
Play Patterns for Path Prediction in Multiplayer
Online Games

Jacob Agar
School of Computer Science

Carleton University
Ottawa, Canada

Email: jakeagar@gmail.com

Jean-Pierre Corriveau
School of Computer Science

Carleton University
Ottawa, Canada

Email: jeanpier@scs.carleton.ca

Wei Shi
Faculty of Business and I.T.

University of Ontario Institute of Technology
Oshawa, Canada

Email: wei shi@scs.carleton.ca

Abstract—Traditional dead reckoning schemes predict a
player’s position by assuming that players move with constant
force or velocity. However, because player movement is rarely
linear in nature, using linear prediction fails to produce an
accurate result. Among existing dead reckoning methods, only
few focus on improving prediction accuracy via genuinely non-
traditional methods for predicting the path of a player. In this
paper, we propose a new prediction method based on play
patterns. We implemented a 2D top-down multiplayer online
game to act as a test harness that we used to collect play data
from 44 experienced players. From the data for half of these
players, we extracted play patterns, which we used to create our
dead reckoning algorithm. A comparative evaluation proceeding
from an extensive set of simulations (using the other half of our
play data) suggests that our EKB algorithm yields more accurate
predictions than the IEEE standard dead reckoning algorithm
and the recent “Interest Scheme” algorithm.

I. INTRODUCTION

The IEEE standard 1278.1 defines a Distributed Interactive
Simulation (DIS) as an infrastructure that links simulations of
various types at multiple locations to create realistic, complex,
virtual worlds for the simulation of highly interactive activities.
DIS exercises are intended to support a mixture of virtual en-
tities with computer controlled behavior (computer generated
forces), virtual entities with live operators (human in-the-loop
simulators), live entities (operational platforms and test and
evaluation systems), and constructive entities (wargames and
other automated simulations) [1].

Data messages, known as protocol data units (PDUs), are
exchanged on a network between simulation applications.
Delay and loss of PDUs are the two major issues facing
DISs. Delay (or network latency) refers to the time it takes
for packets of PDUs to travel from sender to receiver. This
delay is usually said to be caused by the time it takes for a
signal to propagate through a given medium, plus the time it
takes to route the signal through routers. Jitter is a term used
as a measure of the variability over time of delay across the
network [2]. Loss (often higher when delay is higher) refers
to lost network packets as a result of signal degradation over a
network medium, as well as rejected packets and congestion at
a given network node. These two factors cause a DIS to suffer
from a lack of consistency between remote participants, jittery
movement of various entities and a general loss of accuracy
in the simulation.

A method of position/orientation estimation called dead
reckoning is employed a) to minimize the appearance of delay
and loss and b) to minimize network traffic. The former is
achieved by having each simulation application maintain a
model (from dead reckoning) of the position and possibly
the orientation of all entities that are of interest (e.g., within
some visibility range). The predicted position/orientation of
other entities are used to display their position/orientation in
an entity’s visual or sensor displays. An entity corrects its
dead reckoning model and replaces the estimation with the
most recent position, velocity, and acceleration information,
upon receiving a new update from one of the entities it
is dead reckoning. Smoothing techniques may be used to
eliminate jitter that may occur in a visual display when the
dead reckoned position/orientation of an entity is corrected
to the most recently communicated position/orientation [1].
This is achieved by estimating the position/orientation of other
entities. With the estimated position, it is not necessary to
receive an update of a position and orientation that occurs in
the entity’s trajectory over time. An update is required only
when a change in position and orientation differs by a pre-
specified amount (threshold) from the dead reckoned position
and orientation.

DISs are used by military, space exploration, medicine
organizations. In recent years, another type of DIS, namely
Multiplayer Online Games (MOGs), has come to make up a
huge chunk of one of the largest entertainment industries on
the planet. But dealing with a MOG raises many architectural
problems that do not exist in a traditional video game. In
particular, players playing in geographical locations thousands
of kilometers away from each other need to have their actions
appear to be executed in the same virtual space. This can
be problematic because there are delays in message sending
over large distances, as well as message loss. Delay and loss
entail discrepancies between the simulated environment of
each player, resulting in unfair scenarios between players, and
incorrect perception of events. For example, when a packet is
late or lost, it causes objects in the scene to be rendered at out
of date or incorrect locations. If an object is simply rendered
at its latest known position, then this object’s movement is,
as a result, jittery and sporadic. Regardless of the internet
problems relevant to MOGs, the player still demands the same

2012 7th International ICST Conference on Communications and Networking in China (CHINACOM)

978-1-4673-2699-5/12/$31.00 © 2012 IEEE12

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

playing experience s/he would get from a locally played game.
In order to maintain playability within video games that are
played in distributed fashion over the internet, there is a great
need for prediction algorithms to maintain accuracy at high
levels of lag (reaching up to three seconds of packet Round
Trip Time). In turn, such a requirement suggests the design
of a more sophisticated dead reckoning scheme to handle the
internet quality problem.

II. RELATED WORK AND OUR CONTRIBUTION

Traditional prediction schemes forecast a player’s position
by assuming each player moves using constant force or ve-
locity. However, because player movement is rarely linear in
nature, using linear prediction fails to maintain an accurate
result. Furthermore, Pantel et al. explore and discuss the
suitability of different prediction methods within the context
of different types of video games [3]. They conclude that some
prediction schemes are better suited to some types of games
than to others. More specifically, they look at five traditional
prediction schemes: constant velocity, constant acceleration,
constant input position, constant input velocity, and constant
input acceleration. Each prediction scheme is compared to the
others in the context of a sports game, a racing game, and an
action game. As a result of the evaluation of these different
prediction methods in each game, these authors demonstrate
that different prediction schemes are better suited to different
types of games. For example, it is shown that predicting
with a constant input velocity is best suited to sports games;
a constant input acceleration is best for action games; and
predicting with constant acceleration is best suited to racing
games [3]. For action games, constant velocity and constant
input position predictions also offer a relatively low prediction
error [3].

Among existing dead reckoning methods, only a few focus
on improving prediction accuracy via genuinely new (i.e., non
traditional) methods for predicting the path of a player:

Traditionally, dead reckoning algorithms dictate that the
server should send a positional update to clients when an
object strays from its predicted path by some threshold.
Duncan et al. [4] propose a method, called the Pre-Reckoning
scheme, that sends an update just before it is anticipated that
an object will exceed some threshold. To anticipate a threshold
change, the angle between the current movement and the last
movement is analyzed. If this angle is large enough, it is
assumed that the threshold will be crossed very soon, and a
dead reckoning packet is sent. The Pre-Reckoning algorithm
yields better results when variability in player movement is
low.

Cai et al. [5] present an auto-adaptive dead reckoning algo-
rithm that uses a dynamic threshold to control the extrapolation
errors in order to reduce the number of update packets. The
results suggest a considerable reduction in (the number of)
update packets without sacrificing accuracy in extrapolation.
While having a dynamic threshold for predicting objects does
result in less data needing to be sent over the network, it
does not eliminate the requirement for increasingly accurate

prediction schemes. A dynamic threshold allows farther away
objects to not require a high a degree of accuracy, but
regardless, closer objects still need to be predicted accurately.
Furthermore, the method outlined in [5] assumes a perspective
view on the world, such that farther away objects are smaller
and less visible. However, in a 2D video game, in which an
orthographic view is utilized, all objects in view are of normal
size, and therefore almost all of the objects are of interest to
the user.

Work has also been done in using neural networks to
enhance the accuracy of dead reckoning [6], [7]. In [6], McCoy
et al. propose an approach that requires each controlling host
to rely on a bank of neural network predictors trained to
predict future changes in an object’s velocity. Conversely,
the approach proposed by Hakiri et al. in [7] is based on a
fuzzy inference system trained by a learning algorithm derived
from neural networks. This method does reduce network loads.
While these methods have been shown to improve performance
of dead reckoning, we will not consider here any approach that
requires training and imposes extra computation on each host
prior to the launching of a game.

Delaney et al. describe a hybrid predictive contract tech-
nique, which chooses either the deterministic dead reckoning
model or a statistically based model. The claim of these
authors is that their approach results in a more accurate
representation of the movement of an entity and a consequent
reduction in the number of packets that must be communicated
to track that movement remotely. The statistical model rests
on repeatedly observing players race to a same goal location
in order to determine the most common path used. In turn,
this path is used to predict the path of a player towards the
same goal location.

Finally, Li et al. propose a method called the “Interest
Scheme” [9], [10] for predicting the location of a player-
controlled object. That approach shows an increased accuracy
of path prediction beyond traditional dead reckoning models
specifically in a 2D tank game, with levels of lag up to 3000
ms. The strength of the Interest Scheme lies in the way it uses
the surrounding entities of a given player-controlled entity to
better predict what actions the user will take. The method
works on the assumption that a player’s directional input is
affected by its surroundings, such as items and enemy players.
Due to the introduction of an extra computational burden,
especially when network conditions are adequate for play, a
hybrid method is introduced into the “Interest Scheme”. This
method involves using traditional dead reckoning algorithms
up until a fixed threshold of prediction time. However, “Inter-
est Scheme” is designed for one very specific type of game.
Thus, unfortunately, the success of the “Interest Scheme” is not
reproducible in a traditional team-based action game, wherein
players can move in all directions freely (in contrast to a tank
limited to the forward vector, that is, a tank that cannot “strafe”
to the left and right of the forward vector, but instead has to
rotate to change direction).

In light of these limitations and issues observed in existing
work on dead reckoning, we will propose in the rest of this

13

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

paper a prediction scheme that takes user play patterns into ac-
count. We do so in the context of traditional and typical team-
based action games, such as first-person, third-person or top-
down shooters. We choose such a context because a player’s
movement is highly unpredictable in it, and is therefore highly
prone to prediction inaccuracies, thus emphasizing the need for
a better prediction scheme. Our work can be summarized as
follows:

1) We first implemented a 2D top-down multiplayer online
game entitled “Ethereal” to act as our test harness.
This test harness allows us to record all data (including
raw input data from all participants) during each play
testing session. Beyond keyboard and mouse input, all
world or environment variables are also recorded, such
as game object and item positioning, world geometry
information, and game events.

2) We then collected data by having 44 experienced players
play Ethereal over three play testing sessions. We arbi-
trarily divided our players into two sets of equal size:
• group A: those used to create our proposed dead

reckoning algorithm
• group B: those used to evaluate this algorithm

against other algorithms
More specifically, by observing players of group A play
and from the subsequent analysis of the data collected
from the games of these players, we identified a series
of typical player behaviors, which we call play patterns.
We then used these play patterns to create our EKB
(Experience Knows Best) algorithm for dead reckoning.

3) Using the key ability of our test harness to playback
to itself actual player inputs from the collected data,
we played back the games of group B, varying from
one experiment to the next the network latency, loss
and jitter. We repeated each experiment with each of
the three algorithms we considered, namely: our EKB
algorithm, the IEEE standard dead reckoning algorithm
[1] and the “Interest Scheme” (IS) [9], [10] algorithm.

4) In the end, this allowed us to develop a detailed com-
parative evaluation of these three algorithms. Our results
are reported in section V.

We now elaborate on our proposed algorithm.

III. THE EKB ALGORITHM

A. Main Theoretical Component: Forces

Our approach involves predicting a player’s position by pre-
dicting the potential behaviours that a player may adopt. To do
so, we first collected data from having 44 experienced players
play Ethereal over three play testing sessions. From half of this
data, we identified several behaviors that are deemed to affect
the player’s next movement. These behaviours each take the
form of a force that is exerted on the players, affecting where
they will be located next. These behaviour forces are applied
at different strength levels depending on what is occurring
in the game from the point of view of the player at hand.
These forces are based on the positions and states of other

Friend [3,4]

Friend [9,5]

Friend [7,7]Player Follow Force

Average Friend Pos [6.3,5.3]

Fig. 1. Follow force

objects in the scene. Forces are applied as either an attraction
or repulsion force towards or away from a given position in
space. The strength of these forces depends on several factors
such as the distance to the object and the strength or weakness
of the player. We first separate a player’s behaviour into two
states: in battle and out of battle. We then exert different forces
based on a player’s current state. The following are the forces
employed in our work: the follow force, the bravery force, and
the align force.

Each force takes into account other players in the game
world in order to determine direction and magnitude. They do
so only if a given player is within a specified static distance
threshold. In our current experiments, we set this distance to
the size of the screen. Any player outside of such a region of
interest is not considered in the computing of a force.

1) Follow: The follow force arises from our observation
that a player tends to move towards and group up with friendly
players (e.g., other teammates). It is computed by taking the
average position of all friendly players within a specified
radius, and having the player move towards that location.
Furthermore, the speed of differentiation of this force does
not depend on the distance of other players but is instead
always set to the maximum speed of the player. From our
observations, the follow force is the most important force
to exert on a player. This is because, in multiplayer online
games, a player’s actions generally proceed from a team-based
strategy.

~Ef(or e) =
∑i=n

i=1
~Pf(or e)

n
(1)

~Ffollow =
~Ef − ~C

| ~Ef − ~C|
× S (2)

Equation 1 calculates the averaged position of all friendly (f)
(or enemy e) players within a given threshold, where ~Pf(or e)

is the position of a friend (or enemy), and n is the number
of players of that type within a given specified static distance
threshold. The averaged position of all enemy players is used
for the Bravery force. Equation 2 represents the force from the
player to the average position of all friendly players, where ~C
is the current position of the player. S is the maximum speed
of the player. The follow force is illustrated in Figure 1

14

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

2) Align: The align force arises from a player’s tendency to
travel in a group with friendly players. The align force takes
into account all friendly players’ velocities within a specified
radius. The closer a friendly player is, the more weight it
carries in affecting the direction of the align force. The align
force’s magnitude is a function of how many friendly players
are within the specified radius, and how close they are.

Df =

{
DfMAX

if Df ≥ DfMAX

DfMIN
if Df ≤ DfMIN

(3)

~Falign =
i=n∑
i=1

(~Vf × (1− Df −DfMIN

DfMAX
−DfMIN

)) (|~Falign| ≤ S)

(4)
Equation 4 outlines the align force. Df , ~Vf , DfMIN

, DfMAX

represent the distance to the friendly player, the velocity of the
friendly player, the minimum distance to consider for friendly
players, and the maximum distance to consider for friendly
players respectively.DfMIN

, DfMAX
are each set to a specified

static distance threshold.
3) Bravery: The bravery force arises from the observed be-

haviour of a player’s tendency to fall back when outnumbered
by the enemy and the tendency to advance on the enemy while
winning. To obtain the bravery force, the total strength of all
nearby friends and the total strength of all nearby enemies
is calculated. The strength of each team is calculated by
adding up the health and ammo values of each player. The
relative strength of the friendly army versus the enemy army
determines the direction of the resulting force. If the friendly
army is stronger, the bravery force is positive, namely, towards
the enemy. Otherwise it is negative, consequently, away from
the enemy forces. The higher the magnitude of the force, the
farther the player will move away or towards the enemy.

If,e,c =
Hf,e,c

MHf,e,c
+

Af,e,c

MAf,e,c
(5)

Zf,e =
i=n∑
i=1

If,e (6)

~Vb = (~Ef +(
(~Ee − ~Ef)

|(~Ee − ~Ef)|
×(u× (kZf + Ic)− Ze

max((kZf + Ic), Ze)
)))− ~C

(7)

~Fbravery =
~Vb

|~Vb|
× S (8)

In equation 5, If,e,c is the influence of a friend, enemy or the
current player in terms of its strength. H , MH , A and MA
are the health, maximum health, ammo value and maximum
ammo of the player respectively. This influence value is then
combined into either the enemy or friendly team influence
value, depending on which team the player is, represented by
Zf,e in equation 6. Zf,e is made up of all the players on the
given team that are within a specified static distance threshold.
~Vb in equation 7 is the direction vector that is used for the
bravery force; u is a coefficient that is the maximum distance
that a player will run away or towards the enemy; and k is a

Friend [3,4]

Friend [9,5]

Friend [7,7]

Enemy [8,-7]

Enemy [2,-5]

Player

Bravery Force

Average Friend Pos [6.3,5.3]

Average Enemy Pos [5,-6]

Fig. 2. Bravery force when friendly team is stronger

coefficient that modifies the strength of the friendly influence.
This is to model the fact that a player will consider their own
strength over their allies’ strength in a combat situation. The
player is either moving towards or away from the enemy, in
relation to the averaged friend position. This is illustrated in
figure 2. Equation 8 is the actual force used for bravery.

B. Combination of Forces

As previously mentioned, in order to simplify how the
forces interact with each other, we separate player behaviour
into two categories: in battle behaviours and out of battle
behaviours. When the player is in battle, the player’s position
is calculated by combining the follow and the bravery forces.
When out of battle, the players position is calculated by
combining the follow and align forces.

Whether the player is in battle or not is chosen as a simple
distance check to the closest enemy, outlined in equation 11.
If there exists an enemy within the battle threshold W , then
the player is said to be in battle. Equation 9 calculates the
distance from the current player position to a given enemy
player.

De = |~Pe − ~C| (9)

closestEnemyDist = min{De1, De2....Den} (10)

InBattle =

{
true if closestEnemyDist ≤W
false otherwise

(11)
Algorithm 1 shows how the forces are handled. Coefficient q
and r are static values that are between 0 and 1. They dictate
how much each force is used. ~Fr is the final resultant force that
is used to predict the player’s position. If the player’s velocity
is immediately set to ~Fr, the result is most often an inaccurate
account of the player’s movement. This is due to ignoring the
player’s most recent previously known velocity. To alleviate
this, we perform a smooth transition of the player from the
last known velocity to the one determined by the combined
forces (see Equation 12). ~Fj is the force that should be used

15

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

as the velocity of the player and j is the number of updates
that has occurred since the last known velocity ~V0. The more
updates that have passed since the last known velocity was
received (ie. the larger the value of j), the larger the value of
~Fr is and the smaller the value ~V0 is. Once j reaches the size
of m, then we exclusively use ~Fr to determine ~Fj .

~Fj =

{
m−j

m
~V0 + j

m (~Fr) if j ≤ m
~Fr otherwise

(12)

m =

{ l min{closestEnemyDist, closestFriendDist}
if m ≤ R

R otherwise
(13)

The calculation for m is shown in equation 13. m is
proportional to the distance between the player and the closer
of the closest friendly or enemy player. This is due to the
following observation: a player is more likely to react to a
player that is close to it, and is less likely to continue at the
current velocity. l is a coefficient used to modify m so that it
is in the right scale. (We found that l = 0.1 works best.) R
is the upper bound on m.

IV. FURTHER IMPROVEMENT

A. Using A*

We employ the A* path finding algorithm [11] to further
improve the accuracy of the above-mentioned method. The
use of the A* algorithm proceeds from observing a player’s
tendency to avoid walls and to find an efficient path through
space to a desired location. This ensures that the path predicted
for the player avoids walls objects and is more realistic.
The implementation of the A* path finding algorithm in
our scheme involves modification to the Follow and Bravery
force (whereas the Align force remains the same). Instead of
having only a force associated with ~Ffollow and ~Fbravery , each
of these also has a desired location associated with it. For
~Ffollow, this desired location is the average position of all
nearby friendly players. For ~Fbravery , this desired location is
~Vb + ~C. A path to this desired location is then calculated using
A* to ensure the player does not collide into any obstacle.
Algorithm 1 outlines how A* is used.

B. Hybrid Approach

In order to further improve the prediction accuracy and
reduce packets across the network, we adopt a hybrid scheme.
Given the game is probed every 300ms: a) below 300ms of
lag, EKB is always used (as it outperforms other algorithms)
b) if a player has been moving in the same direction for the
same amount of time as the network delay, then we assume
the player will continue to move in this direction and thus we
use TDM for the prediction, c) otherwise, EKB is used.

Algorithm 1 Algorithm EKB
1: if the desired A* end destination location has changed since the

last update then
2: recalculate an A* path to the desired location for ~Ffollow and

~Fbravery .
3: end if
4: if the next A* node in the path is reached then
5: increment the desired location to the next node in the A*

path.
6: end if
7: Compute ~Ffollow and ~Fbravery using the next grid node in the

path as the desired location.
8: if the player is in battle then
9: ~Fr = (~Ffollow × q) + (~Fbravery × (1− q))

10: else
11: ~Fr = (~Ffollow × r) + (~Falign × (1− r))
12: end if

V. COMPARATIVE EVALUATION

We use two metrics to measure the accuracy of our dead
reckoning scheme. The first one is the Average Export Error
(AEE). AEE is the discrepancy between the actual location of
the player and the predicted location of the player (in pixels).
We take the average of all export errors at fixed intervals
of time (e.g., 300ms, 600ms, etc.) to determine the general
accuracy of an algorithm. Figure 3 shows the AEE introduced
by each algorithm. From this figure we can see that EKB
greatly lowers the overall prediction error when predicting at
large amounts of network delay. Table I shows the detailed
comparison results between the three algorithms on AEE when
the latency is between 1500 to 3000 milliseconds.

0

100

200

300

400

500

600

700

800

900

1000

300 600 900 1200 1500 1800 2100 2400 2700 3000

A
ve

ra
ge

 E
xp

o
rt

 E
rr

o
r

in
 p

ix
el

s

Network latency in milliseconds

TDM

IS

EKB

Fig. 3. Average Export Error measured at different network latency

TABLE I
AEE WITH HIGH LATENCY

1500ms 1800ms 2100ms 2400ms 2700ms 3000ms
TDM [1] 388.8 484.2 579.5 675.4 771.7 867.5

IS [9], [10] 345.7 413.8 477.7 538.5 596.6 651.4
EKB 285.7 327.8 364.5 397.2 426.4 452.5

We then measure the number of times each algorithm makes
an accurate hit. A hit is defined as when the predicted location

16

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

is within a specific threshold (measured in pixels) of the actual
position. This threshold should be small enough so that when
correcting the prediction player location to the actual location,
the correction is minimally visible. In our work, we use 45
pixels as the threshold, given it is less than the width of the
player in our multiplayer online game. Figure 4 lays out the
number of hits that were recorded at each given time interval.
The total number of hits counted for TDM, IS and EKB were
3135574, 2513613 and 3291199 respectively. EKB performed
best, followed very closely by TDM. This is because TDM
predicts very accurately when a player moving in a single
direction, which is often the case. However, TDM is the worst
for AEE.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

300 600 900 1200 1500 1800 2100 2400 2700 3000

n
u

m
b

er
 o

f
ac

cu
at

e
p

re
d

ic
ti

o
n

s

Network latency in milliseconds

Number of Accurate Predictions
(threshold 45 pixels)

TDM

IS

EKB

Fig. 4. Number of accurate predictions at threshold 45

We also measure the number of packets that need to be
transmitted over the network during each time interval we
monitor. Figure 5 shows EKB improves prediction accuracy
over TDM and IS while sending as few packets as TDM. The
difference in number of packets between TDM and EKB is
negligible, whereas IS needs to send a significantly higher
number of packets. We also conclude that contrary to IS,
EKB improves the prediction accuracy without increasing the
network traffic.

98510

106953

98684

94000

96000

98000

100000

102000

104000

106000

108000

TDM IS EKB

N
u

m
b

er
 o

f
p

ac
ke

ts
 s

en
t

Number of Packets Sent

Fig. 5. Number of packets sent by algorithm TDM, IS and EKB

VI. CONCLUSION

In light of the limitations observed in existing work on dead
reckoning, we have proposed here a new prediction scheme
that relies on user play patterns. Our research takes place in
the context of a 2D top-down multiplayer online game we
have developed. In such typical team-based action game, a
player’s movement is highly unpredictable and is therefore
highly prone to prediction inaccuracies, thus emphasizing the
need for a better prediction scheme. We have evaluated our
algorithm against the IEEE standard dead reckoning algorithm
[1] and the recent “Interest Scheme” algorithm [9], [10].
Our simulation results suggest that our algorithm yields more
accurate predictions than these two other algorithms.

ACKNOWLEDGMENT

The authors would like to thank the financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES

[1] IEEE Standard for Distributed Interactive Simulation— Application Pro-
tocols. IEEE Standards Board. Septempber 1995.

[2] D. E. Comer, Computer Networks and Internets. Prentice Hall, pp. 476.
[3] L. Pantel and L. C. Wolf, On the Suitability of Dead Reckoning Schemes

for Games. The 1st workshop on Network and system support for games
(NetGames ’02), pp. 79-84, 2002.

[4] T. Duncan, D. Gračanin, Pre-Reckoning Algorithm For Distributed
Virtual Environments, Proceedings of the 2003 Winter Simulation Con-
ference, pp. 1086 - 1093, 2003.

[5] W. Cai and F. Lee and L. Chen, An Auto-adaptive Dead Reckoning
Algorithm for Distributed Interactive Simulation, Proceedings of the 13th

workshop on Parallel and Distributed Simulation, pp. 82 - 89, 1999.
[6] A. McCoy and T. Ward, S. McLoone, D. Delaney, Multistep-Ahead

Neural-Network Predictors for Network Traffic Reduction in Distributed
Interactive Applications, ACM Transactions on Modeling and Computer
Simulation, Vol.17(4), September 2007.

[7] A. Hakiri and P. Berthou and T. Gayraud, QoS-enabled ANFIS Dead
Reckoning Algorithm for Distributed Interactive Simulation. IEEE/ACM
14th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT ’10), pp. 33-42, 2010.

[8] D. Delaney and T. Ward and S. McLoone, On Reducing Entity State
Update Packets in Distributed Interactive Simulations Using a Hybrid
Model. Applied Informatics (378), pp. 833-838, 2003.

[9] S. Li and C. Chen, Interest Scheme: A New Method for Path Prediction.
Proceedings of the 5th ACM SIGCOMM workshop on Network and
system support for games (NetGames ’06), 2006.

[10] S. Li and C. Chen and L. Li., A new method for path prediction in
network games, Computers in Entertainment, Vol. 5, New York, 2007.

[11] S. Russell and P. Norvig, Artificial Intelligence - A modern Approach,
Prentice Hall, 1995.

17

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 21:26:54 UTC from IEEE Xplore. Restrictions apply.

