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Abstract—A quality-driven approach to software development 
and testing demands that, ultimately, the requirements of 
stakeholders be validated against the actual behavior of an 
implementation under test (IUT). In model-based testing, 
much work has been done on the generation of functional test 
cases. But few approaches tackle the executability of such test 
cases. And those that do, offer a solution in which test cases 
are not directly traceable back to the actual behavior and 
components of an IUT. Furthermore, extremely few 
approaches tackle non-functional requirements. Indeed, the 
User Requirements Notation (URN) is one of few proposals 
that address the modeling and validation of both functional 
and non-functional requirements. But if the URN is to support 
traceability and executability of tests cases with respect to an 
actual IUT, then the “URN puzzle” must be modified: it must 
be augmented with a testable model for functional and non-
functional requirements, an IUT, and explicit bindings 
between the two. We explain how these three additions are 
used in our implemented framework in order to support 
scenario-based validation. 

Keywords-validation; scenarios; contracts; user 
requirements notation; model-based testing 

I.  INTRODUCTION  
A quality-driven [1] approach to software development 

and testing demands that, ultimately, the requirements of 
stakeholders be validated [2] against the actual behavior of 
an implementation under test (IUT). Thus, the general 
problem at hand is test case generation and execution. 

From this viewpoint, we remark that modeling tools are 
used to create models of (some aspects of) an IUT. 
Examples of modeling tools include IBM Rational Rose [3], 
Borland Together [4], and Telelogic’s (now IBM) Tau [5], 
among many others. Such tools provide support for model 
specification, analysis, and maintenance.  It is an IUT that is 
modeled (as opposed to IUT-independent requirements). 
Furthermore, such tools generally do not have the ability to 
generate test cases, let alone run and monitor them. 
Consequently, they are not relevant here. 

Similarly, a test automation framework (e.g., Rational 
Robot by IBM [6]) accepts tests that already have been 
manually created, automatically generated, or pre-recorded. 
Most importantly, such test cases must be readily executable 
on an IUT. The automation framework then executes the 

test sequences without human interaction. Such an approach 
bypasses a key problem, namely the generation of 
executable test cases. Consequently, we will not discuss 
further such frameworks. 

Code-based testing constitutes one approach to software 
testing. But a code-centric testing method, such as in test-
driven design [7], does not explicitly model the 
requirements of stakeholders. Furthermore, code-based 
testing tools (such as JUnit [8] and its several adaptations to 
different languages, and very recently AutoTest [9]) allow 
only for unit tests [2] (i.e., tests pertaining to a procedure, 
not to a scenario/cluster [2]) to be specified in, or 
automatically generated from, code. And such tests are 
implementation-specific.  

In model-based testing [10] (MBT), the requirements of 
stakeholders are to be captured in implementation-
independent models from which tests are to be extracted to 
drive the task of validation [2]. Such requirements can be 
categorized into functional and non-functional1 ones (such 
as performance, usability, etc.), the former receiving almost 
all of the attention in modeling and validation literature.  

An MBT tool uses various algorithms and strategies to 
generate tests from a behavioral model of the IUT. Test 
cases derived from such a model are functional tests at the 
same level of abstraction as the model. From this viewpoint, 
MBT approaches can be separated into those that support 
executable test cases (e.g., [11, 12]), and those that do not 
(e.g., [2, 13, 14]). It is important however to clarify what is 
exactly meant by executability in the former category. 
Existing MBT tools that support executability are 
systematically grounded in state-based semantics. That is, 
the execution of the generated tests occurs in the semantic 
space of the specification language and is most often rooted 
in the concept of state exploration [11]. For example, in 
Spec# [11], executability relies on queues of unreceived 
messages (a notion incompatible with any actual execution 
of code) as well as on a global state explorer (which must 
deal with the difficult problem of state explosion [11]). The 
point to be grasped is that there is no traceability between 
test cases generated and executed (with respect to a space of 
states), and executions of an actual implementation-under-
test (IUT). But traceability between a model, the test cases 

                                                           
1 Also called ‘quality of service’ requirements. 
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generated from it, and an IUT, is necessary if stakeholders 
are to partake in the validation of this IUT, and in particular, 
in the selection of test cases.  

The question then is two-fold: is it possible to have an 
approach to MBT that a) addresses both functional and non-
functional requirements and b) relies on test cases 
executable against an actual IUT? Our claim is that it is. In 
order to support this contention, we will introduce here a 
requirements specification language and explain how it is 
used for validation. Our proposal proceeds from the User 
Requirements Notation [15] (URN), one of few MBT 
approaches that address the modeling and validation of both 
functional and non-functional requirements. An overview of 
this conceptual and methodological framework is provided 
in Fig. 1 (from [15]). 

Currently, the URN offers limited test case generation 
[16], and the executability of such test cases is not 
addressed. Our contention in this paper is that if the URN is 
to indeed support the validation of the requirements of 
stakeholders against the actual behavior of an IUT, then the 
“URN puzzle” of Figure 1 must be modified. In the next 
section, we explore the nature of these modifications, which 
we will motivate from the need to support the executability 
of test cases against an actual implementation. In particular, 
we will justify why we add both a testable requirements 
model (TRM) and an IUT to the puzzle, as well as a) our 
validation framework (VF) [17] and in particular b) explicit 
bindings between a TRM and an IUT. Then, in section 3, we 
present an example of our URN-based approach to 
validation using our VF.  

 

 

Figure 1.  The URN modeling puzzle 

 

II. AUGMENTING THE URN  

A. Why Start with the URN? 
The URN is a two-headed proposal. URN-NFR 

addresses non-functional requirements (NFRs), capturing 
them using the Goal-Requirements Language (GRL) [18]. 
Such a model aims at highlighting how some facets of a 
system (e.g., tasks, procedures) contribute (positively or 
negatively) to the satisfaction of NFRs. Little exists in terms 
of proposals for the systematic production of tests from 
GRL models.  

Functional goals (FRs) are captured using Use Case 
Maps (UCMs) [19], which consist of scenarios forming 
temporal flows of responsibilities. 

Both URN-NFR (i.e., GRL) and URN-FR (i.e., UCM) 
models are taken to proceed from informal requirements 
organized into textual use cases [2]. Thus, URN is a 
scenario-driven approach to MBT, in contrast to state-based 
approaches to MBT. This is an important difference, 
especially with respect to the validation of the requirements 
of stakeholders. In particular, Grieskamp [20], who 
developed SpecExplorer [11] at Microsoft, remarks that the 
low adoption rate of state-based MBT tools in industry 
depends, amongst other factors, on the learning curve 
associated with such semantics and the lack of support for 
more stakeholder-friendly scenario-based semantics.  

Thus, URN constitutes an interesting starting point for 
an MBT tool for several reasons: i) it is scenario-based, 
requirements oriented (i.e., high-level) and implementation 
independent, ii) it does generate functional test cases [16], 
iii) it does address the modeling of non-functional 
requirements and iv) as suggested by Fig. 1, it integrates 
well [15] in a development process that aims to address the 
whole modeling/testing enterprise (from use cases ‘down to’ 
detailed Message Sequence Charts [21] and test languages 
such as TTCN [22] and LQN [23]2).   

Furthermore, since a use case map can be 
conceptualized as a grammar of responsibilities [19], the 
technique of path sensitization [2] can be used to generate a 
test suite with respect to a specific coverage criterion [2], as 
explained in [16]. The point is that there exist algorithms to 
‘cover’ use case maps via a suite of generated test cases (as 
there are for Binder’s extended use cases [2] and use cases 
augmented with contracts [13]). Similarly, test case 
generation algorithms for state machine coverage have been 
extensively documented (e.g., chapter 7 of [2]). The point 
then is that test case generation is not a significant hurdle for 
validation (and thus, due to space restrictions, will not be 
discussed further here). (Details of our approach to test case 
generation are available in [24].) 

It is the executability of such test cases against 
executions of an implementation under test (IUT) that is 
challenging. In particular, such executability requires the 
automatic instrumentation of test cases in an IUT. For 

                                                           
2 More precisely, as Buhr [19] explains, use cases are first expressed as 
temporal flows of responsibilities (e.g., one flow per scenario of a use 
case) and then, and only then, are these responsibilities packaged into 
objects and ultimately classes, and their detailed interactions worked out. 
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example, it’s one thing to use path sensitization to generate 
test cases from UCMs. It’s another to develop a profiler that 
can check whether or not an actual execution of the IUT 
conforms or not with the scenario models of such UCMs. In 
fact, unless the semantic elements of UCMs are associated 
with actual method calls and execution paths, such profiling 
is not possible.3 Furthermore, the few tools that do support 
such profiling are, in practice, quite limited. Consider, for 
example, Rational’s TAU and its Validator [5]. TAU 
‘supports’ Message Sequence Charts (MSCs) [21], a 
semantically rich scenario-modeling notation (which is too 
detailed to serve for requirements modeling). However, 
scenario profiling is actually restricted to the simplest 
semantic elements of MSCs. And profiling is not scenario-
based but state-based! In other words, what is monitored are 
sequences of states, not a path of execution (consisting of a 
sequence of events/method calls). 

We also remark that TAU ‘supports’ the automatic 
generation of tests captured in TTCN [22], a standard test 
notation. But the semantics of TTCN cannot handle the 
complexities of scenario notations such as UCMs and 
MSCs: TTCN was not meant to and cannot tackle the 
validation of complex scenarios (whereas our proposal does 
[24]). 

In the rest of section 2, our task thus consists in 
explaining how, starting with the URN, we can get to test 
cases executable against an IUT.  

 

B. On A Traceable Requirements Model 
The URN puzzle is our starting point as it is, we repeat, 

one of few proposals that address both functional and non-
functional requirements.  

As a first modification, we propose to reorganize the 
URN puzzle so that it separates two distinct viewpoints, 
namely the one of the stakeholders and the one of the 
developers. This initial modification is given in Fig. 2. 

Fig. 2 emphasizes that models relevant to stakeholders 
must be independent of any particular implementation. It 
also conveys the fact that such models must address both 
functional and non-functional requirements (which proceed 
from informal requirements). It does not address the 
generation of test cases executable against an IUT. For that, 
we require another model, which we will call a Traceable 
Requirements Model (TRM). Let us elaborate on the 
properties of such a model. 

First and most importantly, this model must be 
traceable: it must be possible to associate its semantic 
elements to elements of an IUT. (Ideally, this process should 
be fully automated. More on this shortly.) In our opinion, it 
is this traceability that enables bridging between the 
stakeholders’ viewpoint and the one of the IUT developers, 
as will be explained shortly. The need for traceability 
between a TRM and an IUT immediately suggests adding 

                                                           
3 It must be emphasized that by grounding executability in the semantics 
their specification languages (as opposed to executions of an IUT), state-
based MBT tools essentially eliminate the whole issue of instrumentation 
and profiling, at the expense of traceability between test cases and actual 
executions of an IUT. 

both a Traceable Requirements Model and an IUT to the 
elements already in Fig. 2. 

 

 

Figure 2.  The Two Viewpoints of the URN puzzle4 

Second, the TRM must also be a unified requirements 
model inasmuch as its semantics must address both FRs and 
NFRs. This is an important decision: having a single model 
for FRs and NFRs allows us to associate metric evaluators 
to responsibilities and scenarios, as will be illustrated in 
section 3.  

Third, the TRM must be semantically comprehensive: 
To enable the evaluation of NFRs, the TRM supports metric 
evaluators, as just mentioned above. In addition, it is rooted 
in the semantic notions of responsibilities and scenarios 
found in UCMs (from which it is to be derived). Following 
[13], we further enhance the scenarios of a TRM with 
elements of design-by-contract [27] (i.e., pre- and post-
conditions, invariants). (This allows us to reuse the test case 
generation algorithms proposed in [13].) Following Ryser 
and Glinz [28], we also include semantics for the all-
important (and generally forgotten) inter-scenario 
relationships. Static checks (see section 3) complete the 
semantics of our TRM in order to support a simple form of 
static analysis [17]. In our current implementation, all these 
semantic elements are expressed in our own requirements 
specification language called Another Contract Language 
(ACL) [17].  

Our TRM is textual (i.e., non-diagrammatic). Thus, 
stakeholders are to initially develop use cases, then GRL 
and UCM diagrams, and then, and only then, refine the 
responsibilities, scenarios and metrics identified in such 
diagrams into a TRM. This step is not automated and 
requires the participation of someone familiar with a) the 
semantics of ACL, b) the test case generation process we 
support [24] (in order to help stakeholders in selecting test 

                                                           
4 The OCL is included as a testing language. Its usage is for unit testing 
and OCL is IUT specific. It does not tackle scenario conformance [25]. 
SDL [26] is an older state-based modeling language. 
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cases) and c) the binding process used to link elements of a 
TRM to elements of an IUT (as explained shortly). Details 
of how a TRM is to be ‘derived’ from URN models are not 
relevant here. It only matters that the semantic closeness of 
our TRM to URN models makes this quite straightforward. 

Static checks correspond to structural queries on an 
implementation, whereas design-by-contract elements [18] 
(i.e., pre- and post-conditions, invariants) and the evaluation 
of metrics constitute types of dynamic checks that query an 
execution of an IUT. Most importantly, from an operational 
standpoint, we view scenarios as complex dynamic checks 
involving run-time monitoring (i.e., profiling). 

Validating static and dynamic checks against an IUT 
produces a ‘validation report.’ This report must provide the 
outcome of each static and dynamic check, and metric 
evaluation(s) for a specific execution of an IUT. Static and 
dynamic checks either pass or fail. That is, a check must be 
directly executable and have a well-defined outcome. If a 
check fails, information regarding the failure (e.g., values 
used during the evaluation of a pre- or post-condition) 
should be reported, but the execution proceeds if possible. 
Conversely, the result of a metric evaluator is a value (such 
as a performance counter) that is directly included in the 
validation report.  

Because a TRM includes scenarios, a validation report 
must also provide information pertaining to the monitoring 
of the execution of each scenario’s instances and of their 
corresponding responsibilities. Each scenario may be 
triggered several times during an execution, leading to 
several distinct instances of that scenario. Run-time 
monitoring involves tracking scenario instances and 
knowing how to match them against parts of the execution 
of an IUT. When the execution path of an IUT differs from 
a relevant scenario, the exact responsibility where execution 
deviated is indicated in the report. Further scenario 
execution information, such as the number of times a 
particular scenario has executed, and what data was 
used/changed during its execution is also included in the 
report.  

Our Validation Framework (VF) supports all the 
reporting tasks outlined above. The resulting report is 
known as a Contract Evaluation Report (CER) [17].  

In order for the validation of a TRM against an IUT to 
be possible, we require a) a mechanism to link a TRM to an 
IUT and b) a VF that provides full instrumentation for a 
specific TRM/IUT pair. We now explore these two issues. 

C. Bridging the Traceability Gap 
We require that the semantics of the TRM be decoupled 

from any particular implementation (and programming 
language) so that a single TRM may be tested against 
several candidate implementations. The immediate question 
then is how to bridge between an implementation-
independent TRM (i.e., a stakeholder’s viewpoint) and an 
IUT (i.e., the developer’s viewpoint)? The answer lies in the 
idea of binding elements of the TRM to actual methods 
within the IUT. More specifically, some elements of the 
TRM must be explicitly linked (by the provider of an IUT) 
to corresponding methods within this IUT, and some 

methods may have to be added to the IUT to enable the 
observability [2] that is required to determine if a given 
requirement is satisfied. 

Bindings act as a mapping between the TRM and the 
IUT. Relevant elements of the TRM must be bound to 
concrete IUT counterparts. Such a binding process is ideally 
automated, thus providing an automatic connection between 
the TRM and IUT. Our VF includes such binding support. 
Let us elaborate. 

Our binding tool allows for the automatic specification 
and display of binding information. Such binding 
information links elements of a TRM to concrete elements 
located within an IUT. Bindings can be specified manually 
or using the Automated Binding Engine (ABE). The ABE is 
not limited to a specific binding algorithm. Rather, it is open 
in nature and uses extension modules that are developed 
using a software development kit [17]. We have 
implemented two ABE extension modules as part of the 
current VF. Details regarding how bindings are inferred can 
be found elsewhere [17]. Most importantly, bindings allow 
the TRM to be independent of implementation details, as 
specific IUT method names, and parameter types/orders 
used within the IUT do not have to correspond to a similarly 
named TRM artifact. (In fact, one responsibility can be 
bound to several distinct procedures and even to a sequence 
of procedures [17].) In addition, such a binding process 
allows several candidate IUTs to be verified against a single 
testable model. 

Once binding information is specified, our VF is able to 
execute an IUT against a TRM. The process begins with the 
execution of static checks. We first use Microsoft's Phoenix 
Research Development Kit [29] to gather structural and 
behavioral elements of the IUT (which is input as an 
executable, not source code). Once such information is 
gathered, the actual static checks are executed. After all of 
the static checks have been executed, the VF then executes 
the IUT, by launching it as a new process. Our VF acts as a 
specialized debugger and profiler, keeping track of instance 
creation, method invocation, and instance destruction. In 
addition, the VF will pause the execution of the IUT as 
needed in order to execute various checks. At the same time 
the IUT is launched, our VF also maintains a separate 
execution environment for the TRM. This environment 
contains any instances of TRM artifacts (e.g., scenarios) that 
have been created as a result of IUT execution. Once 
execution of the IUT has completed, the VF gathers metric 
information obtained during execution of the IUT and 
performs metric evaluation. Such evaluation consists of the 
VF invoking metric evaluators to analyze and report on the 
gathered metric information. Finally, a CER is generated 
displaying test outcomes covering all aspects of a candidate 
IUT executed against the TRM. (Details regarding the 
specific CER contents can be found in [17]). 

Fig. 3 summarizes how using a TRM, an IUT, bindings 
between the two, our VF and the report it generates, fits into 
the URN-based approach we propose. 
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Figure 3.  Completed URN puzzle 

 

III. AN IMPLEMENTED EXAMPLE  

A. URN Models for a Simple Container 
Our example models a very simple container able to add, 

remove, and search for items (without multiple occurrences 
of an item, for simplicity). (See [17] for more extensive case 
studies.) Using the URN we begin with a UCM representing 
how an external entity, the ‘user,’ interacts with our 
container. As Fig. 4 illustrates, the user is able to add, 
remove, and search for items in any order. Also, the user 
may choose to not interact with the container (which 
corresponds to the empty ‘center’ path in Fig. 4).  

This UCM represents only some of the functional 
aspects of the container (omitting, for example, creation and 
destruction).  

To model non-functional aspects, we have created the 
minimalist GRL diagram shown in Fig. 5. This figure 
defines a goal named ‘Item Search’ representing the 
identical functional aspect found within our UCM. The 
GRL diagram also includes a softgoal (i.e., NFR) named 
‘Performance.’ In our simple example, we wish to have high 
performance (that is, achieve a constant search time) when 
we are searching for an item. The GRL diagram illustrates 
how we believe three potential implementation strategies 
will affect the search performance softgoal. 

 

 
Figure 4.  Container example UCM diagram 

 
 
 

 
Figure 5.  Container example GRL diagram 

 
The diagrams in Figs. 4 and 5 capture at a high level of 

abstraction the requirements of our very simple example. 
Most importantly, we observe that neither diagram is 
testable per se. Furthermore, should test cases be generated 
outside of our VF, they would necessarily be disconnected 
from actual implementations of such a container. Not only 
would a developer have to associate the responsibilities of 
the UCMs to actual methods in an IUT, but also 
instrumentation code would be required to observe that an 
item is properly added, looked up and removed. Code would 
also be required to verify the validity of an actual sequence 
of method calls against the grammar of responsibilities 
captured in the UCM. For GRL, code would be required to 
measure search performance (e.g., in terms of look-ups in 
the container). All of this so-called ‘glue code’ would most 
likely be very implementation specific, having to be 
considerably modified across candidate IUTs for the 
container.  

In our opinion, developing a TRM using our framework 
constitutes a better alternative to IUT-specific ‘glue code’ 
because the former enables the validation of a single TRM 
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across different IUTs5. This is made possible by having our 
VF support the automatic instrumentation of a TRM in an 
IUT, once bindings have been supplied.  From a validation 
viewpoint, a stakeholder is ‘shielded’ from IUT-specific 
considerations and only focuses on refining URN models 
into a TRM: it is the developer of an IUT who must supply 
the IUT-specific bindings that enable automatic 
instrumentation. 

 

B. Creating a TRM for the Container Example 
We begin our example TRM with a first rather abstract 

version that proceeds from the Use Case Map. This TRM is 
shown in Fig. 6 below: 

 
Contract Container { 
 Scalar Integer size; 
 Observability Boolean  
 HasItem(tElement item); 
 Responsibility Add(tElement item) { 
    Pre(HasItem(item) == false); 
    Execute(); 
    size = size + 1; 
    Post(HasItem(item) == true); 
 } 
 Responsibility Boolean  
   Search(tElement item){ 
    Pre(item not= null); 
    Execute(); 
    Post(HasItem(item) == value); 
 } 
 Responsibility  
   Remove(tElement item) { 
    Pre(HasItem(item) == true); 
    Execute();   
    size = size - 1; 
    Post(HasItem(item) == false); 
 } 
 Exports { 
    Type tElement { not context; } 
 } 
} 

Figure 6.  A TRM proceeding from use cases 

 
In ACL, responsibilities and scenarios are grouped into 

contracts. Our TRM starts with the definition of a single 
contract named Container. The TRM can contain any 
number of contracts; however we will only use one in our 
example. The body of our contract begins with the 
definition of a contract instance variable. Contract instance 
variables provide a way to store information within the 
TRM. It should be noted that contract variables are separate 
from variables found within the IUT (and are maintained by 
our VF). Our contract instance variable is named ‘size’ and 
will be used to store the number of items that should be in 
the container at a given time (according to the TRM).  

                                                           
5 As previously mentioned, a TRM must also support automatic test case 
generation which, without going in any further details, takes the form of 
test procedures automatically inserted in, and called from, the main 
procedure of the IUT. 

Next, the contract defines an observability procedure 
(hereafter simply 'an observability'). Such a procedure 
represents an observation requirement imposed on the 
bound IUT. The ‘HasItem’ observability is used to check if 
a given item is stored within the container. Note that the 
item type is ‘tElement.’ The ‘tElement’ identifier represents 
the type of element that is being stored in the container. 
Details regarding how the ‘tElement’ type is bound to the 
IUT will follow shortly. 

The ‘Add’ responsibility represents the task of adding a 
new item to the container. The item to add is represented by 
the single parameter passed to the responsibility. The body 
of the responsibility begins with a single precondition to 
ensure that the item that is being added to the container is 
not already stored in the container. The Execute statement, 
indicates the point where the bound IUT method(s) will 
execute. That is, the IUT will be instructed to carry out at 
that point the actual task of adding the requested item to the 
container. Next the ‘size’ contract variable is incremented to 
reflect the addition of the new item. Finally a post-condition 
is specified to ensure that the given item has indeed been 
added to the container. 

The ‘Search’ responsibility returns a Boolean value 
indicating if the given item is stored within the container. 
The body of the responsibility begins with a precondition to 
ensure that the given item is valid. The Execute statement 
follows and instructs the IUT to perform the actual search. 
Finally a post-condition is specified to ensure that the value 
returned by the IUT method (a Boolean in this case), 
denoted by the ‘value’ keyword, is the same as the one 
obtained from the ‘HasItem’ observability. 

The final responsibility, ‘Remove,’ removes the given 
item from the container. The body of the responsibility 
contains a single precondition to ensure that the item 
requested for removal is actually in the container. The 
Execute statement removes the actual item from the IUT. 
Finally, the ‘size’ contract variable is decremented to reflect 
the removal, and a post-condition is specified to ensure that 
the item was actually removed from the container. The 
specification of these three responsibilities proceeds directly 
from the UCM of Fig. 4. 

The final semantic element within our contract is an 
Exports section. Each contract may contain at most one 
Exports section, which is used to define symbols that are 
external to the contract, that is, types that must be bound to 
concrete IUT elements for contract execution. Our contract 
contains a single export entry for the ‘tElement’ symbol. 
The export indicates that the ‘tElement’ symbol must be 
bound to a type within the IUT, and that this type cannot be 
the same type as the one representing the container. That is, 
this simple TRM does not support a container of containers. 

The key point for now is that this TRM, despite its 
simplicity, proceeds from a UCM and can be bound to an 
IUT, thus enabling (albeit very high-level) validation.  

Our initial TRM does not take into account scenarios or 
NFRs. We will now refine it to include the additional 
requirements captured by the UCM of Fig. 4, and the GRL 
diagram of Fig. 5.  The resulting TRM is shown in Fig. 7 
(refinements in bold). 
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Contract Container { 
 Scalar Integer size; 
 Scalar Timer search_timer; 
 Observability Boolean  
 HasItem(tElement item); 
 Responsibility Add(tElement item) { 
    Pre(HasItem(item) == false); 
    Execute(); 
    size = size + 1; 
    Post(HasItem(item) == true); } 
 Responsibility Boolean  
  Search(tElement item){ 
    Pre(item not= null); 
    search_timer.Start(item); 
    Execute(); 
    search_timer.Stop(item); 
    Post(HasItem(item) == value); } 
 Responsibility Remove(tElement item) { 
    Pre(HasItem(item) == true); 
    Execute();   
    size = size - 1; 
    Post(HasItem(item) == false); } 
 Scenario AddSearchRemove { 
    once Scalar tElement x; 
    Trigger(Add(x)), 
    Search(x)*, 
    Terminate(Remove(x)); 
 } 
 Scenario Lifetime { 
    Trigger(new()), 
    ( 
   Add(dontcare) | Search(dontcare) |  
   Remove(dontcare) 
    )*, 
    Terminate(finalize()); } 
 Metric List Integer TimesToSearch() { 
    search_timer.Values(); } 
 Reports { 
    ReportAll( 
       "The average search time is: {0}", 
       AvgMetric(TimesToSearch()));} 
 Exports { 
    Type tElement { not context; }}} 

Figure 7.  Refined TRM  

 
The refinements begin with the addition of the 

‘search_timer’ contract instance variable. The variable will 
be used to store the amount of time required for an item to 
be found within the container. That is, the timer will be used 
in determining the satisfaction of the performance softgoal 
(as explained shortly). 

The ‘Search’ responsibility is refined to include the 
starting of a timer keyed on the item being searched for. The 
same timer is stopped following the Execute statement. That 
is, the timer will record the amount of time that it takes the 
IUT to search for each item. 

Our refined contract contains two scenarios: the first, 
named ‘AddSearchRemove,’ specifies the behavior of a 
single item within the container, whereas the second, named 
‘Lifetime,’ specifies how the container can be used to store 
any number of items as per the UCM in Fig. 4. The body of 
the ‘AddSearchRemove’ scenario begins with the 

declaration of a scenario variable, named ‘x.’ The purpose 
of this scenario variable is to represent an individual 
element of the container. Note the use of the ‘once’ 
keyword. This keyword states that the scenario variable can 
only be assigned a single time. If additional assignments 
occur the contract will fail6. A scenario begins when its 
triggering event occurs. The triggering event for the 
‘AddSearchRemove’ scenario is the successful execution of 
the ‘Add’ responsibility. The ‘x’ scenario variable will be 
assigned the item added to the container. Each time a unique 
item is added, a new scenario instance is created. Next, the 
‘Search’ responsibility can be executed zero or more times 
(denoted by the ‘*’ operator). The ‘x’ scenario variable is 
used as a parameter for this responsibility to ensure the 
search is performed on the same element that was added to 
the container earlier in that specific scenario. Finally, the 
scenario terminates following execution of the ‘Remove’ 
responsibility for that specific item. Any scenarios that have 
not terminated, or do not follow the specified scenario 
grammar are taken to have failed. Such a failure is logged in 
the CER. 

The ‘Lifetime’ scenario addresses the lifetime of the 
container. The scenario is triggered when the special ‘new’ 
responsibility is executed. That is, the scenario is triggered 
when a new container is instantiated. Once the scenario is 
triggered, any number of add, search, and remove operations 
may take place. The ‘or’ (‘|’) operator indicates that there is 
no specified ordering for the execution of these 
responsibilities. The whole group of responsibilities can 
execute zero or more times (denoted by the ‘*’ operator). 
That is, it is possible that no operations are performed on the 
container (as per the UCM). Also, note the use of the 
‘dontcare’ keyword: it indicates that the values of the 
parameters (i.e., the items) for these responsibilities are not 
important from the viewpoint of this scenario. Finally, the 
scenario terminates after the ‘finalize’ responsibility has 
executed, that is, when the container is destroyed.  

The previous constructs are used to specify functional 
aspects of the TRM. Our contract continues with non-
functional constructs. The first of these is a metric named 
‘TimesToSearch.’ This metric, when invoked, will return a 
list of integer values representing the times gathered when 
the ‘Search’ responsibility executed. These values are 
obtained by using the ‘Values’ method (predefined by our 
VF) on the ‘search_timer’ contract variable. (For more 
information on timers see [17].) The second non-functional 
construct is in the ‘Reports’ section. The ‘Reports’ section is 
evaluated after the IUT has finished executing so that any 
NFR information gathered during execution can be 
evaluated. In our example, the body of the ‘Reports’ section 
uses the built-in ‘AvgMetric’ metric evaluator to compute 
the average search time, obtained from the list of times 
found in the ‘TimesToSearch’ metric. The result of such 
metric evaluation is then displayed on the CER (for the user 

                                                           
6 The rationale for such a keyword is that our implemented large case 
studies [17] suggest it is frequent that a contract or scenario variable is 
only assigned to once, and that additional assignments are in fact 
specification errors within a TRM. 
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to determine whether the softgoal is or is not satisfied). It 
should be noted that our VF uses an open semantic model so 
that user-defined and domain-specific metric evaluators can 
be defined via the VF and invoked from within a ‘Reports’ 
section (for details, see [17]) 

Our TRM could have been refined further with the 
addition of invariants, pre and post-conditions creating 
stricter responsibility definitions, etc. Such refinements 
were omitted due to space constraints. For the complete 
example, see [17]. 

To conclude, let us add that this TRM can also include 
inter-scenario relationships. For example, should we want to 
express that a test case is to involve at most 8 instances of 
the AddAndRemove scenario, and at most 4 of the 
ContainerLifeTime one, all executing independently, we 
would write:   (where || denotes concurrent execution) 

 
Interaction ContainerInter  
  { Relation MultipleContainers  
   { Contract Container c;  
         c.AddAndRemove[8]||    
     c.ContainerLifetime[4];} } 

 

C. Binding the TRM to an IUT 
Our VF uses the previously mentioned ABE modules to 

automatically infer bindings between a TRM and an IUT. 
For the purposes of our example, we will outline the 
bindings necessary to bind the contract of Fig. 7 to a 
candidate IUT. The complete binding table can be found in 
Table 1. The first element to be bound is the contract itself. 
Each contract must be bound to a type within the IUT. In 
our example, for simplicity, the contract is bound to a single 
IUT type representing a single specific container (e.g., a 
linked list in C++). Once a contract is bound to an IUT type, 
elements of this contract are bound to IUT elements located 
within the IUT type bound to this contract. Such binding 
process begins with any export entries that may be present 
in the contract. Recall that our container example refers to a 
single export entry for the ‘tElement’ symbol. A binding 
will thus be required between the ‘tElement’ symbol and a 
type within the IUT representing the single element type 
stored within this particular container. Next, observability 
procedures are bound. Our contract specifies a single 
observability that will be, likely automatically, bound to a 
corresponding method within the IUT type bound to the 
contract. For an observability binding to be successful, the 
return type and parameter types (but not the name) of the 
observability and the IUT method must match. The IUT 
method must also be side effect free (which is enforced by 
the VF, see [17]). 

Next bindings for the ‘Add,’ ‘Search,’ and ‘Remove’ 
responsibilities are handled. In our VF, a responsibility can 
be bound to any number of IUT methods. For the purpose of 
our simple example, we will assume a one-to-one binding. 
(Details for binding to several methods can be found in 
[17].) Such a binding will then require the IUT method to 
have the same return and parameter types as the 
responsibility in order to enable an automatic binding. This 

completes the binding process. The total number of bindings 
required in our example is six7. 

Once the binding process is complete, our VF 
automatically compiles the TRM, instruments it into the 
IUT, runs the IUT and evaluates this IUT against the 
compiled TRM producing a CER. 

 

D. Validation of the Container Example 
With the VF acting as a run-time monitoring system, we 

are able to capture events as the bound IUT executes. Each 
time a type is instantiated, the VF checks to see if any 
contract within the TRM is bound to that IUT type. If so, a 
new contract instance is created to represent the new IUT 
type instance. As the IUT continues to execute, any 
responsibilities that are bound to methods within the 
corresponding IUT type will be evaluated when their 
corresponding IUT methods execute. (Details regarding the 
evaluation of a bound responsibility and corresponding 
scenario grammar execution can be found in [17, 24].) 

Once the IUT finishes its execution, the VF notifies any 
scenario instances that have yet to terminate that the IUT 
has completed, and that all such incomplete scenario 
instances fail. Next, the result of executing each scenario is 
written to the CER. Such information includes the execution 
grammar specified in the TRM, the actual execution trace, 
and any unexpected responsibilities or observable events. 

The final step is the evaluation of the ‘Reports’ section 
possibly found in each contract (see Fig. 7). Such evaluation 
consists in the VF invoking the previously discussed metric 
evaluators to analyze and report on the metric information 
gathered during IUT execution. The gathering of all data 
used in the CER, including metrics specified in the TRM, is 
performed by the VF. The results of metric analysis are 
formatted (as per the string provided to the ‘ReportAll’ 
statement(s)) and written to the CER.  Evaluation of each 
contact's ‘Reports’ section completes the process of 
validating a candidate IUT against a TRM. In other words, 
from our viewpoint, validation is incomplete unless its 
outcomes can be reported to stakeholders. Let us briefly 
elaborate. 

 

E. The Contract Evaluation Report 
The CER displays results covering all aspects of a 

candidate IUT validated against the TRM. The results of 
each contract, contract instance, observability, invariant, 
responsibility, scenario, and metric analysis are shown. 
Each distinct candidate IUT executed by our VF will have a 
separate CER. Multiple CERs can be compared to find 
differences between candidate IUTs (in order, for example, 
to decide which IUT to select based on the satisfaction of a 
softgoal). 

The CER itself is presented using a tree that displays 
each element of the TRM in either green or red. Elements in 
green represent areas where execution of the candidate IUT 
followed the specified TRM. Elements in red represent areas 

                                                           
7 1 contract + 1 observability + 3 responsibilities + 1 export.   
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where execution of the candidate IUT deviated from the 
TRM. Upon selection, each node within the CER tree 
displays a report view showcasing precise execution details 
based on the currently selected tree item. Figure 8 shows 
both the tree and report views generated by the execution of 
our container TRM against an IUT using the bindings 
provided in Table 1. Fig. 8 displays the scenario instance 
view. The scenario instance view provides the actual 
triggering and termination events for a given scenario, as 

well as the exact execution trace that was observed during 
execution of the selected scenario instance. In addition, 
details regarding the execution of any pre- and post-
conditions (and other dynamic checks, such as invariants, 
executed as part of the scenario instance) are also provided. 
The CER has a total of 22 distinct report views that can be 
displayed depending on the selection made in the report 
tree. (For details about information written to the CER and 
corresponding views, see [17].)  

TABLE I.  BINDING TABLE FOR THE CONTAINER TESTABLE REQUIREMENTS MODEL 

TRM Element Name TRM Type IUT Bindpoint IUT Type 
Container Contract Examples::Container Class 
tElement Exported Type int Examples::ContainerItem Class 
Boolean Container.HasItem(tElement item) Observability bool Examples::Container.HasItem(Examples::ContainerItem) Method 
Void Add(tElement item) Responsibility void Examples::Container.Add(Examples::ContainerItem) Method 
Boolean Search(tElement item) Responsibility bool Examples::Container.Search(Examples::ContainerItem) Method 
Void Remove(tElementItem item) Responsibility void Examples::Container.Remove(Examples::ContainerItem) Method 

 
 

 
Figure 8.  Validation Framework Report Viewer - Scenario Instance View 

 

IV. CONCLUSION  
Most current tools for model-based testing (MBT) are 

state-based. Such tools offer the advantage of formal 
semantics and well-established techniques for test case 
generation. But their executability is rooted in the semantics 
of their specification model (in particular, in the notion of 

state exploration). Furthermore, their adoption remains 
relatively low in industry, partly because of the preference of 
users for (often informal) scenario-driven semantics [1]. 
Notwithstanding the semantic features of our requirements 
language and the functionality of our tool that we cannot 
elaborate upon (due to space constraints), our claim here is 
that it is feasible to have a URN-based MBT approach that a) 
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allows its user to express the requirements of stakeholders 
first using the URN, then in a Testable Requirement Model 
(TRM), b) supports the automatic test case generation from 
this TRM (through path sensitization algorithms that we 
discuss at length elsewhere), c) bridges between the TRM 
and an Implementation under test (IUT) via the use of our 
binding tool, and d) enables the validation of the TRM 
against this IUT (through the automatic instrumentation of 
the static and dynamic checks, as well as scenarios of the 
TRM in this IUT). We have implemented a validation 
framework to support this MBT approach. Its most 
distinguishing feature, in our opinion, are the semantics of 
the requirements language it supports for the specification of 
a TRM: whereas state-based MBT approaches have what can 
be tested proceed from the semantics of state exploration, the 
semantics of our requirements language proceed from what 
can be automatically instrumented and monitored at run-
time. 
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