
Scenario-Based Validation
Beyond the User Requirements Notation

Dave ARNOLD and Jean-Pierre CORRIVEAU
School of Computer Science

Carleton University
Ottawa, CANADA

{darnold, jeanpier}@scs.carleton.ca

Wei SHI
Faculty of Business and IT

UOIT
Oshawa, CANADA

Wei.Shi@uoit.ca

Abstract—A quality-driven approach to software development
and testing demands that, ultimately, the requirements of
stakeholders be validated against the actual behavior of an
implementation under test (IUT). In model-based testing,
much work has been done on the generation of functional test
cases. But few approaches tackle the executability of such test
cases. And those that do, offer a solution in which test cases
are not directly traceable back to the actual behavior and
components of an IUT. Furthermore, extremely few
approaches tackle non-functional requirements. Indeed, the
User Requirements Notation (URN) is one of few proposals
that address the modeling and validation of both functional
and non-functional requirements. But if the URN is to support
traceability and executability of tests cases with respect to an
actual IUT, then the “URN puzzle” must be modified: it must
be augmented with a testable model for functional and non-
functional requirements, an IUT, and explicit bindings
between the two. We explain how these three additions are
used in our implemented framework in order to support
scenario-based validation.

Keywords-validation; scenarios; contracts; user
requirements notation; model-based testing

I. INTRODUCTION
A quality-driven [1] approach to software development

and testing demands that, ultimately, the requirements of
stakeholders be validated [2] against the actual behavior of
an implementation under test (IUT). Thus, the general
problem at hand is test case generation and execution.

From this viewpoint, we remark that modeling tools are
used to create models of (some aspects of) an IUT.
Examples of modeling tools include IBM Rational Rose [3],
Borland Together [4], and Telelogic’s (now IBM) Tau [5],
among many others. Such tools provide support for model
specification, analysis, and maintenance. It is an IUT that is
modeled (as opposed to IUT-independent requirements).
Furthermore, such tools generally do not have the ability to
generate test cases, let alone run and monitor them.
Consequently, they are not relevant here.

Similarly, a test automation framework (e.g., Rational
Robot by IBM [6]) accepts tests that already have been
manually created, automatically generated, or pre-recorded.
Most importantly, such test cases must be readily executable
on an IUT. The automation framework then executes the

test sequences without human interaction. Such an approach
bypasses a key problem, namely the generation of
executable test cases. Consequently, we will not discuss
further such frameworks.

Code-based testing constitutes one approach to software
testing. But a code-centric testing method, such as in test-
driven design [7], does not explicitly model the
requirements of stakeholders. Furthermore, code-based
testing tools (such as JUnit [8] and its several adaptations to
different languages, and very recently AutoTest [9]) allow
only for unit tests [2] (i.e., tests pertaining to a procedure,
not to a scenario/cluster [2]) to be specified in, or
automatically generated from, code. And such tests are
implementation-specific.

In model-based testing [10] (MBT), the requirements of
stakeholders are to be captured in implementation-
independent models from which tests are to be extracted to
drive the task of validation [2]. Such requirements can be
categorized into functional and non-functional1 ones (such
as performance, usability, etc.), the former receiving almost
all of the attention in modeling and validation literature.

An MBT tool uses various algorithms and strategies to
generate tests from a behavioral model of the IUT. Test
cases derived from such a model are functional tests at the
same level of abstraction as the model. From this viewpoint,
MBT approaches can be separated into those that support
executable test cases (e.g., [11, 12]), and those that do not
(e.g., [2, 13, 14]). It is important however to clarify what is
exactly meant by executability in the former category.
Existing MBT tools that support executability are
systematically grounded in state-based semantics. That is,
the execution of the generated tests occurs in the semantic
space of the specification language and is most often rooted
in the concept of state exploration [11]. For example, in
Spec# [11], executability relies on queues of unreceived
messages (a notion incompatible with any actual execution
of code) as well as on a global state explorer (which must
deal with the difficult problem of state explosion [11]). The
point to be grasped is that there is no traceability between
test cases generated and executed (with respect to a space of
states), and executions of an actual implementation-under-
test (IUT). But traceability between a model, the test cases

1 Also called ‘quality of service’ requirements.

21st Australian Software Engineering Conference

1530-0803/10 $25.00 © 2010 IEEE

DOI 10.1109/ASWEC.2010.29

75

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

generated from it, and an IUT, is necessary if stakeholders
are to partake in the validation of this IUT, and in particular,
in the selection of test cases.

The question then is two-fold: is it possible to have an
approach to MBT that a) addresses both functional and non-
functional requirements and b) relies on test cases
executable against an actual IUT? Our claim is that it is. In
order to support this contention, we will introduce here a
requirements specification language and explain how it is
used for validation. Our proposal proceeds from the User
Requirements Notation [15] (URN), one of few MBT
approaches that address the modeling and validation of both
functional and non-functional requirements. An overview of
this conceptual and methodological framework is provided
in Fig. 1 (from [15]).

Currently, the URN offers limited test case generation
[16], and the executability of such test cases is not
addressed. Our contention in this paper is that if the URN is
to indeed support the validation of the requirements of
stakeholders against the actual behavior of an IUT, then the
“URN puzzle” of Figure 1 must be modified. In the next
section, we explore the nature of these modifications, which
we will motivate from the need to support the executability
of test cases against an actual implementation. In particular,
we will justify why we add both a testable requirements
model (TRM) and an IUT to the puzzle, as well as a) our
validation framework (VF) [17] and in particular b) explicit
bindings between a TRM and an IUT. Then, in section 3, we
present an example of our URN-based approach to
validation using our VF.

Figure 1. The URN modeling puzzle

II. AUGMENTING THE URN

A. Why Start with the URN?
The URN is a two-headed proposal. URN-NFR

addresses non-functional requirements (NFRs), capturing
them using the Goal-Requirements Language (GRL) [18].
Such a model aims at highlighting how some facets of a
system (e.g., tasks, procedures) contribute (positively or
negatively) to the satisfaction of NFRs. Little exists in terms
of proposals for the systematic production of tests from
GRL models.

Functional goals (FRs) are captured using Use Case
Maps (UCMs) [19], which consist of scenarios forming
temporal flows of responsibilities.

Both URN-NFR (i.e., GRL) and URN-FR (i.e., UCM)
models are taken to proceed from informal requirements
organized into textual use cases [2]. Thus, URN is a
scenario-driven approach to MBT, in contrast to state-based
approaches to MBT. This is an important difference,
especially with respect to the validation of the requirements
of stakeholders. In particular, Grieskamp [20], who
developed SpecExplorer [11] at Microsoft, remarks that the
low adoption rate of state-based MBT tools in industry
depends, amongst other factors, on the learning curve
associated with such semantics and the lack of support for
more stakeholder-friendly scenario-based semantics.

Thus, URN constitutes an interesting starting point for
an MBT tool for several reasons: i) it is scenario-based,
requirements oriented (i.e., high-level) and implementation
independent, ii) it does generate functional test cases [16],
iii) it does address the modeling of non-functional
requirements and iv) as suggested by Fig. 1, it integrates
well [15] in a development process that aims to address the
whole modeling/testing enterprise (from use cases ‘down to’
detailed Message Sequence Charts [21] and test languages
such as TTCN [22] and LQN [23]2).

Furthermore, since a use case map can be
conceptualized as a grammar of responsibilities [19], the
technique of path sensitization [2] can be used to generate a
test suite with respect to a specific coverage criterion [2], as
explained in [16]. The point is that there exist algorithms to
‘cover’ use case maps via a suite of generated test cases (as
there are for Binder’s extended use cases [2] and use cases
augmented with contracts [13]). Similarly, test case
generation algorithms for state machine coverage have been
extensively documented (e.g., chapter 7 of [2]). The point
then is that test case generation is not a significant hurdle for
validation (and thus, due to space restrictions, will not be
discussed further here). (Details of our approach to test case
generation are available in [24].)

It is the executability of such test cases against
executions of an implementation under test (IUT) that is
challenging. In particular, such executability requires the
automatic instrumentation of test cases in an IUT. For

2 More precisely, as Buhr [19] explains, use cases are first expressed as
temporal flows of responsibilities (e.g., one flow per scenario of a use
case) and then, and only then, are these responsibilities packaged into
objects and ultimately classes, and their detailed interactions worked out.

76

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

example, it’s one thing to use path sensitization to generate
test cases from UCMs. It’s another to develop a profiler that
can check whether or not an actual execution of the IUT
conforms or not with the scenario models of such UCMs. In
fact, unless the semantic elements of UCMs are associated
with actual method calls and execution paths, such profiling
is not possible.3 Furthermore, the few tools that do support
such profiling are, in practice, quite limited. Consider, for
example, Rational’s TAU and its Validator [5]. TAU
‘supports’ Message Sequence Charts (MSCs) [21], a
semantically rich scenario-modeling notation (which is too
detailed to serve for requirements modeling). However,
scenario profiling is actually restricted to the simplest
semantic elements of MSCs. And profiling is not scenario-
based but state-based! In other words, what is monitored are
sequences of states, not a path of execution (consisting of a
sequence of events/method calls).

We also remark that TAU ‘supports’ the automatic
generation of tests captured in TTCN [22], a standard test
notation. But the semantics of TTCN cannot handle the
complexities of scenario notations such as UCMs and
MSCs: TTCN was not meant to and cannot tackle the
validation of complex scenarios (whereas our proposal does
[24]).

In the rest of section 2, our task thus consists in
explaining how, starting with the URN, we can get to test
cases executable against an IUT.

B. On A Traceable Requirements Model
The URN puzzle is our starting point as it is, we repeat,

one of few proposals that address both functional and non-
functional requirements.

As a first modification, we propose to reorganize the
URN puzzle so that it separates two distinct viewpoints,
namely the one of the stakeholders and the one of the
developers. This initial modification is given in Fig. 2.

Fig. 2 emphasizes that models relevant to stakeholders
must be independent of any particular implementation. It
also conveys the fact that such models must address both
functional and non-functional requirements (which proceed
from informal requirements). It does not address the
generation of test cases executable against an IUT. For that,
we require another model, which we will call a Traceable
Requirements Model (TRM). Let us elaborate on the
properties of such a model.

First and most importantly, this model must be
traceable: it must be possible to associate its semantic
elements to elements of an IUT. (Ideally, this process should
be fully automated. More on this shortly.) In our opinion, it
is this traceability that enables bridging between the
stakeholders’ viewpoint and the one of the IUT developers,
as will be explained shortly. The need for traceability
between a TRM and an IUT immediately suggests adding

3 It must be emphasized that by grounding executability in the semantics
their specification languages (as opposed to executions of an IUT), state-
based MBT tools essentially eliminate the whole issue of instrumentation
and profiling, at the expense of traceability between test cases and actual
executions of an IUT.

both a Traceable Requirements Model and an IUT to the
elements already in Fig. 2.

Figure 2. The Two Viewpoints of the URN puzzle4

Second, the TRM must also be a unified requirements
model inasmuch as its semantics must address both FRs and
NFRs. This is an important decision: having a single model
for FRs and NFRs allows us to associate metric evaluators
to responsibilities and scenarios, as will be illustrated in
section 3.

Third, the TRM must be semantically comprehensive:
To enable the evaluation of NFRs, the TRM supports metric
evaluators, as just mentioned above. In addition, it is rooted
in the semantic notions of responsibilities and scenarios
found in UCMs (from which it is to be derived). Following
[13], we further enhance the scenarios of a TRM with
elements of design-by-contract [27] (i.e., pre- and post-
conditions, invariants). (This allows us to reuse the test case
generation algorithms proposed in [13].) Following Ryser
and Glinz [28], we also include semantics for the all-
important (and generally forgotten) inter-scenario
relationships. Static checks (see section 3) complete the
semantics of our TRM in order to support a simple form of
static analysis [17]. In our current implementation, all these
semantic elements are expressed in our own requirements
specification language called Another Contract Language
(ACL) [17].

Our TRM is textual (i.e., non-diagrammatic). Thus,
stakeholders are to initially develop use cases, then GRL
and UCM diagrams, and then, and only then, refine the
responsibilities, scenarios and metrics identified in such
diagrams into a TRM. This step is not automated and
requires the participation of someone familiar with a) the
semantics of ACL, b) the test case generation process we
support [24] (in order to help stakeholders in selecting test

4 The OCL is included as a testing language. Its usage is for unit testing
and OCL is IUT specific. It does not tackle scenario conformance [25].
SDL [26] is an older state-based modeling language.

77

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

cases) and c) the binding process used to link elements of a
TRM to elements of an IUT (as explained shortly). Details
of how a TRM is to be ‘derived’ from URN models are not
relevant here. It only matters that the semantic closeness of
our TRM to URN models makes this quite straightforward.

Static checks correspond to structural queries on an
implementation, whereas design-by-contract elements [18]
(i.e., pre- and post-conditions, invariants) and the evaluation
of metrics constitute types of dynamic checks that query an
execution of an IUT. Most importantly, from an operational
standpoint, we view scenarios as complex dynamic checks
involving run-time monitoring (i.e., profiling).

Validating static and dynamic checks against an IUT
produces a ‘validation report.’ This report must provide the
outcome of each static and dynamic check, and metric
evaluation(s) for a specific execution of an IUT. Static and
dynamic checks either pass or fail. That is, a check must be
directly executable and have a well-defined outcome. If a
check fails, information regarding the failure (e.g., values
used during the evaluation of a pre- or post-condition)
should be reported, but the execution proceeds if possible.
Conversely, the result of a metric evaluator is a value (such
as a performance counter) that is directly included in the
validation report.

Because a TRM includes scenarios, a validation report
must also provide information pertaining to the monitoring
of the execution of each scenario’s instances and of their
corresponding responsibilities. Each scenario may be
triggered several times during an execution, leading to
several distinct instances of that scenario. Run-time
monitoring involves tracking scenario instances and
knowing how to match them against parts of the execution
of an IUT. When the execution path of an IUT differs from
a relevant scenario, the exact responsibility where execution
deviated is indicated in the report. Further scenario
execution information, such as the number of times a
particular scenario has executed, and what data was
used/changed during its execution is also included in the
report.

Our Validation Framework (VF) supports all the
reporting tasks outlined above. The resulting report is
known as a Contract Evaluation Report (CER) [17].

In order for the validation of a TRM against an IUT to
be possible, we require a) a mechanism to link a TRM to an
IUT and b) a VF that provides full instrumentation for a
specific TRM/IUT pair. We now explore these two issues.

C. Bridging the Traceability Gap
We require that the semantics of the TRM be decoupled

from any particular implementation (and programming
language) so that a single TRM may be tested against
several candidate implementations. The immediate question
then is how to bridge between an implementation-
independent TRM (i.e., a stakeholder’s viewpoint) and an
IUT (i.e., the developer’s viewpoint)? The answer lies in the
idea of binding elements of the TRM to actual methods
within the IUT. More specifically, some elements of the
TRM must be explicitly linked (by the provider of an IUT)
to corresponding methods within this IUT, and some

methods may have to be added to the IUT to enable the
observability [2] that is required to determine if a given
requirement is satisfied.

Bindings act as a mapping between the TRM and the
IUT. Relevant elements of the TRM must be bound to
concrete IUT counterparts. Such a binding process is ideally
automated, thus providing an automatic connection between
the TRM and IUT. Our VF includes such binding support.
Let us elaborate.

Our binding tool allows for the automatic specification
and display of binding information. Such binding
information links elements of a TRM to concrete elements
located within an IUT. Bindings can be specified manually
or using the Automated Binding Engine (ABE). The ABE is
not limited to a specific binding algorithm. Rather, it is open
in nature and uses extension modules that are developed
using a software development kit [17]. We have
implemented two ABE extension modules as part of the
current VF. Details regarding how bindings are inferred can
be found elsewhere [17]. Most importantly, bindings allow
the TRM to be independent of implementation details, as
specific IUT method names, and parameter types/orders
used within the IUT do not have to correspond to a similarly
named TRM artifact. (In fact, one responsibility can be
bound to several distinct procedures and even to a sequence
of procedures [17].) In addition, such a binding process
allows several candidate IUTs to be verified against a single
testable model.

Once binding information is specified, our VF is able to
execute an IUT against a TRM. The process begins with the
execution of static checks. We first use Microsoft's Phoenix
Research Development Kit [29] to gather structural and
behavioral elements of the IUT (which is input as an
executable, not source code). Once such information is
gathered, the actual static checks are executed. After all of
the static checks have been executed, the VF then executes
the IUT, by launching it as a new process. Our VF acts as a
specialized debugger and profiler, keeping track of instance
creation, method invocation, and instance destruction. In
addition, the VF will pause the execution of the IUT as
needed in order to execute various checks. At the same time
the IUT is launched, our VF also maintains a separate
execution environment for the TRM. This environment
contains any instances of TRM artifacts (e.g., scenarios) that
have been created as a result of IUT execution. Once
execution of the IUT has completed, the VF gathers metric
information obtained during execution of the IUT and
performs metric evaluation. Such evaluation consists of the
VF invoking metric evaluators to analyze and report on the
gathered metric information. Finally, a CER is generated
displaying test outcomes covering all aspects of a candidate
IUT executed against the TRM. (Details regarding the
specific CER contents can be found in [17]).

Fig. 3 summarizes how using a TRM, an IUT, bindings
between the two, our VF and the report it generates, fits into
the URN-based approach we propose.

78

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Completed URN puzzle

III. AN IMPLEMENTED EXAMPLE

A. URN Models for a Simple Container
Our example models a very simple container able to add,

remove, and search for items (without multiple occurrences
of an item, for simplicity). (See [17] for more extensive case
studies.) Using the URN we begin with a UCM representing
how an external entity, the ‘user,’ interacts with our
container. As Fig. 4 illustrates, the user is able to add,
remove, and search for items in any order. Also, the user
may choose to not interact with the container (which
corresponds to the empty ‘center’ path in Fig. 4).

This UCM represents only some of the functional
aspects of the container (omitting, for example, creation and
destruction).

To model non-functional aspects, we have created the
minimalist GRL diagram shown in Fig. 5. This figure
defines a goal named ‘Item Search’ representing the
identical functional aspect found within our UCM. The
GRL diagram also includes a softgoal (i.e., NFR) named
‘Performance.’ In our simple example, we wish to have high
performance (that is, achieve a constant search time) when
we are searching for an item. The GRL diagram illustrates
how we believe three potential implementation strategies
will affect the search performance softgoal.

Figure 4. Container example UCM diagram

Figure 5. Container example GRL diagram

The diagrams in Figs. 4 and 5 capture at a high level of

abstraction the requirements of our very simple example.
Most importantly, we observe that neither diagram is
testable per se. Furthermore, should test cases be generated
outside of our VF, they would necessarily be disconnected
from actual implementations of such a container. Not only
would a developer have to associate the responsibilities of
the UCMs to actual methods in an IUT, but also
instrumentation code would be required to observe that an
item is properly added, looked up and removed. Code would
also be required to verify the validity of an actual sequence
of method calls against the grammar of responsibilities
captured in the UCM. For GRL, code would be required to
measure search performance (e.g., in terms of look-ups in
the container). All of this so-called ‘glue code’ would most
likely be very implementation specific, having to be
considerably modified across candidate IUTs for the
container.

In our opinion, developing a TRM using our framework
constitutes a better alternative to IUT-specific ‘glue code’
because the former enables the validation of a single TRM

79

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

across different IUTs5. This is made possible by having our
VF support the automatic instrumentation of a TRM in an
IUT, once bindings have been supplied. From a validation
viewpoint, a stakeholder is ‘shielded’ from IUT-specific
considerations and only focuses on refining URN models
into a TRM: it is the developer of an IUT who must supply
the IUT-specific bindings that enable automatic
instrumentation.

B. Creating a TRM for the Container Example
We begin our example TRM with a first rather abstract

version that proceeds from the Use Case Map. This TRM is
shown in Fig. 6 below:

Contract Container {
 Scalar Integer size;
 Observability Boolean
 HasItem(tElement item);
 Responsibility Add(tElement item) {
 Pre(HasItem(item) == false);
 Execute();
 size = size + 1;
 Post(HasItem(item) == true);
 }
 Responsibility Boolean
 Search(tElement item){
 Pre(item not= null);
 Execute();
 Post(HasItem(item) == value);
 }
 Responsibility
 Remove(tElement item) {
 Pre(HasItem(item) == true);
 Execute();
 size = size - 1;
 Post(HasItem(item) == false);
 }
 Exports {
 Type tElement { not context; }
 }
}

Figure 6. A TRM proceeding from use cases

In ACL, responsibilities and scenarios are grouped into

contracts. Our TRM starts with the definition of a single
contract named Container. The TRM can contain any
number of contracts; however we will only use one in our
example. The body of our contract begins with the
definition of a contract instance variable. Contract instance
variables provide a way to store information within the
TRM. It should be noted that contract variables are separate
from variables found within the IUT (and are maintained by
our VF). Our contract instance variable is named ‘size’ and
will be used to store the number of items that should be in
the container at a given time (according to the TRM).

5 As previously mentioned, a TRM must also support automatic test case
generation which, without going in any further details, takes the form of
test procedures automatically inserted in, and called from, the main
procedure of the IUT.

Next, the contract defines an observability procedure
(hereafter simply 'an observability'). Such a procedure
represents an observation requirement imposed on the
bound IUT. The ‘HasItem’ observability is used to check if
a given item is stored within the container. Note that the
item type is ‘tElement.’ The ‘tElement’ identifier represents
the type of element that is being stored in the container.
Details regarding how the ‘tElement’ type is bound to the
IUT will follow shortly.

The ‘Add’ responsibility represents the task of adding a
new item to the container. The item to add is represented by
the single parameter passed to the responsibility. The body
of the responsibility begins with a single precondition to
ensure that the item that is being added to the container is
not already stored in the container. The Execute statement,
indicates the point where the bound IUT method(s) will
execute. That is, the IUT will be instructed to carry out at
that point the actual task of adding the requested item to the
container. Next the ‘size’ contract variable is incremented to
reflect the addition of the new item. Finally a post-condition
is specified to ensure that the given item has indeed been
added to the container.

The ‘Search’ responsibility returns a Boolean value
indicating if the given item is stored within the container.
The body of the responsibility begins with a precondition to
ensure that the given item is valid. The Execute statement
follows and instructs the IUT to perform the actual search.
Finally a post-condition is specified to ensure that the value
returned by the IUT method (a Boolean in this case),
denoted by the ‘value’ keyword, is the same as the one
obtained from the ‘HasItem’ observability.

The final responsibility, ‘Remove,’ removes the given
item from the container. The body of the responsibility
contains a single precondition to ensure that the item
requested for removal is actually in the container. The
Execute statement removes the actual item from the IUT.
Finally, the ‘size’ contract variable is decremented to reflect
the removal, and a post-condition is specified to ensure that
the item was actually removed from the container. The
specification of these three responsibilities proceeds directly
from the UCM of Fig. 4.

The final semantic element within our contract is an
Exports section. Each contract may contain at most one
Exports section, which is used to define symbols that are
external to the contract, that is, types that must be bound to
concrete IUT elements for contract execution. Our contract
contains a single export entry for the ‘tElement’ symbol.
The export indicates that the ‘tElement’ symbol must be
bound to a type within the IUT, and that this type cannot be
the same type as the one representing the container. That is,
this simple TRM does not support a container of containers.

The key point for now is that this TRM, despite its
simplicity, proceeds from a UCM and can be bound to an
IUT, thus enabling (albeit very high-level) validation.

Our initial TRM does not take into account scenarios or
NFRs. We will now refine it to include the additional
requirements captured by the UCM of Fig. 4, and the GRL
diagram of Fig. 5. The resulting TRM is shown in Fig. 7
(refinements in bold).

80

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

Contract Container {
 Scalar Integer size;
 Scalar Timer search_timer;
 Observability Boolean
 HasItem(tElement item);
 Responsibility Add(tElement item) {
 Pre(HasItem(item) == false);
 Execute();
 size = size + 1;
 Post(HasItem(item) == true); }
 Responsibility Boolean
 Search(tElement item){
 Pre(item not= null);
 search_timer.Start(item);
 Execute();
 search_timer.Stop(item);
 Post(HasItem(item) == value); }
 Responsibility Remove(tElement item) {
 Pre(HasItem(item) == true);
 Execute();
 size = size - 1;
 Post(HasItem(item) == false); }
 Scenario AddSearchRemove {
 once Scalar tElement x;
 Trigger(Add(x)),
 Search(x)*,
 Terminate(Remove(x));
 }
 Scenario Lifetime {
 Trigger(new()),
 (
 Add(dontcare) | Search(dontcare) |
 Remove(dontcare)
)*,
 Terminate(finalize()); }
 Metric List Integer TimesToSearch() {
 search_timer.Values(); }
 Reports {
 ReportAll(
 "The average search time is: {0}",
 AvgMetric(TimesToSearch()));}
 Exports {
 Type tElement { not context; }}}

Figure 7. Refined TRM

The refinements begin with the addition of the

‘search_timer’ contract instance variable. The variable will
be used to store the amount of time required for an item to
be found within the container. That is, the timer will be used
in determining the satisfaction of the performance softgoal
(as explained shortly).

The ‘Search’ responsibility is refined to include the
starting of a timer keyed on the item being searched for. The
same timer is stopped following the Execute statement. That
is, the timer will record the amount of time that it takes the
IUT to search for each item.

Our refined contract contains two scenarios: the first,
named ‘AddSearchRemove,’ specifies the behavior of a
single item within the container, whereas the second, named
‘Lifetime,’ specifies how the container can be used to store
any number of items as per the UCM in Fig. 4. The body of
the ‘AddSearchRemove’ scenario begins with the

declaration of a scenario variable, named ‘x.’ The purpose
of this scenario variable is to represent an individual
element of the container. Note the use of the ‘once’
keyword. This keyword states that the scenario variable can
only be assigned a single time. If additional assignments
occur the contract will fail6. A scenario begins when its
triggering event occurs. The triggering event for the
‘AddSearchRemove’ scenario is the successful execution of
the ‘Add’ responsibility. The ‘x’ scenario variable will be
assigned the item added to the container. Each time a unique
item is added, a new scenario instance is created. Next, the
‘Search’ responsibility can be executed zero or more times
(denoted by the ‘*’ operator). The ‘x’ scenario variable is
used as a parameter for this responsibility to ensure the
search is performed on the same element that was added to
the container earlier in that specific scenario. Finally, the
scenario terminates following execution of the ‘Remove’
responsibility for that specific item. Any scenarios that have
not terminated, or do not follow the specified scenario
grammar are taken to have failed. Such a failure is logged in
the CER.

The ‘Lifetime’ scenario addresses the lifetime of the
container. The scenario is triggered when the special ‘new’
responsibility is executed. That is, the scenario is triggered
when a new container is instantiated. Once the scenario is
triggered, any number of add, search, and remove operations
may take place. The ‘or’ (‘|’) operator indicates that there is
no specified ordering for the execution of these
responsibilities. The whole group of responsibilities can
execute zero or more times (denoted by the ‘*’ operator).
That is, it is possible that no operations are performed on the
container (as per the UCM). Also, note the use of the
‘dontcare’ keyword: it indicates that the values of the
parameters (i.e., the items) for these responsibilities are not
important from the viewpoint of this scenario. Finally, the
scenario terminates after the ‘finalize’ responsibility has
executed, that is, when the container is destroyed.

The previous constructs are used to specify functional
aspects of the TRM. Our contract continues with non-
functional constructs. The first of these is a metric named
‘TimesToSearch.’ This metric, when invoked, will return a
list of integer values representing the times gathered when
the ‘Search’ responsibility executed. These values are
obtained by using the ‘Values’ method (predefined by our
VF) on the ‘search_timer’ contract variable. (For more
information on timers see [17].) The second non-functional
construct is in the ‘Reports’ section. The ‘Reports’ section is
evaluated after the IUT has finished executing so that any
NFR information gathered during execution can be
evaluated. In our example, the body of the ‘Reports’ section
uses the built-in ‘AvgMetric’ metric evaluator to compute
the average search time, obtained from the list of times
found in the ‘TimesToSearch’ metric. The result of such
metric evaluation is then displayed on the CER (for the user

6 The rationale for such a keyword is that our implemented large case
studies [17] suggest it is frequent that a contract or scenario variable is
only assigned to once, and that additional assignments are in fact
specification errors within a TRM.

81

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

to determine whether the softgoal is or is not satisfied). It
should be noted that our VF uses an open semantic model so
that user-defined and domain-specific metric evaluators can
be defined via the VF and invoked from within a ‘Reports’
section (for details, see [17])

Our TRM could have been refined further with the
addition of invariants, pre and post-conditions creating
stricter responsibility definitions, etc. Such refinements
were omitted due to space constraints. For the complete
example, see [17].

To conclude, let us add that this TRM can also include
inter-scenario relationships. For example, should we want to
express that a test case is to involve at most 8 instances of
the AddAndRemove scenario, and at most 4 of the
ContainerLifeTime one, all executing independently, we
would write: (where || denotes concurrent execution)

Interaction ContainerInter
 { Relation MultipleContainers
 { Contract Container c;
 c.AddAndRemove[8]||
 c.ContainerLifetime[4];} }

C. Binding the TRM to an IUT
Our VF uses the previously mentioned ABE modules to

automatically infer bindings between a TRM and an IUT.
For the purposes of our example, we will outline the
bindings necessary to bind the contract of Fig. 7 to a
candidate IUT. The complete binding table can be found in
Table 1. The first element to be bound is the contract itself.
Each contract must be bound to a type within the IUT. In
our example, for simplicity, the contract is bound to a single
IUT type representing a single specific container (e.g., a
linked list in C++). Once a contract is bound to an IUT type,
elements of this contract are bound to IUT elements located
within the IUT type bound to this contract. Such binding
process begins with any export entries that may be present
in the contract. Recall that our container example refers to a
single export entry for the ‘tElement’ symbol. A binding
will thus be required between the ‘tElement’ symbol and a
type within the IUT representing the single element type
stored within this particular container. Next, observability
procedures are bound. Our contract specifies a single
observability that will be, likely automatically, bound to a
corresponding method within the IUT type bound to the
contract. For an observability binding to be successful, the
return type and parameter types (but not the name) of the
observability and the IUT method must match. The IUT
method must also be side effect free (which is enforced by
the VF, see [17]).

Next bindings for the ‘Add,’ ‘Search,’ and ‘Remove’
responsibilities are handled. In our VF, a responsibility can
be bound to any number of IUT methods. For the purpose of
our simple example, we will assume a one-to-one binding.
(Details for binding to several methods can be found in
[17].) Such a binding will then require the IUT method to
have the same return and parameter types as the
responsibility in order to enable an automatic binding. This

completes the binding process. The total number of bindings
required in our example is six7.

Once the binding process is complete, our VF
automatically compiles the TRM, instruments it into the
IUT, runs the IUT and evaluates this IUT against the
compiled TRM producing a CER.

D. Validation of the Container Example
With the VF acting as a run-time monitoring system, we

are able to capture events as the bound IUT executes. Each
time a type is instantiated, the VF checks to see if any
contract within the TRM is bound to that IUT type. If so, a
new contract instance is created to represent the new IUT
type instance. As the IUT continues to execute, any
responsibilities that are bound to methods within the
corresponding IUT type will be evaluated when their
corresponding IUT methods execute. (Details regarding the
evaluation of a bound responsibility and corresponding
scenario grammar execution can be found in [17, 24].)

Once the IUT finishes its execution, the VF notifies any
scenario instances that have yet to terminate that the IUT
has completed, and that all such incomplete scenario
instances fail. Next, the result of executing each scenario is
written to the CER. Such information includes the execution
grammar specified in the TRM, the actual execution trace,
and any unexpected responsibilities or observable events.

The final step is the evaluation of the ‘Reports’ section
possibly found in each contract (see Fig. 7). Such evaluation
consists in the VF invoking the previously discussed metric
evaluators to analyze and report on the metric information
gathered during IUT execution. The gathering of all data
used in the CER, including metrics specified in the TRM, is
performed by the VF. The results of metric analysis are
formatted (as per the string provided to the ‘ReportAll’
statement(s)) and written to the CER. Evaluation of each
contact's ‘Reports’ section completes the process of
validating a candidate IUT against a TRM. In other words,
from our viewpoint, validation is incomplete unless its
outcomes can be reported to stakeholders. Let us briefly
elaborate.

E. The Contract Evaluation Report
The CER displays results covering all aspects of a

candidate IUT validated against the TRM. The results of
each contract, contract instance, observability, invariant,
responsibility, scenario, and metric analysis are shown.
Each distinct candidate IUT executed by our VF will have a
separate CER. Multiple CERs can be compared to find
differences between candidate IUTs (in order, for example,
to decide which IUT to select based on the satisfaction of a
softgoal).

The CER itself is presented using a tree that displays
each element of the TRM in either green or red. Elements in
green represent areas where execution of the candidate IUT
followed the specified TRM. Elements in red represent areas

7 1 contract + 1 observability + 3 responsibilities + 1 export.

82

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

where execution of the candidate IUT deviated from the
TRM. Upon selection, each node within the CER tree
displays a report view showcasing precise execution details
based on the currently selected tree item. Figure 8 shows
both the tree and report views generated by the execution of
our container TRM against an IUT using the bindings
provided in Table 1. Fig. 8 displays the scenario instance
view. The scenario instance view provides the actual
triggering and termination events for a given scenario, as

well as the exact execution trace that was observed during
execution of the selected scenario instance. In addition,
details regarding the execution of any pre- and post-
conditions (and other dynamic checks, such as invariants,
executed as part of the scenario instance) are also provided.
The CER has a total of 22 distinct report views that can be
displayed depending on the selection made in the report
tree. (For details about information written to the CER and
corresponding views, see [17].)

TABLE I. BINDING TABLE FOR THE CONTAINER TESTABLE REQUIREMENTS MODEL

TRM Element Name TRM Type IUT Bindpoint IUT Type
Container Contract Examples::Container Class
tElement Exported Type int Examples::ContainerItem Class
Boolean Container.HasItem(tElement item) Observability bool Examples::Container.HasItem(Examples::ContainerItem) Method
Void Add(tElement item) Responsibility void Examples::Container.Add(Examples::ContainerItem) Method
Boolean Search(tElement item) Responsibility bool Examples::Container.Search(Examples::ContainerItem) Method
Void Remove(tElementItem item) Responsibility void Examples::Container.Remove(Examples::ContainerItem) Method

Figure 8. Validation Framework Report Viewer - Scenario Instance View

IV. CONCLUSION
Most current tools for model-based testing (MBT) are

state-based. Such tools offer the advantage of formal
semantics and well-established techniques for test case
generation. But their executability is rooted in the semantics
of their specification model (in particular, in the notion of

state exploration). Furthermore, their adoption remains
relatively low in industry, partly because of the preference of
users for (often informal) scenario-driven semantics [1].
Notwithstanding the semantic features of our requirements
language and the functionality of our tool that we cannot
elaborate upon (due to space constraints), our claim here is
that it is feasible to have a URN-based MBT approach that a)

83

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

allows its user to express the requirements of stakeholders
first using the URN, then in a Testable Requirement Model
(TRM), b) supports the automatic test case generation from
this TRM (through path sensitization algorithms that we
discuss at length elsewhere), c) bridges between the TRM
and an Implementation under test (IUT) via the use of our
binding tool, and d) enables the validation of the TRM
against this IUT (through the automatic instrumentation of
the static and dynamic checks, as well as scenarios of the
TRM in this IUT). We have implemented a validation
framework to support this MBT approach. Its most
distinguishing feature, in our opinion, are the semantics of
the requirements language it supports for the specification of
a TRM: whereas state-based MBT approaches have what can
be tested proceed from the semantics of state exploration, the
semantics of our requirements language proceed from what
can be automatically instrumented and monitored at run-
time.

ACKNOWLEDGMENTS
Support from the Natural Sciences and Engineering

Research Council of Canada (NSERC) is gratefully
acknowledged.

REFERENCES
[1] Meyer, B. “The Unspoken Revolution in Software
Engineering”, IEEE Computer, January 2006, vol. 39, no. 1, pp.
121-123.
[2] Binder, R., Testing Object-Oriented Systems, Addison-Wesley
Professional, Reading, MA, 2000.
[3] IBM: Rational Rose. http://www-
306.ibm.com/software/awdtools/developer/rose/index.html,
accessed October 2009.
[4] Borland: Borland Together.
http://www.borland.com/us/products/together/index.html, accessed
October 2009.
[5] IBM: Rational TAU, http://www-
01.ibm.com/software/awdtools/tau/ accessed October 2009.
[6] IBM: Rational Robot, http://www-
01.ibm.com/software/awdtools/tester/robot/ accessed October
2009.
[7] Beck, K., Test Driven Development By Example, Addison-
Wesley Professional, Reading, MA, 2002.
[8] JUnit: http://www.junit.org/ accessed October 2009.
[9] Meyer, B. et al., Programs that test themselves, IEEE
Computer, vol.42(9), September 2009, pp.46-55.
[10] Bertolino, A., “Software Testing Research: Achievements,
Challenges and Dreams”, Future of Software Engineering
(FOSE’07), IEEE Press, Minneapolis, May 2007, pp. 85-103.
[11] Campbell, C., et al., Model-Based Testing of Object-Oriented
Reactive Systems with Spec Explorer. Microsoft Research
Technical Report #MSR-TR-2005-59, May 2005.
[12] Foster, H., Uchitel, S., Magee, J. Jeff and Kramer, J., A Tool
for Model-Based Verification of Web Service Compositions and

Choreography, International Conference on Software Engineering
(ICSE) 2006.
[13] Nebut, C., Fleurey, F., Traon, Y.L. and Jezequel, J.,
“Requirements by Contracts allow Automated System Testing”,
Proceedings of the 14th International Symposium on Software
Reliability Engineering (ISSRE), Washington, DC, November
2003, pp. 85-105.
 [14] Somé, S., Use Cases based Requirements Validation with
Scenarios 13th IEEE International Conference on Requirements
Engineering (RE 2005), September 2005.
[15] Amyot, D., “Introduction to the User Requirements Notation:
learning by example”, Computer Networks: The International
Journal of Computer and Telecommunications Networking,
Elsevier Inc., New York, June 2003, vol. 42, no. 3, pp. 285-301.
[16] Miga, A., “Application of Use Case Maps to System Design
with Tool Support”, Masters Thesis, Dept. of Systems and
Computer Engineering, Carleton University, Ottawa, Canada,
October 1998.
[17] Arnold, D., The Validation Framework and its examples,
http://vf.davearnold.ca/, accessed January 2010.
[18] Yu, E., and Mylopoulos, J., “Why Goal-Oriented
Requirements Engineering”, Proceedings of the 4th International
Workshop on Requirements Engineering: Foundations of Software
Quality, Pisa, Italy, June 1998, pp. 15-22.
[19] Buhr, R.J.A., and Casselman, R.S., Use Case Maps for Object
Oriented Systems, Prentice-Hall, USA, 1995.
[20] W. Grieskamp. Multi-Paradigmatic Model-Based Testing.
Technical Report #MSR-TR-2006-111, Microsoft Research,
August 2006.
[21] International Telecommunication Union (ITU), “Message
Sequence Chart (MSC)”, ITU-TS Recommendation Z.120, 1996.
[22] International Standards Organization (ISO), “TTCN
Standard”, ISO/IEC Standard #9646-3, 1992.
[23] Woodside, M., Franks, G. and Petriu, D., “The Future of
Software Performance Engineering”, Future of Software
Engineering (FOSE’07), IEEE Press, Minneapolis, May 2007, pp.
171-187.
[24] Arnold, D., Corriveau, J.-P. and Shi, W., “A Scenario-Driven
Approach to Model-Based Testing”,
http://people.scs.carleton.ca/~jeanpier/VF_test_generation.pdf
accessed January 2010.
[25] OMG’s Object Constraint Language
http://www.omg.org/technology/documents/formal/ocl.htm
accessed October 2009.
[26] ITU’s Specification and Description Language (SDL)
http://www.itu.int/ITU-
T/studygroups/com10/languages/Z.100_1199.pdf
accessed October 2009.
[27] Meyer, B., “Design by Contract”, IEEE Computer, IEEE
Press, New York, November 1992, pp. 40-51.
[28] Ryser, J. and Glinz, M., “SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for System Test”,
Technical Report, University of Zurich, February 2000, pp. 1-116.
[29] Microsoft Research, Phoenix Research Development Kit, June
2007, http://research.microsoft.com/phoenix
accessed October 2009.

84

Authorized licensed use limited to: Carleton University. Downloaded on June 04,2020 at 02:20:26 UTC from IEEE Xplore. Restrictions apply.

