
Scattered Black Hole Search in an Oriented Ring using Tokens

Stefan Dobrev†, Nicola Santoro§, Wei SHI§
†University of Ottawa §Carleton University

School of Information Technology and Engineering School of Computer Science
Ottawa, K1N 6N5, Canada 1125 Colonel By Drive,Ottawa, Canada
sdobrev@site.uottawa.ca {santoro,swei4}@scs.carleton.ca

Abstract

A black hole is a highly harmful host that disposes of vis-
iting agents upon their arrival without any observable trace
of the destruction. The problem of locating the black hole in
a asynchronous ring network is known to be solvable by a
team of mobile agents if each node is equipped with a white-
board. A simpler and less expensive inter-communication
and synchronization mechanism is provided by tokens: each
agent has available a bounded number of tokens that can be
carried, placed in a node or/and on a port of the node, or
removed. All tokens are identical and no other form of com-
munication or coordination is available to the agents.
It is known that locating the black hole in an anonymous
ring network using tokens is feasible when the team of
agents is initially colocated (i.e. they all start from the same
host). Recently, the more difficult case when the agents are
scattered (i.e., when the agents do not start from the same
host) has also been examined and solutions requiring only
O(1) tokens per agent but using a total of O(n2) moves
have been presented. The number of moves can be reduced
to O(kn + n log n) if the number k of agents is known.
In this paper, we study the impact of orientation and knowl-
edge of team size on the cost of black hole location by scat-
tered agents with tokens. We prove that, in oriented rings,
the number of moves can be reduced from O(n2) to the op-
timal Θ(n log n) using only O(1) tokens per agent, without
any knowledge of the team size. This result holds even if
both agents and nodes are anonymous. Interestingly, the
proposed algorithm solves, with the same cost, also the
Leader Election problem and the Rendezvous problem for
the scattered agents despite the presence of a BH.

Keywords: Mobile Agents, Token, Scattered, Ring,
Asynchronous, Anonymous, Election, Rendezvous.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

The reality of networked systems supporting mobility
agents is that these systems are highly unsafe. Indeed, the
most pressing concerns are all about security issues and
mainly in regards to the presence of a harmful host (i.e.,
a network node damaging incoming agents) or of a harmful
agent (e.g., a mobile virus infecting the network nodes); for
example, see [1, 13, 15].

The computational and algorithmic research has just re-
cently started to consider these issues. The computational
issues related to the presence of a harmful agent have been
explored in the context of intruder capture and network de-
contamination; in the case of harmful host, the focus has
been on the black hole (BH), a node that disposes of any
incoming agent without leaving any observable trace of this
destruction [2, 3, 5, 7, 8, 9, 10, 11, 14]. In this paper, we
continue the investigation of the black hole search problem.

A black hole models a network site in which a resident
process (e.g., an unknowingly installed virus) deletes visit-
ing agents or incoming data; furthermore, any undetectable
crash failure of a site in an asynchronous network trans-
forms that site into a black hole. In presence of a black
hole, the first important goal is to determine its location. To
this end, a team of mobile system agents is deployed; their
task is completed if, within finite time, at least one agent
survives and knows the links leading to the black hole. The
research concern is to determine under what conditions and
at what cost mobile agents can successfully accomplish this
task, called the black hole search (BHS) problem.

The computability and complexity of BHS depend on a
variety of factors, first and foremost on whether the system
is asynchronous [5, 7, 8, 9, 10] or synchronous [2, 4, 3, 14].
Indeed the nature of the problem changes drastically and
dramatically. For example, both in synchronous and asyn-
chronous systems, with enough agents it is possible to lo-
cate the black hole if we are aware of its existence; how-
ever, if there is doubt on whether or not there is a black

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

hole in the system, in absence of synchrony this doubt can
not be removed. In fact, in an asynchronous system, it is
undecidable to determine if there is a black hole [8]. The
consequences of this fact are numerous and render the asyn-
chronous case considerably difficult. In this paper we con-
tinue the investigation of the asynchronous case.

The existing investigations on BHS in asynchronous sys-
tems have assumed the presence of a powerful inter-agent
communication mechanism, whiteboards, at all nodes. In
the whiteboard model, each node has available a local stor-
age area (the whiteboard) accessible in fair mutual exclu-
sion to all incoming agents; upon gaining access, the agent
can write messages on the whiteboard and can read all pre-
viously written messages. This mechanism can be used by
the agents to communicate and mark nodes or/and edges,
and has been commonly employed in several mobile agents
computing investigations. Although many research ques-
tions are still open, the existing investigations have provided
a strong characterization of the asynchronous BHS problem
using whiteboard.

The availability of whiteboards at all nodes is a require-
ment that is practically expensive to guarantee and theoreti-
cally (perhaps) not necessary. This leads to the theoretically
intriguing and practically important question of whether
there are simpler and less expensive inter-communication
and synchronization mechanisms that would still empower
the team of agents to locate the black hole. The research fo-
cus in particular has been on the token model commonly
used in the investigations on graph exploration. In this
model, each agent has available a bounded number of to-
kens that can be carried, placed in a node or/and on a port
of the node, or removed from them; all tokens are identical
(i.e., indistinguishable) and no other form of communica-
tion or coordination is available to the agents. Some nat-
ural questions immediately arise: is the BHS problem still
solvable with this weaker mechanism, and if so under what
conditions and at what cost. Notice that the use of tokens
introduces another complexity measure: the number of to-
kens. Indeed, if the number of tokens is unbounded, it is
possible to simulate a whiteboard environment; hence the
question immediately arises of how many tokens are really
needed.

The problem of locating the black hole using tokens has
been examined in the case of co-located agents, that is when
all the agents start from the same node. In this case, BHS

is indeed solvable [11, 7] . In particular, in [11] it was
shown that a team of two or more colocated agents can
solve BHS with O(n log n) moves and two (2) tokens per
agent in a ring network. Notice that the ring is the spars-
est bi-connected graph (bi-connectivity is required for BHS

in asynchronous systems [9]), and for which the number of
moves for black hole search with whiteboards is the worst.

The problem becomes considerably more difficult if the

agents are scattered, that is, when they start from many dif-
ferent sites. In particular, with scattered agents, the pres-
ence (or lack) of orientation in the ring and knowledge
of the team size are important factors; here, oriented ring
means all the agents in this ring are able to agree on a com-
mon sense of direction. This is true also in the whiteboard
model [8]. In the token model, in particular, it is known
that in unoriented rings it is possible to locate a BH with
O(1) tokens per agent but performing O(n2) moves [12]. If
the ring is oriented, O(kn+nlogn) moves and O(1) tokens
suffice, provided that the number k of agents a priori known
[12].

In this paper, we study the impact of orientation and
knowledge of team size on the cost of BHS using scattered
agents with tokens. Since the protocols for unoriented rings
do not require knowledge of the team size, we ask the natu-
ral question of whether, in oriented rings, knowledge of the
team size is really necessary to reduce the cost from O(n2)
while keeping the number of tokens per agents bounded.

In this paper we provide a definite positive answer. In
fact, we prove that scattered agents can locate a BH in an
oriented ring using only Θ(n log n) moves in total and O(1)
tokens per agent, even if the number of agents is unknown.
The proof is constructive: we present a protocol and prove
that it achieves the claimed bounds.

This shows that, when moving from unoriented to ori-
ented rings, the number of moves can be reduced from
O(n2) to Θ(n log n) without requiring a priori knowledge
of the team size. Furthermore, for a team size larger than
O(log n), the performance of the proposed algorithm is
even better than that of the protocol for oriented rings with
known team size.

Finally, let us point out that the proposed algorithm
solves, with the same cost, also the problem of electing a
leader among the scattered agents, in spite of the presence
of a BH. It also solves with the same cost the Rendezvous
problem despite the presence of a BH [6].

2 Model, Observations and Basic Tool

2.1 The Model and Basic Observations

Let R be a ring of n anonymous nodes (i.e. all the nodes
look the same, they do not need to have distinct identifiers).
Operating on R is a set of k agents a1, a2, ..., ak. The agents
are anonymous (do not need to have distinct identifiers), mo-
bile (can move from a node to a neighbouring node) and au-
tonomous (each has its own computing and limited memory
capabilities). All agents have the same behaviour, i.e. fol-
low the same protocol, but start at the different nodes (and
they may start at different and unpredictable times), each
of which is called a homebase (H for brevity). The Hs are
marked before the execution of an algorithm starts.

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

The agents can interact with their environment and with
each other only through the means of tokens. A token is an
atomic object that the agents can see, place in the middle
of a node or/and on a port, or remove from there. Several
tokens can be put on the same place. The agents can de-
tect the multiplicity, but the tokens themselves are undistin-
guishable from each other. Initially, each H is marked by a
token. Each agent starts with some fixed number of tokens
(depending on the algorithm).

The basic computational step of an agent (executed ei-
ther when the agent arrives to a node, or upon wake-up) is
to examine the node (returns a triple of non-negative inte-
gers - multiplicity of tokens at the middle of the node, on
the right port and on the left port, respectively), modify the
tokens (by placing/removing some of the tokens at the cur-
rent node) and either fall asleep or leave the node through
either left or right port. The whole computational step is
performed as an atomic action, i.e. as if it took no time to
execute it.

The computation is asynchronous in the sense that the
time an agent sleeps or is on transit is finite but unpre-
dictable. The links obey FIFO rule; that is, the agents do
not overtake each other when travelling over the same link
in the same direction.

Note that the tokens are the only means of inter-agent
communication we consider. There is no read/write mem-
ory (whiteboards) for the agents to access in the nodes, nor
is there face-to-face recognition/communication. In fact,
the agents might not be capable to see each other in the
same node - they however see any tokens placed there.

One of the nodes of the ring R is highly harmful – it
disposes of every agent that enters it, without leaving any
trace of this destruction observable from the outside. Due
to this behaviour, we will call this node Black Hole (or BH

for brevity). All the agents are aware of the presence of the
BH, but at the beginning the location of the BH is unknown.
The goal is to locate the BH: at the end there must be at
least one agent that has not entered the BH and knows the
location of the BH.

The complexity measures we are interested in are the
number of tokens each agent starts with and the total num-
ber of moves executed by the agents (worst case over all
possible timings).

Because of the asynchrony, the agents can not distin-
guish between a slow node and the BH; as a consequence,
it is impossible to find the Black Hole if the size of the ring
is not known [5]. Thus, we will assume that the agents have
such a knowledge.

2.2 Cautious Walk with Token

At any time during the execution of the algorithm, each
port will be classified either as With Tokens (i.e., one or

more tokens have been placed on the node or its ports) or
Without Tokens (i.e., no tokens on the node nor on its ports).

As we will see, in the protocol, having a predefined num-
ber of tokens on a port indicates that the link is currently
being explored by an agent, and thus the link may be dan-
gerous (it possibly leads to a Black Hole). To prevent un-
necessary agent disappearances we will make sure that no
two agents enter the BH over the same link. In order to
achieve this, we have two basic rules for the agents. The
first rule is the following:

• When an agent arrives at a node with a With Tokens
port, it is not allowed to go across that port; that is, an
agent can only leave through a Without-Tokens port.

In order to guarantee progress, the agents are also re-
quired to remove the token(s) whenever they learn that a
”With Tokens” port in fact leads to a non-BH node. hence
the second rule:

• When an agent marks ”With Tokens” the port of node
u leading to node v, after reaching node v, it immedi-
ately returns to u, it removes the tokens (to signal that
v is not the BH and the link from u to v is safe), and
then it resumes the algorithm by returning to v (unless
otherwise instructed).

This process, which we call Cautious Walk with Token
(CWWT for brevity) is an adaptation of the cautious walk
technique used in systems with whiteboards. Notice that,
during this process, an agent will not be interrupted except,
possibly, from its returning to v (e.g., if it notice absence of
token or extra tokens).

3 Algorithm Pair Elimination

3.1 General Description

The basic idea of the proposed algorithm, Pair Elimina-
tion, is to let all the agents try to form pairs as soon as they
wake up. All the paired agents will eliminate all the single
agents they meet. Each pair has a level. A pair increases
its level each time it eliminates another agent. When two
pairs meet, the higher level pair always eliminates lower
level pair. Between pairs of the same level, the right most
pair eliminates the left pair. As we will show, eventually
only one pair will survive, and one of the two agents form-
ing that pair will locate the black hole. Before we explain
the algorithm in detail, we need to introduce some terminol-
ogy.

Given an agent ai and a node v �=BH, we say that v has
been explored by ai if it has been visited at least once by ai,
unexplored otherwise; the explored region of ai is the set of

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

non-BH nodes explored by ai, and the unexplored region of
ai is the set of nodes unexplored by ai.

The homebase H of an agent is identified by having one
token in the middle of the node. An agent ai starts exploring
the ring from its H, moving to the right; until it becomes
part of a pair, its explored region is a segment with H as
one of the two end nodes. We call the other end node of
ai’s explored region a LSP(Last Safe Place) of ai.

A node u, in which a pair of agents is formed, is called
a BP (Birth Place) of that pair. The birth place of a pair is
identified by having three or more tokens in the middle; A
pair of agents explore the ring in opposite directions; when
a pair is formed, there are two LSPs: the two end nodes of
the union of explored region of the two agents.

Each Birth Place has a level; in particular, if it has i + 3
tokens in the middle of the node, than that node is identified
as a i-BP (i-Level Birth Place). A BP is a 0-level-BP; as we
will show, the highest level of a pair is at most logn. The
level of BP is also the level of its pair.

A BP is called a CP (Crown Place) if at least one of the
agent in the pair has finished exploring half of the ring size.
The Crown Place CP is identified by having two tokens in
the middle. If a BP is crowned, its priority becomes higher
than that of any other level.

The priority relationship is shown in Figure 1.

Low level

Left Pair
Level(1)

Right Pair
Level(1)

Left Pair
Level(2)

Right Pair
Level(logn)Level(logn)

Left Pair
... Crowned Pair

Left
Crowned Pair

Right

High level
High priorityLow priority

Figure 1. Pair Levels Priority table.

Let a meet a single agent b going to the right; note that,
since agents do not see each other, this situation is detected
by a finding tokens in predefined position. In this case, a
leaves a message for b and becomes a left pair; when b sees
the message from a, it becomes a right pair. Notice that
since there are no whiteboard to write messages on, this
communication is done only moving and placing tokens ac-
cording to predefined rules. In particular, an agent leaves a
MN (Message Notice) for its partner by stealing its token in
the partner’s LSP and placing it on the port of a node be-
tween the two LSPs. Once so placed, the token becomes
a Message sign (MS) for its partner: the distance between
the MS and the partner’s LSP represents the information the
agent wants to deliver.

After a pair is formed, the two paired agents start explor-
ing the ring in opposite directions. They keep exploring a
pre-defined number of nodes (initially, �(n− 1)/2�). If one
finishes its share, it goes to seek its partner, and calculates
the unexplored region according to the location of the part-
ner. It leaves a message notice and a message sign to the

partner then goes back to its LSP. We say this paired agent
finished a stage.

In general, the following chain of actions by a paired
agent a constitutes one stage: it explores a pre-calculated
number of nodes, it checks the location of the partner, it
leaves message for it, and then goes back to its LSP. The
information in the message left for its partner is: the num-
ber of times a finished exploring its pre-calculated portion
of the ring. This information is used by a paired agent to
calculate the number of steps to take (i.e., the number of
nodes to visit) in the next stage. When a paired agent b sees
a message notice, it goes to check the information, and uses
it to calculate the number of nodes it need to explore in the
next stage.

If a paired agent goes into a BP of a lower level pair, it
terminates this pair by removing all the tokens in their BP; it
then goes to back to its LSP and continues exploring. When
a left pair arrives at the BP of a same level pair, it terminates
this pair by removing all the tokens in their BP; it then goes
to its BP to increase its pair level, goes back to its LSP and
continues exploring. When a left pair goes into a BP of a
higher level pair, it becomes Passive immediately. When a
right pair agent b arrives at the BP of a higher or same level
pair, it goes back to its BP; if there is no token there, b be-
comes Passive; otherwise, it goes to the BP of the pair on
the right to terminate that pair. At any time,if a paired agent
a encounters a single agent c, a terminates c by stealing its
token. We can now proceed with the presentation of the al-
gorithm. We use the point of view of a right explorer (RE
for brevity) to describe the algorithm. Most of the proce-
dure for left explorers (LEs for brevity) can be achieved by
changing the words ”right” into ”left” and changing ”left”
into ”right” in procedure for the REs. The only procedure in
which LE and RE behave differently is Right (Left) Explor-
ing. We will explain it in subsection ”Procedure Right/Left
Exploring”. In the algorithm, parameter BPdist is used for
an explorer to remember its BP. EDist records the num-
ber of explored nodes between the two LSPs. steps records
the number of steps one explorer needs to explorer in each
stage. message is used for an explorer to remember the
message the partner left to it.

3.2 Procedure ”Form Pair”

This procedure is used to merge two single agents into a
pair, so that they can cooperate to locate the BH. Initially,
as soon as an agent wakes up, it moves right with CWWT.
There are five situations a single agent can encounter when
arriving at a node:

• A: it finds two or more tokens in the middle of a node.
In this case, the node is either a pair’s i-BP (3+i tokens
in the middle), or a crowned place (two tokens in the
middle).

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

• B: it finds one token in the middle of a node for the
second time. This means the agent knows there are
at least two agents on its right side. So the agent can
become passive immediately.

• C: it finds a token on the right port of a node (meets an
agent walking with CWWT to the right).

• D: it finds out that there is no token in the port where
it left its CWWT token, and there are no tokens in the
center. It means that a paired agent terminated it.

• E: it finds out that there is no token in the port where it
left its CWWT token, there are two or more tokens in
the middle of the node. It means it now forms a pair
with another agent.

Algorithm 1 Algorithm ”Pair Elimination” — Initialize and
procedure ”Form Pair”

1: Initialize:Wake up; go to the right with CWWT, steps == 0,
BPdist == 0, EDist == 0

2: procedure FORM PAIR

3: keep walking right using CWWT until A, B, C, D or E
happens

4: if A, B or D happens then
5: become passive
6: else if C happens then
7: become a Left Pair, move the token from port to the

middle
8: leave two extra tokens in the middle as a BP mark.

Execute LEFT EXPLORING

9: else if E happens then
10: become a Right Pair, executes RIGHT EXPLORING

11: end if
12: end procedure

3.3 Procedure ”Right Exploring”

This procedure is used for a RE to explore the ring. A
RE walks with CWWT to explore pre-calculated steps of the
ring according to the position of the LE. The RE ignores any
other agent except for its partner. There are five situations a
RE can meet while exploring:

• A: it goes into a node with at least three but less num-
ber of tokens than its level in the middle. It is a BP that
is in the lower level.

• B: it goes into a node with at least three but equal of
bigger number of tokens than its level in the middle. It
is a BP that is in the same or higher level.

• C: it finds no token on the port where it left its CWWT
token.

• D: it finishes the pre-calculated steps(�(n −
EDist)/2�) steps.

• E: it finds a token on the right port of a node.

• F: it determines EDist == n − 2. It means the ex-
plored region contains n − 2 nodes.

Algorithm 2 Algorithm ”Pair Elimination” — Right Ex-
ploring

1: procedure RIGHT EXPLORING(steps, BPdist, EDist)
2: keep walking to the right using CWWT and increasing

BPdist, EDist and decrease steps, until A, B,C or D hap-
pens

3: if A happens then
4: pick the tokens in the node, then keep execute RIGHT

EXPLORING

5: else if B happens then
6: go back to the BP
7: if there are still tokens in its BP then
8: check the current level, go back to its LSP, then

execute RIGHT EXPLORING

9: else become Passive
10: end if
11: else if C happens then
12: execute CHECKING–RIGHT PAIR

13: else if D happens then
14: put a token on the right port, then execute SEEKING–

RIGHT PAIR

15: else if E happens then
16: steal the token on the right port, then execute RIGHT

EXPLORING

17: else if F happens then
18: become DONE
19: end if
20: end procedure

3.4 Procedure ”Left Exploring”

Procedure ”Left Exploring” works almost the same as
procedure ”Right Exploring”, except for the following sit-
uation: when a LE goes into the BP of the same level, it
steals all the tokens, then goes back to its own BP to update
its level. It becomes passive immediately if it goes into the
BPs of a higher level pair. There are six situations a LE can
meet while exploring:

• A: it goes into a node with at least three but smaller
number of tokens than its level in the middle. It is a
BP that is in the lower level.

• B: it goes into a node with equal number of tokens as
its level in the middle. It is a BP which is in the same
level.

• C: it goes into a node with bigger number of tokens
than its level in the middle. It is a BP which is in higher
level.

• D: it finds CWWT token was stolen in its LSP.
• E: it finishes the pre-calculated portion of ring. This

pre-calculated part could be (�(n − EDist)/2�) after

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

seeking procedure, or (�steps/2message�) after check-
ing procedure. Here UEDist is the number of nodes
left unexplored in each stage.

• F: it finds a token on the left port of a node.

• G: it determines EDist == n − 2.

Algorithm 3 Algorithm ”Pair Elimination” — Left Explor-
ing

1: procedure LEFT EXPLORING(steps, EDist)
2: keep walking to the left using CWWT and increasing

BPdist and EDist, decrease steps, until A, B, C,D,E or
F happens

3: if A happens then
4: pick the tokens, keep executing LEFT EXPLORING

5: else if B happens then
6: pick the tokens then go back to the BP
7: if there are still tokens in its BP then
8: increase the level, then return its LSP and execute

LEFT EXPLORING

9: elsebecome passive
10: end if
11: else if C happens then
12: become Passive
13: else if D happens then
14: then execute CHECKING–LEFT PAIR

15: else if E happens then
16: put a token on the left port, then execute SEEKING–

LEFT PAIR

17: else if F happens then
18: steal the token on the left port, then execute RIGHT

EXPLORING

19: else if G happens then
20: become DONE
21: end if
22: end procedure

3.5 Procedure ”Checking”

Procedure ”Checking” is called when the CWWT token
of a paired agent is stolen. It can mean either it got elim-
inated by a higher level pair, or received a message notice
from the partner. But it cannot decide which case it is, un-
til later. In the first case, this agent will go back to its BP
and realize all the tokens disappeared. In the second case,
the agent will find a token on the port (it can also be in its
BP), which is called message sign. It then will calculate
the number of nodes to explore in the next stage, using the
message it just collected. The number of steps between an
explorer’s LSP and the message sign is the number of stages
the partner finished.

Algorithm 4 Algorithm ”Pair Elimination” — checking
1: procedure CHECKING – RIGHT PAIR(BPdist,steps)
2: keep going to the left and increase message until it either

A or B happens.
3: if A: there is no token in the middle of the BP then
4: become Passive // its pair was eliminated by a higher

level pair
5: while not B, keep going to the left,keep increasing

EDist
6: end if
7: if B: finds a token on the right port then
8: steps=�steps/2message�
9: pick the tokens and walk back to its LSP, execute

RIGHT EXPLORINGsteps, BPdist.
10: end if
11: end procedure

3.6 Procedure ”Seeking”

Procedure ”Seeking” is used for an explorer to seek its
partner. When a paired agent executes procedure ”Seek-
ing”, it means it finished exploring pre-calculated number of
nodes once. When a paired agent execute procedure Seek-
ing for the first time, it means this pair reaches crowned
level.

Algorithm 5 Algorithm ”Pair Elimination” — Seeking
1: procedure SEEKING — RIGHT PAIR(EDist, BPdist)
2: keep walking to the left and increasing EDist until goes

back to the BP
3: if A and there are at least two tokens in the middle of a BP

then
4: if there are more than two tokens in the middle then
5: pick all but two tokens // crown the pair
6: end if
7: end if
8: keep going to the left,keep increasing EDist
9: if there is a token on the left port then

10: if EDist == n − 2 then
11: becomes DONE
12: else
13: pick the token, move to the right neighbor, put a

token on the left port.
14: keeps walking to the right until go back to its LSP
15: execute RIGHT EXPLORING WITH

�(n − EDist)/2� NEW STEPS.
16: end if
17: end if
18: end procedure

3.7 Analysis

3.7.1 Correctness

First observe that pairs will indeed be formed:

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

Lemma 1 At least one pair is formed.

Next observe that the number of pairs that reach level i
is at most half the number of pairs that reach level i − 1:

Lemma 2 Let xi denote the number pairs that reach level
i. Then 2xi ≤ xi−1.

Proof: Consider three consecutive level i − 1 pairs: A, B,
and C; and assume that B reaches level i. This can happen
only if (see Figure2): the right agent of pair B or the left
agent of pair A have not reached the other pair’s (i−1)−BP
before the left agent of pair B or the right agent of pair C
reached the other (i−1)−BP , then pair C is eliminated by
pair B. Otherwise, pair B will be eliminated by pair A. In
general, taking any two neighbouring pairs, at most one of
them will survive and reaches level i, the other one will be
eliminated. Hence, the number of pairs that reached level
i is at most half of the number of pairs that reached level
i − 1.

�

the right most (i−1)level pair

B (i−1)
A (i−1)

C (i−1)

i+2 tokens i+2 tokens i+2 tokens

Figure 2. The BPs of three consecutive pairs
A, B and C, which reached level i − 1

Finally observe that at least one pair survives in each
stage:

Lemma 3 Let xi denote the number pairs that reach level
i. Then xi ≥ 1.

Proof: Because of the priority rules, the right most pair that
reaches level i−1 will eventually kill its ”left neighbouring”
level i − 1 pair, and it will not be eliminated. So it will
eventually reache level i.

�

By Lemmas 3.7.1, 2 and 3, the maximum possible level
follows:

Corollary 4 The maximum level is logn.

Lemma 5 Eventually at least one and at most two crowned
pair(s) will be formed.

Proof: If there is only one pair left in level i, then it will be
crowned. For a pair to become crowned, one of its agents
must have explored �(n− 1)/2�+ 1 nodes and its BP must

have not been reached by another pair. Clearly, if there are
two segments with �(n − 1)/2� + 1 nodes in each, they
must overlap ((�(n− 1)/2�+ 1) ∗ 2 ≥ n). This means that
there are at most two pairs with more than �(n− 1)/2�+ 1
nodes between the two BPs. Hence, there can be at most
two crowned pairs. See Figure 3.

�

Theorem 6 Algorithm Pair Elimination correctly locates
the BH.

Proof: By Lemma 5 there will be either one or two crowned
pairs. If there are two crowned pairs, since they have the
same level, according to the priority rules, the left most one
will be eliminated by the other; hence within finite time
only one crowned pair (the right most one) will remain.
Next observe that the rules of algorithm Pair Elimination
for a crowned pair are precisely the ones of algorithm Di-
vide with Tokens- [11] for a pair of co-located agents; this
can be done because the BP of the pair is seen as the shared
homebase of that pair. Hence the correctness follows from
the correctness of Divide with Tokens-.

�

RE of x travelled

x

y

more than (n/2 +1)nn/2 nodes
LE of y travelled

n/2 nodes

Figure 3. The BPs of three pairs: A, B and C,
which reached level i − 1

3.7.2 Complexity

Theorem 7 Algorithm Pair Elimination correctly locates
the BH within O(n log n) moves.

Proof: In its life time an agent goes through three phases,
if not eliminated during the executon. It starts as a single
agent, then it becomes a paired agent, and finally it becomes
a crowned agent. The number of moves performed by the
agents during the execution of the algorithm can be sepa-
rated according to these phases:
(1) By single agents: the worse case is that there is one agent
per node except for the BH. They all start doing CWWT to
the right. Because of the pair forming procedure, some of
the agents’ CWWT may be interrupted, so the number of
moves before a single agent is formed, will be reduced from
3 to 2. But the worse case is still 3 moves per CWWT. So,
there are 3(n − 1) moves in total if there are n − 1 single

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

agents.
(2) By all paired agents of level i: each paired agent ex-
plore the ring with CWWT. It goes back to the BP to either
increase the level/crow the pair or check the current level
of the pair upon going into the BP of another pair. It then
either becomes passive or goes back to the LSP. So the to-
tal number of moves with n − 1 level i paired agents, is
(3 + 1 + 1) ∗ (n − 1). According to Corollary 4, there are
maximum logn levels. Hence, the total number of moves
by all paired agents is 5(n − 1) log n.
(3) By crowned agents: since there are at most two crowed
pairs, and right crowned pair wins the left crowned pair. The
moves for right crowned pair to eliminate the left crowned
pair is constant. Eventually there is one crowned pair left.
Given the fact, the paired agents are co-located (they start
locating the BH from the same node), according to algo-
rithm Divide with Tokens -[11], the number of moves to lo-
cate the BH with two co-located agents is n log n.

Hence, the total cost with scattered agents (at least two)
is O(n log n) moves.

�

Theorem 8 Algorithm Pair Elimination correctly locates
the BH with four (4) tokens per agent.

Proof: A token is needed to mark the H while a token is
needed for CWWT. For marking a BP, an agent steals one
token from the partner, then puts two more tokens in order
to have three tokens in the middle of their BP. So two more
tokens are needed. Each pair will not increase its level until
it eliminated another pair. It also means the pair which won
picks up the tokens in the other pair’s BP. And one token
is needed for a pair to increase the level shown in its BP.
It shows, for increasing pair levels, there is no extra token
needed. An explorer will leave a message to the partner only
after it crowned their BP. Because to crown a BP only needs
two agents in the middle of a node, from crown its i-BP,
an explorer gains one more token. For the communication
(leaving and checking message), an explorer steals a token
from its partner first before it leaves a MS. Since one token
is needed for a MS, no more token is needed for the MS.
Hence, the total number of tokens each agent need is 4.

�

4 Concluding Remarks

In this paper, we show that a BH in an anonymous ring
can be located by anonymous asynchronous agents scat-
tered in an oriented ring, using O(n log n) moves in total
and four (4) tokens per agent without any knowledge of the
team size.

It is important to note that the proposed algorithm solves,
with the same cost, also the problem of electing a leader

among the scattered agents, in spite of the presence of a BH.
It also solves with the same cost the Rendezvous problem
despite the presence of a BH extending to tokens the results
with whiteboards of [6].

References

[1] D. M. Chess. Security issues in mobile code systems. In
Proc. Conf. on Mobile Agent Security, LNCS 1419, pages
1–14, 1998.

[2] C. Cooper, R. Klasing, and T. Radzik. Searching for black-
hole faults in a network using multiple agents. In Proc. 10th
Int. Conf. on Principles of Distributed Systems (OPODIS
2006), pages 320–332, 2006.

[3] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Com-
plexity of searching for a black hole. Fundamenta Informat-
ica., 71(2-3):229–242, 2006.

[4] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Search-
ing for a black hole in synchronous tree networks. Combi-
natorics, Probability and Computing, to appear, 2007.

[5] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruz-
icka, and N. Santoro. Optimal search for a black hole in
common interconnection networks. Networks, 47:61–71,
2006.

[6] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mul-
tiple agents rendezvous in a ring in spite of a black hole. In
Proc. of 7th International Conference on Principles of Dis-
tributed Systems (OPODIS 2003), pages 34–46, 2003.

[7] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Ex-
ploring a dangerous unknown graph using tokens. In 5th
IFIP International Conference on Theoretical Computer
Science (TCS 2006), pages 169–180, 2006.

[8] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile
search for a black hole in an anonymous ring. Algorithmica,
to appear, 2007.

[9] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro.
Searching for a black hole in arbitrary networks: Optimal
mobile agent protocols. Distributed Computing, to appear,
2007.

[10] S. Dobrev, P. Flocchini, and N. Santoro. Cycling through
a dangerous network: a simple efficient strategy for black
hole search. In , Proc. of 26th International Conference on
Distributed Computing Systems (ICDCS 2006), 2006.

[11] S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole
search in asynchronous rings using tokens. In 6th Confer-
ence on Algorithms and Complexity (CIAC ’06), pages 139–
150, 2006.

[12] S. Dobrev, N. Santoro, and W. Shi. Locating a black hole in
a ring using tokens: The case of dispersed agents. Techni-
cal Report TR-07-02, School of Computer Science, Carleton
University, 2007. submitted for publication.

[13] M. Greenberg, J. Byington, and D. G. Harper. Mobile agents
and security. IEEE Commun. Mag., 36(7):76 – 85, 1998.

[14] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness
and approximation results for black hole search in arbitrary
networks. Theoretical Computer Science, to appear.

[15] R. Oppliger. Security issues related to mobile code
and agent-based systems. Computer Communications,
22(12):1165 – 1170, 1999.

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.

