
An Executable Model for a Family of Election Algorithms

Wei Shi1 , Jean-Pierre Corriveau1

1School of Computer Science, Carleton University
5302 Herzberg Building, 1125 Colonel By Drive,

Ottawa, Canada
{swei4,jeanpier}@scs.carleton.ca

Abstract

In this paper, we present an executable
model for a family of algorithms dealing with
leader election in a ring topology. We follow
the traditional approach of system family en-
gineering [7]. That is, we develop a feature
model that captures variability across these al-
gorithms. We then proceed to produce a gener-
ator. This generator receives as inputs specific
values for each of the variation points (i.e., fea-
tures) we identify. And it produces the behav-
ior corresponding to the specific configuration
of features at hand. Contrary to existing gen-
erative programming literature, we do not re-
sort to C++ meta-programming but instead de-
velop an executable model using Rational Rose
RT. More precisely, we have designed a single
State Chart that can model all the algorithms
of the family we studied. We focus here on
how to obtain such a State Chart, rather than on
the identification of the features we used, or on
ROSE-RT semantics. We do believe however
that our approach can be reused to provide a
semantically unified and executable modelling
approach for other families of algorithms.

1 Introduction

In traditional algorithm discovery and
optimization approaches, researchers usually
design and improve a single algorithm. That
is, they either come up with a new algorithm
to solve a new problem, or improve an existing
algorithm to get better performance. This
kind of single-solution approach comes at
a very high cost, each algorithm being typ-
ically highly customized. From a software
engineering viewpoint, reuse is presented as
a solution to lower design costs[6]. System
family engineering (SFE) [7] proposes that we
address variability across a domain in order
to maximize reuse. In this paper, the domain
we choose is a family of algorithms for leader
election in a ring. One fundamental aspect
of SFE is that we are to develop a generative
model: family members are not exhaustively
modelled. Quite on the contrary, we are to
build a generator that can be configured in
terms of its variation points (called features).
Given a configuration of feature values, a
generator can produce the corresponding
family member. For example, a generator for
a car would input the car’s options (such as
color, number of doors, type of engine, etc.)
and generate the requested vehicle.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

We believe we are the first to apply the
ideas of SFE to algorithms. And we contend
this combination offers significant advantages.
First, a domain viewpoint will naturally lead
to a better understanding of the differences
between existing algorithms, as well as to
facilitating exploring new combination of fea-
tures corresponding to new algorithms. And
we can hope to develop test suites that hold
across a domain, as opposed to being specific
to a single algorithm. Furthermore, in research
on algorithms, functional requirements (i.e.,
expected behavior) are expressed very pre-
cisely. As are non-functional requirements
such as space and time complexity. Such
precision readily provides an objective method
to compare the different members of the family
we model (both in terms of functionality and
performance). Such a comparison method
often lacks in ill-defined domains.

In this paper, we do not focus on compar-
ison between the different members of the
family we modelled: an application engineer-
ing environment [1, 3, 7, 9] is required for
such a task. Instead, we focus on modelling
the domain we chose. Let us elaborate.

In distributed computing, leader election
is one of the most often used solutions to
solve several recurring problems. In particular,
algorithms for the ring topology have received
considerable attention. Though a multitude
of such algorithms have been proposed, we
will limit ourselves to the ones presented
by Santoro[10]. This group of algorithms
includes most algorithms proposed since G.
LeLann published his first famous ring leader
election algorithm in 1977[8].

We will first briefly explain the set of fea-
tures we use to model the variability inherent
to this domain. We then explain how we de-
velop our generator. The latter takes the form
of an executable State Chart implemented and
tested in Rational Rose Real Time (hereafter
RRRT). Whereas SFE has produced generators
in complex C++ or Prolog, we believe our gen-
erator is much simpler to obtain and presents
significant advantages. Specifically, whereas
the metaprogramming techniques used in SFE

all but prevent debugging, using a commercial
case tool and the well-known concept of state
machines promotes ease of design and ease of
debugging and testing. Indeed, Binder [2] has
presented several systematic testing techniques
for state machines.

2 Feature Modelling of Leader
Election in a Ring

2.1 Leader Election in a Ring

Whether used as a solution for simplifying
many complex distributed computing prob-
lems, or because of the nature of the problem
itself, the idea of selecting a single coordinator
from a population of autonomous symmetric
entities plays a crucial role in distributed
computing. The task of selecting a single
coordinator is known as the problem of Leader
Election [10].

Formally, the task consists in moving the
system from an initial configuration where all
entities are in the same state (usually called
available) into a final configuration, where
all entities are in the same state (traditionally
called follower), except one that is in a differ-
ent state (traditionally called leader). There
is no restriction on the number of entities
that can start the computation, nor on which
entity should become leader. Leader Election
can happen in different topologies, such as
tree, ring and general graph. The ring is of
particular interest to many researchers and
practitioners.

A ring consists of a single cycle of length n.
In a ring, each entity has exactly two neighbors
(whose associated ports are) traditionally
called left and right. Rings form networks
with the sparsest topology, namely m = n.
However, unlike trees, rings have a complete
structural symmetry (i.e., all nodes look the
same) as opposed to the inherent asymmetry
of trees (e.g., the existence of internal and leaf
nodes)[10].

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

2.2 Feature Model for Leader Election
in Ring

Feature modelling is the key step in en-
gineering a family of systems to capture the
commonalities and variability of this domain
[7]. Feature discovery, however, lies beyond
the scope of this paper.

2.2.1 Brief Feature definitions

After studying the target family, we grouped
our features into three groups. They are:
Topology features, Node Behavior features
and Protocol features. Under each feature
group, we have several features and associated
feature values. We summarize our work below.
Further details are available in[11] and [12].

- Topology group
The Topology group consists of two features:
Ring Type and Direction of the Ring. ’Ring
Type’ is a feature to describe whether each
node in the ring can send messages into both
directions or only one. This feature has
two feature values: ”Unidirectional Ring” and
”Bidirectional Ring”. The feature ’Direction’
captures whether a ring has a unique sense of
direction or not. Its two feature values are
”Oriented” and ”Unoriented”. In an unoriented
ring, left does not necessarily mean the same
thing for every node!

- Protocol group
The protocol group has five mandatory fea-
tures and three optional feature.

Election Scope
- Among all nodes: election is required to be
executed among all the nodes
- Among initiators: Sometimes the election do
not need to be executed among all the entities
in the ring. Only those that send an ’initiate’
message participate. In this case, the nodes
that do not send this initial message are called
relay nodes.

Election Strategy
- Elect minimum: the node with the smallest
value is elected as the leader
- Elect maximum: the node with the greatest

value is elected as the leader
- Elect ”min-max”: the algorithm will execute
”minimum” or ”maximum” election at differ-
ent stages (see below).

Stages
- Single stage: A node makes only one attempt
to become leader: it sends a message contain-
ing its id only once.
- Multiple stages: A node makes several
successive attempts to become a leader. Each
time a node originates a message, it starts a
new stage. The nodes will elect a leader after
more than one stage.

Send Message Strategy
- Randomly choose direction: if a node can
send messages to both of its neighbors, then
each time it must send a message, it randomly
chooses one neighbor as the destination.
- Send message to both neighbors: each node
sends each message to both of its neighbors.
- Send to the open direction: each node sends
each message to the unique open direction.

Terminate Passing Message Strategy
- Complete: each message travels along the
ring until it comes back to its originator
- Block: each message travels until it arrives at
a node with a smaller ID in ”Elect minimum”
strategy, or until it arrives at a node with a
greater ID in ”Elect maximum” strategy
- Originator controls the distance: the origina-
tor of the message controls how many nodes
the message should travel along the ring
- To the next candidate: the message will
travel along the ring until it arrives at the
next candidate node (possibly through several
relays).

Keep Message Order Strategy
- Queuing management: use a queue to keep
the message arrival order, when different parts
of the ring have different speed.
- ”Ignore” management: only process the mes-
sage with the greater stage number, and ignore
all the messages from the lower stage, when
different parts of the ring have different speeds.

Stage Advance strategy
- Do not use feedback: Do not require or

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

use a feedback message to decide whether a
candidate should advance to the next stage.
- Use a feedback mechanism: If a message
successfully reaches its target, the target will
send a feedback message back to the message
originator, the originator will decide whether
to advance to the next stage accordingly.

Send Message Mode
- Simultaneous send: each node sends the
message to both sides along the ring at the
same time
- Alternate send: each node sends the message
to one side in one stage, then the other side in
the next stage.

- Node Behavior group
The Node Behavior group has two mandatory
features: Notification feature and Behavior
feature. After the leader is elected, all the
nodes in the ring should stop the election
immediately. There are two ways to make the
entire ring get into this ’terminate’ stage: one
is to have the leader send a notify message to
make all the nodes know who has been elected:
this is called ”Need to notify”. The other way
is to have each node decide itself whether it is
the leader according to all the messages it got.
Each node should also figure out who is the
leader. This is called ”Do not need notify”.

2.2.2 Feature Combination Rules

There are nine combination rules for features
in our feature model for leader election in
a ring. Here we just give one example to
illustrate such combination rules:

- If the ring type is Unidirectional, then
feature value ”Alternate send” must be chosen
for feature ”Send Message Mode”.
This combination rule describes a relationship
between features ”Ring Type” and ”Send
Message Mode”.

3 Integrated State Machine for
Leader Election in Ring

3.1 Why State Machine

One of the key contributions of the Unified
Modelling Language (UML), which is sup-
ported by RRRT, is its rich and precise seman-
tics and its extensive support (e.g., simulation,
code generation) for State Charts. Such state
machines are essential for the construction of
executable models that can effectively react to
incoming events in a timely fashion.[4] [5]

3.2 Integrated State Machine

As Binder points out in his book[2], a
state machine is an abstraction composed of
events (inputs), states, and actions(outputs).
A transition typically takes a system from
one state to another. The initial state is the
state in which the first event is accepted. State
machines have sequential behavior.
From the previous section, we identified the
feature ”Stage”. In the single stage algorithms,
each node only originates a message once for
election to take place. Each node will thus go
through Initial state, Electing state, finally it
goes into state Won (becomes leader) or state
Follower (becomes follower), then end up to
state Terminate. see Figure 1.

Here the ’Electing’ state will be triggered
by the ”Receiving Message” transition, or by
the ”Start” transition (which means the node
originated a message and sent it to one of its
neighbors). Getting a notify message from
the elected leader is the trigger to terminate
a node by having it become a follower. This
will happen when feature value ”Need notify”
was chosen for feature ”Notification”. If the
feature value ”Do not need notify” is chosen
for feature ”Notification”, then after each
node gets all the messages in the network, the
node with the smallest ID (if we have feature
value ”Elect minimum” for feature ”Election
Strategy”) or the greatest ID (if ”Elect min-
imum” for feature ”Election Strategy”) will
step into the ”Terminated” state. This is the
other trigger to terminate an electing node–
”terminateddirectely”. We will return to this

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

Figure 1. State Diagram for Leader Election in Ring–Single Stage

point later.

Leader election using multiple stages is
handled in our integrated state machine as
follows: choosing feature value ”Multiple
stage” from feature ”Stage” is the trigger event
for state ”Candidate”. This is because from
the nature of the problem itself, after each
stage of an election, some nodes should be
eliminated. The nodes that are eliminated are
called defeated, and the ones that are going
to originate new messages or are going to
advance to the next stage are called Candidate.
As candidate and defeated nodes have different
behaviors, we define six states for multiple
stage algorithms: Initial state, Candidate state,
Defeated state, Won state, Follower state and
Terminated state.

At this point we have already integrated
all the existent algorithms in the domain
into two groups and built two corresponding
state machines: one for ”single stage” group,
one for ”multi-stage” group. Now we must
integrate these two state machines into one.
Recall that a candidate node is a node that can
originate messages. A key observation is that
the Electing state for single stage algorithms
is similar to the Candidate state in multiple

stage algorithms (though the latter handles
more functionality). We also note that the
Terminated state is shared across our two
initial state machines.

To continue the integration, let us consider
an example. Among ”Single stage” algo-
rithms, there are two ways of terminating the
entire Leader Election algorithm. This is what
feature notification is about: an algorithm
can be terminated either by receiving a notify
message (feature value ”Need notify”); or
the algorithm will make sure each node
in the ring can calculate who is the leader
and terminate itself automatically after that
(feature value ”Do not need notify”). And
if feature value ”Multiple stage” is chosen
for feature ”Stages”, then only feature value
”Need to notify” can be chosen for feature
”Notification”. The part of the state machine
for ”Multiple stage” is shown in Figure 2.

The state machine for ”Single stage” is
shown in Figure 1. In order to integrate the two
state machines, we need to add one transition
from state ”Candidate” to state ”Terminated”
to describe the combination of feature value
”Single stage” and ”Do not need notify”.
One important detail: in the new integrated

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Partial state Diagram for Leader Election in Ring–Multiple Stage

state machine we must also change all trigger
events on all transitions! For example, in the
partial integrated state machine (Figure 3),
in transition ”terminateddirectly”, the trigger
event becomes:

return((Notification == NoNotifyMes-
sage)&&(Stage == SingleStage)&&(MyID
!== wd →ID))

Here ”(NOTIFICATION == NoNotifyMes-
sage)” and ”(Stage == SingleStage)” illustrates
how we carry feature and feature values into
the integrated state machine: features are made
to control which transitions execute. More
details are available elsewhere[12, 11].

4 Using Rational Rose RT to Im-
plement the Integrated Model for
Leader Election in Ring domain

4.1 What is Rational Rose RT

Rational Rose RT is a graphical tool from
IBM for modelling real-time systems. It
supports executability of state machines, de-
bugging and testing of distributed applications.

4.2 Running model for Leader Elec-
tion in Ring Using Rose RT

As we described in the previous section,
we carry features and their values directly into
the integrated state machine. In this section,
we present 1) how to use Rational Rose RT to
implement the integrated state machine, and
how to generate the new algorithms in the form

of a state machine. 2) how to bridge feature
combination rules to the running integrated
state machine; and 3) the complete integrated
domain model for Leader Election in a Ring.

According to the feature model we built,
we can have many feature combinations.
Ideally we want to have a generator capable
of generating all the legal combinations, be
they existing algorithms or new algorithms.
Our integrated state machine is aiming at
using all the features as inputs to configure
our generator. Rational Rose RT provides a
modelling environment to realize this.

We use a configuration of feature values
as the initial input for the integrated state ma-
chine. This group of feature values might be
legal combinations or not. Hence, we provide
a ”Verification” function to check the validity
of the input feature values. If the feature
values correspond to a legal combination, the
integrated state machine is able to execute
according to the selected configuration. See
Figure 4. Interestingly enough, the simulation
functionality of RRRT allows us to follow state
by state, transition by transition the execution
of an algorithm.

We can also run the integrated model on
a distributed network using Rational Rose
RT. After synchronizing all nodes to their
initial state on different machines, we have
successfully tested several of the algorithms of
the family.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Partial Integrated State Diagram for Leader Election in a Ring

5 Conclusion

We propose adopting System Family En-
gineering as a productive modelling approach
for families of distributed algorithms. Fur-
thermore, we believe that our original idea of
a configurable state machine in ROSE Real
Time is important as it opens the door to
a commercial simulation environment with
precise semantics (which does handle distribu-
tion), executability, reusability and testability.
Our future work includes:
1) to finish testing all existent combinations
(which form the existent algorithms) of the
feature model; to explore new algorithms by
using new feature values combinations of the
feature model. And compare the performance
of each algorithm, hopefully we will come up
with some more optimal algorithms.
2) to expand the domain: ideally we want to
start adding the Tree topology into our existing
domain.
3) to build a systematic test model for the
target domain.

References

[1] D. Batory and S. OMalley. The design
and implementation of hierarchical soft-
ware systems with reusable components.
In ACM Transactions on Software Engi-
neering and Methodology, vol. 1, no. 4,
pp. 355-398., October 1992.

[2] Robert V. Binder. Testing object-oriented
systems – Models, Patterns, and Tools.
Reading, MA: Addison-Wesley,, 1999.

[3] J. C. Cleaveland. Building application
generators.e. In IEEE Software, no.4, vol.
9, July 1988, pp. 25-33.

[4] Bruce Powel Douglass. Statecharts: a
visual formalism for complex systems,.
1998.

[5] David. Harel. Real-time uml: Developing
efficient objects for embedded systems .
Science of Computer Programming. Vol.
8, p. 231., 1987.

[6] Jacobson. Oose and book on reuse. 1999-
2000.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Top Level Integrated State Machine

[7] Ulrich W. Eisenecker K. Czarnrcki. Gen-
erative Programming - Methods, Tools,
and Applications. Addison Wesley, 2002.

[8] Gerard Le Lann. Distributed systems -
towards a formal approach. 1977.

[9] J. Neighbors. Software construction us-
ing components. Ph. D. Thesis, (Techni-
cal Report TR-160), University of Cali-
fornia, Irvine,, 1980.

[10] N. Santoro. Design and Analysis of
Distributed Algorithms. unpublished,
Manuscript, 2002.

[11] W. Shi and J.-P. Corriveau. System
family engineering on leader election in
ring topology. The IASTED International
Conference on Parallel and Distributed
Computing and Networks, 2003.

[12] Wei Shi. System family engineering on
leader election in ring. School of Com-
puter Science, Carleton University, Dis-
sertation, 2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2020 at 02:39:25 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

