversely proportional to the inter-node connectiv-

ity of the network topology: the lower this connectivity,

the better our algorithm.

In other words, the hotspot elimination mechanism in SSS

shows more advantage in a sparsely connected network than

a densely connected network. This is because, for example,

in a complete network (i.e. there is a link between any pair

of nodes), the length of any intermediate data relocation

path is 1. The chance of having these paths overlapping,

consequently causing a hotspot is minimal. This conclusion is

further supported by the results done in various tree network

topologies (see Figure 7, 9 and 11).
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Fig. 3. Overall performance comparison between SS and Random schedulers
in arbitrary networks when p=0.05.
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Fig. 4. Overall performance comparison between SS and Random schedulers
in arbitrary networks when p=0.06.
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Fig. 5. Overall performance comparison between SS and Random schedulers
in arbitrary networks when p=0.07.
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Fig. 6. Overall performance comparison between SS and Random schedulers
in arbitrary networks when p=0.08.
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2) SSS V.S CoGRS: Figure 7 shows the results of comparing

the peak (i.e. the highest) link weight using SSS and CoGRS

in various tree network topologies when number of nodes

in the network increases from 50 to 300. More specifically,

when the same routing algorithm is used, we run SSS and

CoGRS and get two sets of destination nodes respectively.

We then calculate the peak link weight of using each set of

destination nodes. Results show the peak link weight of SSS is

consistently lower than the one of CoGRS. Most importantly,

the advantage of SSS becomes more significant when the

network size scales up.
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Fig. 7. Peak link weight comparison between SSS and CoGRS in Tree
networks.

Figure 8 illustrates the results of similar experiments with

different arbitrary topologies. We use a network connectivity

factor p = 0.07 for generating different arbitrary network

topologies. Our intention is to test whether SSS still performs

better than CoGRS with respect to peak link weight in rather

well-connected networks. We expect that the more connected

a network is, the more potential routing routes it offers for data

relocation. Thus, the hot link problem should be more severe in

sparsely connected network topologies than in more connected

ones. This expectation is confirmed by the test results shown

in Figure 8. More specifically, peak link weights for rather

dense arbitrary networks are less important than those for the

tree networks shown in Figure 7. In fact, the more nodes

in the network, the less weight the peak link bears. Overall,

though not as significant as for trees, the advantage of SSS

over CoGRS is still obvious. Thus, we conclude that SSS is

clearly stronger in hotspot elimination than CoGRS.
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Fig. 8. Peak link weight comparison between SSS and CoGRS in Arbitrary
networks.
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Fig. 9. Peak node load comparison between SSS and CoGRS in Tree
networks.

Figure 9 shows the results of comparing the peak (i.e. the

highest) node load using SSS and CoGRS in various tree

network topologies when number of nodes in the network

increases from 50 to 300. Similar to the experiment measuring

the peak link weight, we also run SSS and CoGRS and get

two sets of destination nodes and calculate the peak node

load accordingly. Results show the peak node load of SSS

is significantly lower than the one of CoGRS. The results

are consistent even when the network size scales up. After

carefully study the network setup and experiment results, we

noticed that because CoGRS does not consider the workload of

nodes, in most cases, CoGRS actually shuffles many reduce

tasks to the same node to be processed. This unfortunately

increased the workload of some task trackers. On the contrary,

due to the workload balancing consideration, SSS spreads
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the workload to as many task trackers that has sent out

reduce task requests as possible. This greatly contributes to

the improvement of overall performance. Similar conclusion

can be made in arbitrary network topologies from observing

the results illustrated in Figure 10.
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Fig. 10. Peak node load comparison between SSS and CoGRS in Arbitrary
networks.

Figure 11 and 12 show the results of comparing the overall

intermediate data relocation amount using SSS and CoGRS in

various tree and arbitrary network topologies respectively. It

is important to know that the goal of CoGRS is to maximize

the data locality, which leads to low data relocation. But SSS

aims at not only to minimize the data relocation amount,

but also maximize the node workload balance as well as

reduce the hotspot. As we have mentioned earlier, the tradeoffs

between these three aspects are unavoidable. The question that

concerns us is whether the link weight and node workload

balance gain are at the expense of data locality? The results

of this experiment (in both various tree and arbitrary network

topologies) show:

• in majority cases (8/12), the overall intermediate data

relocation amount caused by both schedulers are very

similar;

• the larger network size, the smaller difference in the

overall intermediate data relocation amount between SSS

and CoGRS;

• when the network size is small (e.g. 50 nodes in both

Figure 11, and 12), the overall intermediate data reloca-

tion amount cause by SSS is 11% higher comparing to

the one of CoGRS.

In our opinion, comparing to the significant advantage on

the link weight and node workload balance, this difference is

acceptably small.
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Fig. 11. An example of hotspots in a network.
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Fig. 12. An example of hotspots in a network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study data relocation incurred during the

shuffle stage in the MapReduce framework. We aim at a)

minimizing the overall network traffic, b) achieving workload

balancing, and c) eliminating network hotspots in a network

with arbitrary topologies, in order to improve the overall

performance of the MapReduce framework.

We introduce a Smart Shuffling Scheduler in order to

satisfy these three goals. Our in-depth simulation results show

that, for arbitrary network topologies, our Smart Shuffling

Scheduler systematically outperforms the Random and CoGRS
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scheduler in terms of hotspot elimination as well as reduce task

load balancing, while ensuring traffic caused by data relocation

is low. Not only does our algorithm handle any topology but

also its benefits are inversely proportional to the inter-node

connectivity of the network topology: our algorithm performs

the best in tree topology that is commonly adopted in data

centres.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from

the Natural Sciences and Engineering Research Council of

Canada (NSERC) under Grant No. 371977-2009 RGPIN.

REFERENCES

[1] Apache Software Foundation. Hadoop, http://hadoop.apache.org/core
[Online; accessed Jan-11-2014].

[2] Greenplum HD, http://www.greenplum.com [Online; accessed Jan-11-
2014].

[3] Hadoop FairScheduler, http://hadoop.apache.org/docs/r1.2.1/fair\
scheduler.html [Online; accessed Jan-11-2014].

[4] Hadoop CapacityScheduler, http://hadoop.apache.org/docs/r0.19.1/
capacity\ scheduler.html [Online; accessed Jan-11-2014].

[5] ARASANAL, R., AND RUMANI, D. Improving mapreduce performance
through complexity and performance based data placement in het-
erogeneous hadoop clusters. In Distributed Computing and Internet
Technology, C. Hota and P. Srimani, Eds., vol. 7753 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 115–125.

[6] CHEN, F., GUO, K., LIN, J., AND LA PORTA, T. Intra-cloud lightning:
Building cdns in the cloud. In INFOCOM, 2012 Proceedings IEEE
(March 2012), pp. 433–441.

[7] CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND STO-
ICA, I. Managing data transfers in computer clusters with orchestra.
SIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 98–109.

[8] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing
on large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (2004),
OSDI’04, pp. 10–10.

[9] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[10] ELTABAKH, M. Y., TIAN, Y., ÖZCAN, F., GEMULLA, R., KRETTEK,
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