
A Comprehensive Review of Sensor Relocation

Wei Shi

Faculty of Business and Information Technology
University of Ontario Institute Technology
Oshawa, Canada Email: wei.shi@uoit.ca

Jean-Pierre Corriveau

School of Computer Science
Carleton University

Ottawa, Canada Email: jeanpier@scs.carleton.ca

Abstract—In this paper, recent literature pertaining to the
sensor relocation problem is reviewed. Different proposed
solutions are categorized, summarized and compared.

Keywords-Wireless Sensor Network; Actuator; Robot; Relo-
cation; Algorithms.

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of a col-

lection of sensors equipped with a wireless communica-

tion device (e.g., radio transceiver), and an energy source

(e.g.,battery). Some sensors, called stationary or static wire-

less sensors, are immobile. Others, called mobile wireless

sensors can move. Wireless sensor and actor networks

(WSANs) refer to a group of sensors and actuators (i.e.,

actors) linked by wireless medium to perform distributed

sensing and actuation tasks. Actors are usually resource-

rich devices equipped with better processing capabilities,

stronger transmission abilities and longer battery life [1]

than mobile sensors. A Wireless Sensor and Robot Network

(WSRN) combines WSNs with Multi-Robot systems. It

consists of sensor and robot nodes that communicate via

wireless links to perform distributed sensing and actuation

tasks [12]. In WSRNs or WSANs, a set of sensors are

often deployed in an unknown environment, such as forests,

battlefields, mountains, highways, tunnels and mines, in

order to monitor or control physical or environmental con-

ditions. An adequate sensors coverage level is crucial for

obtaining a proper phenomenon of interest and the successful

completion of the corresponding sensing tasks. But, given

an unknown environment, it is very difficult to guarantee

a perfect deployment. Moreover, even after sensors are

deployed into ideal locations, they often randomly fail at run

time for various reasons such as power depletion, hardware

defects, and damaging events. This creates unmonitored

locations in the given environment. Such locations are often

referred as sensing holes. In order to fill these sensing holes,

spare sensors or previously deployed sensors need to be

moved to overcome these failures, or to respond to an event

that requires that a sensor be moved to a particular location.

We call this procedure sensor relocation [14].

Some target environments can be dangerous if not inac-

cessible to humans. In such environments, given stationary

sensors are not able to self-relocate, mobile sensors or

robots or actuators are used for relocation in order to track

the phenomena of interest or achieve the coverage despite

stochastic or unpredictable node failure. Mobile sensors need

to have motors, motion control, and GPS modules. Adding

mobility to a large number of sensor nodes is expensive.

Also, most of the mobile sensors on the market are equipped

with a low energy source, such as a battery, in order to

reduce cost. So, mobile sensor self-relocation is not suitable

for all situations. For example, in a large environment, using

powerful robots or actuators (often referred as movement-

assisted sensor relocation) may be necessary. In such case,

in contrast to mobile sensors, we require robots or actuators

that can carry spare sensors and replace the failure sensor

when it is necessary. When such robots or actuators cannot

carry or do not have at hand any spare sensors, they can pick

up passive (e.g. sleeping or not active) sensors previously

deployed in the target environment and replace the failure

sensors with them.

Contrary to robots/actuators- assisted sensor relocation,

mobile sensor self-relocation requires sensors to have loco-

motion and involves two tasks: replacement discovery (i.e.,

finding a redundant sensor as the replacement of a failed

sensor node) and replacement migration (i.e., migrating

the replacement to the failed sensor’s position [10]). In

this paper, we review recent sensor relocation algorithms

organizing them into two general categories: mobile sensor

self-relocation and robot/actuator assisted sensor relocation.

We first present a list of features used to distinguish each

solution from the others. Then we briefly summarize the

relevant algorithms. Also, we use a comparative matrix

to summarize this collection of solutions for the sensor

relocation problem.

II. FEATURE ANALYSIS

From studying the environment setup, assumptions, and

basic mechanisms of the reviewed algorithms (see Table I),

we identify five useful features for the comparison of these

algorithms.

• Migration techniques (Directed or Shifted migration):

Sensor migration occurs when a mobile sensor self-

relocates from its current position to its target position.

Migration is achieved when a mobile sensor moves all

the way to the target location directly. Alternatively, a

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference

on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE

DOI 10.1109/GreenCom-CPSCom.2010.42

780

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference

on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE

DOI 10.1109/GreenCom-CPSCom.2010.42

780

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference

on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE

DOI 10.1109/GreenCom-CPSCom.2010.42

780

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

mobile sensor can achieve sensor replacement by build-

ing a multi-hop migration path [10] from its current

position to the target location (the position of a failure

sensor). Using this shifting migration method, energy

consumption is distributed across multiple sensor nodes

thus prolonging network lifetime. To further optimize

the overall energy consumption and response time, a

replacement node should always be a redundant sensor

geographically closest to the failed sensor node. Re-

gardless of the actual details of a migration technique,

a shorter path of migration is always desired.

• Use of proxy: In order to reduce message overhead,

several algorithms choose to use proxies to advertise

information for sensor nodes. Algorithms in [7], [13]

use the closest static node to a sensing hole as a proxy

for the latter; whereas [4], [8] uses the closest node to

a redundant mobile sensor as proxy.

• Geographic arrangement/Area Partition Methods:

1) Voronoi diagram based: [11], [13];

2) Grid-based: the network field is partitioned into a

2−D grid;

3) Zone-based: a variant of the quorum-based loca-

tion service [7];

4) Mesh-based: in a grid sensor network, A-nodes

are placed exactly at the intersection points of

a grid structure. Any A-node can find out its

own role in the grid structure just by counting

its number of A-node neighbors. If one considers

only the rows and columns of the proxy nodes in

the network, these intersect each other and form

a mesh structure [8];

5) Hierarchical Hamilton Cycle: the whole network

is partitioned into grids. Each 4 neighboring grids

form a Hamilton cycle [1] (i.e., a level-1 cycle in

the hierarchical structure). One of them will be

selected as the eye (i.e., monitor) to collect all

the coverage and connectivity information along

such a cycle. And then, each 4 selected eyes

form a higher level (i.e., level-2) Hamilton cycle.

This process will continue until all the grids are

connected in a level-k Hamilton cycle [6].

6) Equilateral Triangle Tessellation: an equilateral

triangle tessellation (TT) is a planar graph com-

posed of congruent equilateral triangles. Given an

orientation, say north, and edge length le, each

sensor is able to locally compute a unique TT

containing a point P as vertex [9].

• Algorithm Structure (Centralized vs. Distributed):

Distributed (or Localized) algorithms are typically

executed concurrently by different sensors and

robots/actuators, each of which having limited informa-

tion about the status of the rest of the environment. A

centralized algorithm often requires a central server that

receives and analyzes the data, identifies the sensing

hole, plans the migration path and assigns a replace-

ment task to the particular mobile sensor(s), robot(s)

or actuator(s).

• Sensor mobility (Robot/actuator assisted vs. mobile

sensor self-relocation): [3]–[5], [11] use robot/actuator

assisted sensor relocation. But [3], [4] use mobile

robots reusing local static sensors whereas in [11]

robots are required to always carry enough spare sen-

sors and repair sensing holes only with these sensors.

Thus, strictly speaking, [11] does not address sensor

relocation per se. Other algorithms reviewed in this

survey are mobile sensor self-relocation algorithms.

Migration Use of Area Net. Sensor
Technique Proxy Partition Arch. Mobility

[3] Direct No Complete Central. Robot
Graph

[4]-R3S2 Direct Yes Plane Distr. Robot
[4]-B-R3S2 Direct Yes Grid Distr. Robot
[5] Direct No Plane Distr. Actuator
[6] Direct Yes Hier. Distr. Mobile

Ham. Sensor
Cyc.

[7] Shifted Yes Zone Distr. Mobile
Sensor

[8] Shifted Yes Mesh Central. Mobile
Sensor

[9] Shifted No T.T. Distr. Mobile
Sensor

[11] Direct No Plane Central. Robot
-Centralized
[11] Direct No Square or Distr. Robot
-Fixed Hexagons
[11] Direct No Voronoi Distr. Robot
-Dynamic Diagram
[13] Direct Yes Voronoi Distr. Mobile

Diagram Sensor
[14] Shifted Yes Grid Central. Mobile

Sensor

Table I
CATEGORIZATION OF REVIEWED PAPERS

III. MOBILE SENSOR SELF-RELOCATION

[13] presents a proxy-based sensor deployment protocol

that uses a mix of static and mobile sensors. This protocol

also solves the sensor relocation problem. Static sensors

create a Voronoi diagram [2] and detect the sensing holes.

Each mobile sensor selects the closest static sensor as its

proxy in order to reduce message overhead. Mobile sensors

communicate by exchanging messages with their proxies.

A proxy advertises the logical location, physical location

and base price (i.e., current sensing hole coverage) of its

mobile sensor to the network so that all the static sensors

can bid to cover the sensing holes. Then the proxy sensors

choose the highest bid and send a message to the winning

bidder. This bidder becomes a new proxy. All new proxies

update the base price of their mobile sensors. Then, proxies

781781781

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

need to check whether hole-exchange is needed. If so, they

choose the mobile sensor suitable for exchange and send

out an exchange request to the proxy of that mobile sensor.

To reduce energy consumption, mobile sensors first move

logically and when they find their target location, they move

directly toward it to avoid extra or zigzag movement. Once

a mobile sensor arrives at a sensing hole, it advertises its

base price again and tries to relocate to cover a bigger hole.

[14] proposes a Grid-Quorum based mobile sensor self-

relocation protocol that assumes the sensor field is known.

That is, the field is divided into equal grids. Each grid has

a head, which is responsible for collecting information for

all the sensors in this grid. A head also determines if there

exists redundant sensors and/or sensing holes in its grid.

It broadcasts a message containing this information to all

other grid heads. To reduce message complexity the grid

heads send these messages to a grid quorum rather than

to the whole network. The grid heads in a row form a

supply quorum and the grid heads in a column form a

demand quorum. When any grid needs more sensors for hole

covering, its grid head searches along its demand quorum

to discover the closest redundant node. After finding the

latter the relocation phase proper starts. Relocation is based

on a cascading movement, that is, the sensors relocate in a

shifting manner. The difficulty with this phase is to find the

best cascading schedules that minimize the overall energy

consumption and maximize the remaining energy for each

sensor.

[7] presents a distributed algorithm, called ZONER, to

solve the mobile sensor relocation problem. This algorithm

assumes global coordinates as well as a unique ID for

each sensor. In each bounded horizontal request zone, every

redundant node registers itself with all the non-redundant

nodes inside a vertical registration zone across the entire

network. A non-redundant node maintains a one-hop neigh-

borhood map by listening to a periodical HELLO message

from the redundant nodes in its residing zone. When a node

fails, its specified neighbors query all the non-redundant

nodes inside each zone for redundant nodes. Because the

request zone intersects with a number of registration zones,

the non-redundant nodes in the intersection areas can also

provide the requester with redundant node information. Once

a satisfactory and available redundant node is identified, it

will be relocated in a shifting way to replace the failed node

with no change in network topology. In summary, [7] and

[14] are both Quorum-based mobile sensor self-relocation

protocols. But, ZONER does not require knowledge of the

sensor field and thus is applicable to unknown environments.

In [8], a mesh-based mobile sensor relocation protocol

(MSRP) is proposed. The sensor nodes are already deployed

in an area. Active nodes (A-nodes) construct the network,

whereas redundant nodes (R-nodes) are merely scattered

in this area. An R-node chooses the closest A-node as its

proxy (by sending it a delegation request). Each R-node

keeps monitoring the aliveness of its proxy. As soon as

an R-node notices its proxy fails, it moves to replace it.

The proxies keep the location information of their closest

redundant nodes. Proxies construct an information mesh

(imesh) and inform all the other A-nodes of their position.

Whenever an A-node fails, its westmost, eastmost, northmost

and southmost neighbors act as servers, sending a query

in each of these four directions and waiting for replies.

After receiving replies, the closest proxy node, called the

replacement discoverer, is selected as a replacement proxy

by the server. After finding this proxy, the replacement phase

proper starts by constructing a relocation path based on a

routing protocol. All the mobile sensors on this path carry

out the replacement using shifting. That is, the replacement

discoverer moves to the location of the failed node and each

intermediate nodes moves to the position of its preceding

node on the path. Ultimately, the last proxy node on the

path informs the closest redundant node of its movement

and moves. Then the redundant node fills its position.

In [6] a hierarchical Hamilton cycle based algorithm is

presented to solve the mobile sensor relocation problem.

In this algorithm, the target field is partitioned evenly into

r x r grids. In each grid, a head is elected and all the

other nodes in this grid are called spare enabled nodes. All

the nodes have the same sensing range and communication

range R. It is also assumed that both network connectivity

and full coverage are preserved as long as there exists one

node in each grid. This enables each head of a grid to

monitor the status of the neighboring heads. Every four

neighboring grids form a level-1 Hamilton cycle and one

of them is elected as the eye of the Hamilton cycle. The

head of the eyes collects the information of redundant

sensors and empty grids in these 4 grids. The eyes of four

neighboring level-1 Hamilton cycle form a level-2 directed

Hamilton cycle and share information. This Hamilton cycle

formation is performed recursively until a level-k cycle

covering the entire sensor field is built on four level- (k−1)
eyes. Whenever a grid head detects an empty grid in its

neighboring grid, it starts an intra-level repair process to

fix it. In this phase, if there is a redundant sensor in this

grid, the grid head sends it to the empty grid, otherwise

it moves itself to fill the neighboring grid. Before a grid

head moves to fill the empty grid, it sends a notification

message to its preceding neighbor head in its residing level-

i Hamilton cycle. This process continues until a redundant

sensor is found in these four neighboring grids in level-i
Hamilton cycle. Otherwise the inter-level repair process will

be started. In this phase, the head of the eyes searches the

redundant sensor in the upper levels and it continues until a

redundant sensor is detected in one of the upper levels.

The two algorithms presented in [9] first construct a

network by sensor self-deployment. An equilateral triangle

tessellation (TT) layout is required for mobile sensors self-

deployment in a 2D free field. This new form of sensor

782782782

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

self-deployment achieves focused coverage around a Point

of Interest (POI). In both algorithms presented in that paper,

once the network is formed, namely, when sensors are

compactly placed or collide, they may move away from

the POI. In order to maintain a connected network of

TT layout with hole-free coverage, the extra sensors will

relocate in a shifted way to fill any emerging sensing holes.

The relocation path is a path linking the failed sensor and

a sensor on the outer boundary of the network. This shifted

relocation is implemented using proposed greedy advance

rules (driving sensors to move inward toward the POI).

Because one sensor on the outer boundary moves inside,

the other sensors along the boundary may have to rotate a

full cycle around the POI according to the rotation rules.

The proposed GRG algorithm guarantees optimal hexagonal

coverage radius, and near optimal circular coverage radius

under the following three assumptions: (a) rc ≥ √
3rs;

(b) sensors know their own spatial coordinates by GPS

devices or any effective localization algorithm; (c) through

lower-layer protocols (with possible minor modifications),

sensors have the information about their 1-hop neighbors,

i.e., location, moving status, and movement destination (if

moving).

IV. ROBOT/ACTUATOR ASSISTED SENSOR RELOCATION

Mobile sensors used to perform sensor replacement as-

sume global coordinates and location-awareness. This is

not cost-effective. In robot and actuator assisted sensor

relocation algorithms, the number of robots or actuators is

much smaller than the number of sensors. Thus, the cost

is expected to be lower than requiring most of sensors to

have mobility. Furthermore, in this case, since sensors do

not move, the routing algorithm can also be more efficient in

delivering sensing data than with mobile sensors. However,

except for the very recent papers by Falcon et al. [3] and

Fletcher et all [4], how to relocate sensor nodes using robots

or actuators remains largely unexplored.

The authors of [11] propose using only a few robots to

assist in sensing hole repair/maintain coverage. All robots

are mobile and can pick, carry, and unload sensor nodes.

When a node fails, a selected robot moves to the location of

the failed node and replaces it with a spare sensor it carries.

Thus robots do not repair sensing holes using redundant

sensors already deployed in the environment. This paper

presents three different robot coordination algorithms: a

centralized manager algorithm, a fixed distributed manager

algorithm, and a dynamic distributed manager algorithm. In

all three algorithms, a manager is a robot that receives failure

reports and determines which robot is to handle a specific

failure. In contrast, a maintainer is a robot that moves

and replaces failed nodes [11]. The centralized algorithm

has a central manager: a single robot that a) stays at the

center of the sensing area, b) receives failure reports from

sensors and c) forwards these reports to all the other robots

(the maintainers). This algorithm is efficient in reducing

the distance to travel and thus the motion energy of robots

because the manager always selects the robot closest to a

failure. But, as with all centralized algorithms, the central

manager can become a bottleneck, which may considerably

hinder overall performance. In the two distributed algorithms

of [11], the management responsibility is distributed over the

robots, and each robot functions as both a manager and a

maintainer. In the fixed algorithm, the sensor area is equally

divided into fixed subareas, each of which is handled by a

robot independently. Two types of area partition methods are

considered: squares or hexagons. The fixed algorithm does

avoid the single manager bottleneck problem. However, the

controlled flooding messages and possible longer traveling

distance (due to each robot having only local knowledge)

introduce factors that hinder performance. In the dynamic

algorithm, the sensor area is dynamically divided in to

Voronoi graphs based on the robots’ current locations. The

authors compare the three algorithms with respect to motion

overhead and messaging overhead. They observe that in the

dynamic algorithm, since a sensor node reports a failure

to the closest robot, the robot achieves similar traveling

distance as in the centralized algorithm without suffering

the scalability problem of the fixed algorithm. But this is

achieved at the cost of high messaging overhead, as the new

location of a moving robot needs to be broadcasted to many

sensors. Simulations of the three algorithms were performed

and the experimental results show that: a) the centralized

and the dynamic algorithm can achieve lower motion (travel

distance) overhead and b) both the fixed and the dynamic

algorithm are more scalable but also have higher messaging

overhead.

In [11], when a sensing hole occurs (due to node failure),

mobile robots are assumed to have spare sensors available at

all time in order to fill such a holes. In contrast, in [4], robots

improve existing network coverage by transferring redundant

sensors to the sensing hole positions. Two algorithms that

use such a strategy are presented in that paper: algorithm

R3S2 and Grid-Based R3S2 (G-R3S2).

In Algorithm R3S2, each robot can be in one of three

states: discovery, free or busy. In the discovery state, a

robot remains static and periodically transmits a beacon

message carrying its current location. Upon receiving this

message, the nearby active sensors reply with the location

of their adjacent sensing holes and also of any passive (i.e.,

spare or redundant) sensor they proxy. If there is no sensing

hole or passive sensor reported to it, a robot is free and

will travel within the region of interest autonomously and

asynchronously at random. Otherwise, this robot becomes

busy and moves to either pick up a passive sensor or fix

a reported sensing hole. A robot always chooses to fill a

sensing hole first if it has spare sensors at hand. If there is

no hole to fill and it has no spare sensor at hand, it chooses

to pick up the closest spare sensor. When there is no hole

783783783

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

to fill and its has S(S �= 0) spare sensors at hand, this robot

continues random movement with probability p = 1−1/|S|.
Each time a robot picks up a passive sensor, it informs the

corresponding active sensor to remove the passive one from

its advertisement list. In the case of two robots competing

for the same task, the following competition rules apply:

a) if competing for picking up a passive sensor, the robot

carrying the smaller number of passive sensors wins; b) if

competing for repairing a sensing hole, the robot with the

larger number of passive sensors wins; c) if competing for

a hole and sensor pair, the robot with the shortest travel

distance wins. Note however that none of these rules deal

with the situation when two (or more) robots with equal

number of passive sensors meet.

G-R3S2 is the implementation of R3S2 on a virtual grid.

Contrary to R3S2 in which robots travel at random if free,

in G-R3S2 the movement of a free robot is restricted to

a grid. During initialization and after performing assigned

tasks, robots spontaneously align themselves with the grid

by moving to the closest grid point. Beyond this difference,

G-R3S2 further restricts a robot’s movement by using a

least frequently visited policy. Namely, each active node

keeps track of the number of visits it had. Upon receiving

a beacon message from a robot, an active node sends back

the number of visits beyond its adjacent sensing hole(s) or

passive sensor(s). Each free robot always chooses to perform

the tasks reported by the active sensor with the smallest

number of visits.

Simulations performed measure three metrics: average

number of moves, average moving distance and average

number of bits sent. Results show that G-R3S2 improves

R3S2 across all these three performance criteria.

Garetto et al. [5] present an even-based relocation proto-

col using actuators. It does not deal with the fine-grained

relocation problem (which is concerned with repairing,

for example, a coverage hole created by a node failure)

considered in all the other papers of this survey. Instead,

that paper focuses on even-based relocation, where the node

position and density have to be adapted to properly sample

and control a large-scale event.

Last, in [3] the authors address the carrier-based coverage
repair problem (CBCRP) in a wireless sensor network,

which fits into the relocation problem considered in this

survey. Contrary to most of the sensor relocation solutions,

the algorithm presented in this paper allows ”off line”

computation, that is, the optimal solution can be computed

before the execution of the real algorithm in the base station.

This robot-assisted coverage repair problem is modeled as

a new variant of the Traveling Salesman Problem or Vehi-

cle Routing Problem, depending on the number of robots

used. The algorithm assumes that mobile robots (which

are able to carry a limited number of sensors) are located

at a base station. The goal of the algorithm is to collect

passive sensors all over the network and drop them into

the sensing holes with a minimum cost tour robot trajectory

so that network coverage can be repaired by replacing all

damaged sensors with spare (passive) ones. In algorithm 1-

TSP-SELPD, every passive sensor periodically reports its

location to the base station, whereas active sensors report

the coordinates of any adjacent sensing hole to the base

station. Each robot has a fixed carrying capacity and leaves

from the base station. In order to address the CBCRP, the

authors first introduce a new combinatorial optimization

problem, the one-commodity traveling salesman problem

with selective pickup and delivery (1-TSP-SELPD). They

then explain how they model the CBCRP as a 1-TSP-SELPD

with unitary pickup and delivery and solve it using an

ant colony optimization (ACO) meta-heuristic. Furthermore,

they propose six heuristic functions (that address diverse

optimization criteria) to guide the search undertaken by the

Max-Min Ant system. Also, a two-step ACO is proposed

in order to accelerate convergence in dense networks. Fi-

nally, the authors claim that simulations using MATLAB

suggest that this later solution outperforms existing similar

approaches (though no details are provided with respect to

which heuristics were prioritized).

V. ANALYSIS

In dealing with the sensor relocation problem, the follow-

ing criteria are the ones to optimize:

1) shortest total traveling distance;

2) fast hole healing;

3) minimal message overhead and

4) energy efficiency.

Frequently-used metrics for the evaluation of these criteria

include: average number of moves, average total travel

distance, and average number of bits sent. But several factors

in fact affect these metrics:

• Number of robots/actuators, number of mobile sensors

and number of static sensors used: typically, the more

mobile sensors, robots and actuators there are, the

smaller the total travel distance of an algorithm is, but

the larger the energy consumed by mobility becomes.

• Type of communication protocols used: for example,

in [11], in order to reduce the message overhead,

controlled flooding is used instead of a basic flood

protocol.

• Communication radius and Sensing radius: usually the

bigger the communication or sensing radius is, the more

energy it requires, but the bigger the communication

radius is, the fewer number of hops each message needs

to be relayed by other sensor nodes.

• Size and the partition of the environment.

• Usage of GPS or other localization equipment and

algorithms.

• Restrictions on movements: e.g., algorithms imple-

menting movements based on least visited region of

784784784

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

interest typically end up having better performance

than algorithms using random mobile sensor or robot

movements.

• Usage of proxy: it is known that it costs a mobile

sensor about 30J to move one meter, but it only costs

the mobile sensor about 0.1J to send a message. This

means that it costs 300 times more energy to move

one meter than to send one message. Simulation results

from [13] show that proxy-based algorithms minimize

the total travel distance compared to basic bidding

protocols. Also, algorithms from [4], [7], [8], [13] show

that using of proxies reduce the number of messages

sent by mobile sensors or robots. Such observations

indicate that proxy-based algorithms have low energy

requirements.

• Use of a central manager/server: generally, when com-

pared to distributed algorithms, centralized algorithms

have lower message overhead (e.g., see [11]). But the

risk of a messaging bottleneck and of a single point of

failure is a drawback.

VI. CONCLUSION

An adequate level of sensor coverage is crucial for obtain-

ing a proper phenomenon of interest and for the successful

completion of the corresponding sensing tasks in a WSN.

Sensor relocation solutions aim at maintaining the adequate

sensor coverage level when the procedure for initial sensors

deployment fails or when run time sensor failure occurs. In

this paper, we review existing sensor relocation solutions

proposed by different researchers. We identify the features

of the algorithms put forth, categorize the latter with respect

to these features, analyze common evaluation metrics as well

as the factors that impact experimental results.

REFERENCES

[1] I. F. Akyildiz, I. H. Kasimoglu, Wireless
Sensor and Actor Networks: Research Challenges,
AdHocNetworksJournal(Elsevier), Vol. 2, No. 4, pp.
351-367, October 2004.

[2] B. Carbunar, A. Grama, J. Vitek, Distributed and dynamic
voronoi overlay maintenance for coverage detection and dis-
tributed hash tables in ad hoc networks. IEEE International
Conference on Parallel and Distributed Systems, pp. 549556,
2004.

[3] R. Falcon, X. Li, A. Nayak, and I. Stojmenovic. The One-
Commodity Traveling Salesman Problem with Selective Pickup
and Delivery: an Ant Colony Approach. IEEE Congress on
Evolutionary Computation (CEC), pp. 4326-4333, 2010.

[4] G. Fletcher, X. Li, A. Nayak, and I. Stojmenovic. Ran-
domized Robot-assisted Relocation of Sensors for Coverage
Repair in Wireless Sensor Networks. The 72nd IEEE Vehicular
Technology Conference (VTC 2010-Fall). pp.to appear.

[5] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi.
A Distributed Sensor Relocation Scheme for Environmental
Control. The 4th IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS), pp.1-10, 2007.

[6] Z. Jiang and J. Wu. A Hierarchical Structure based Coverage
Repair in Wireless Sensor Networks. The 19th IEEE Inter-
national Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pp.291-296, 2008.

[7] X. Li and N. Santoro. ZONER: A ZONE-based Sensor
Relocation Protocol for Mobile Sensor Networks. The 6th

IEEE International Workshop on Wireless Local Networks
(WLN), pp. 923-930, 2006.

[8] X. Li, N. Santoro, and I. Stojmenovic. Mesh-based Sen-
sor Relo-cation for Coverage Maintenance in Mobile Sensor
Networks. The 4th International Conference on Ubiquitous
Intelligence and Computing (UIC), pp. 696708, 2007.

[9] X. Li, H. Frey, N. Santoro, and I. Stojmenovic. Focused
Coverage by Mobile Sensor Networks. The 6th IEEE Inter-
national Conference on Mobile Ad-hoc and Sensor Systems
(MASS), pp. 466-475, 2009

[10] X. Li, A. Nayak, D. Simplot-Ryl, and I. Stojmenovic. Sensor
Placement in Sensor and Actuator Networks. Wireless Sensor
and Actuator Networks: Algorithms and Protocols for Scalable
Coordination and Data Communication, Wiley, 2010.

[11] Y. Mei, C. Xian, S. Das, Y.C. Hu and Y.-H. Lu. Sen-
sor Replacement Using Mobile Robots. ComputerComm ,
30(13):2615-2626, 2007.

[12] A. Nayak and I. Stojmenovic, Wireless Sensor and Actuator
Networks: Algorithms and Protocols for Scalable Coordination
and Data Communication, John Wiley & Sons, 2010.

[13] G. Wang, G. Cao, and T. LaPorta. Proxy-Based Sensor De-
ployment for Mobile Sensor Networks. The1st IEEE Inter-
national Conference on MobileAd-hoc and Sensor Systems
(MASS), pp. 493502, 2004.

[14] G. Wang, G. Cao, T. LaPorta, and W. Zhang. Sensor
Relocation in Mobile Sensor Networks. The 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pp. 23022312, 2005.

785785785

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 01:45:24 UTC from IEEE Xplore. Restrictions apply.

