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Abstract. In this paper, we consider task-level scheduling algorihwmith re-
spect to budget constraints for a bag of MapReduce jobs onaif peovisioned
heterogeneous (virtual) machines in cloud platforms. Téterdogeneity is man-
ifested in the popular "pay-as-you-go” charging model whtire service ma-
chines with different performance would have differentvam rates. We orga-
nize a bag of jobs as a-stage workflow and consider the scheduling problem
with budget constraints. In particular, given a total mangtbudget, by com-
bining a greedy-based local optimal algorithm and dynamégmamming tech-
nigues, we first propose a global optimal scheduling algorito achieve a min-
imum scheduling length of the workflow in pseudo-polynontiaie. Then, we
extend the idea in the greedy algorithm to efficient globsiréhution of the bud-
get among the tasks in different stages for overall scheguéngth reduction.
Our empirical studies verify the proposed optimal algantand show the effi-
ciency of the greedy algorithm to minimize the schedulinggté.

1 Introduction

The Cloud, with its abundant on-demand computing resowed®lastic charg-
ing models, have emerged as a promising platform to addeegsue data pro-
cessing and task computing problems [1,2]. Also, MapRe{R]ceharacterized
by its remarkable simplicity, fault tolerance, and scdighiis becoming a pop-
ular programming framework to automatically paralleliaege scale data pro-
cessing as in web indexing, data mining, and bioinformaésce a cloud sup-
ports on-demand “massively parallel” applications witbdely coupled com-
putational tasks, it is amenable to the MapReduce framewadk thus suit-
able for diverse MapReduce applications. Therefore, mewydadnfrastructure
providers have deployed the MapReduce framework on theinoercial clouds
as one of their infrastructure services (e.g., Amazon EldsapReduce).
Given MapReduce is extremely powerful and runs fast fordizepplica-
tion areas, itis becoming a viable service in the fornviapReduce asa Service
(MRaaS) for cloud service providers (CSPs). It is typicalt up as a kind of
Software as a Service (SaaS) on the provisioned MapRedustechf cloud



instances. Clearly, for CSPs to reap the benefits of such layieent, many
challenging problems have to be addressed. However, mosintstudies fo-
cus solely on the system issues pertaining to deploymeal, asl overcoming
the limitations of the cloud infrastructure to build-up fremework [4], evaluat-
ing the performance harm from running the framework on airtnachines [5],
and other issues in fault tolerance [6], reliability [7]taocality [8], etc.

We are also aware of some recent research tackling the datgeguob-
lem of MapReduce in Clouds [9-11]. These contributions iyeaadress the
scheduling issues with various concerns placed on dynaradirig [9], energy
reduction [10], and network performance [11]. To the bestwfknowledge, no
one has optimized the scheduling of MapReduce jobs with déiudgnstraints
at the task level. In our opinion several factors that mayant for this sta-
tus quo. Specifically, as mentioned above, the MapRedustcsgtike other
basic database and system services, could be provided afastructure ser-
vice by the cloud infrastructure providers (e.g., Amazaajher than CSPs.
Consequently, it would be charged together with other gtftecture services.
Hence, the problem we are proposing to study would be iraele\Also, some
properties of the MapReduce framework (e.g., automatitt falerance with
speculative execution [12]) make it difficult for CSPs tacltgob execution in a
reasonable way, thus making scheduling very complex.

Since cloud resources are typically provisioned on dematidav’'pay-as-
you-go” billing model, cloud-based applications are ugualidget driven. Con-
sequently, in practice the cost-effective use of resoutwasitisfy relevant per-
formance requirements within budget is always a pragmaiicern for CSPs,
and solving this problem with respect to MapReduce framkwould dramat-
ically exploit the cloud potentials.

A MapReduce job essentially consists of two sets of taskg tasks and
reduce tasks as shown in Fig. 1. The executions of both sdtsks are syn-
chronized into a map stage followed by a reduce stage. In tqe stage, the
entire dataset is partitioned into several smaller chunk®ims of key-value
pairs, each chunk being assigned to a map node for partighaiation results.
The map stage ends up with a set of intermediate key-valus paieach map
node, which are further shuffled based on the intermediage ke#o a set of
scheduled reduce nodes where the received pairs are atpgrégaobtain the
final results.

A bag of MapReduce jobs may have multiple stages of MapRecwgu-
tation, each stage running either map or reduce tasks iflgdarvaith enforced
synchronization only between them. Therefore, the exeesitdof the jobs can be
viewed as a fork&join workflow characterized by multiple sjinonized stages,
each consisting of a collection of sequential or parallepfreaduce tasks. An
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Fig. 1: MapReduce framework. g 2. A 4-stage MapReduce workflow.

example of such a workflow is shown in Fig. 2 which is composied stages,
respectively withg, 2, 4 and1 (map or reduce) tasks. These tasks are to be
scheduled on different nodes for parallel execution. H@aren heterogeneous
clouds, different nodes may have different performanceancbnfiguration
specifications, and thus may have different service rateseSesources are
provisioned on-demand in cloud computing, the CSPs aralfagtéh a gen-
eral practical problem: how are resources to be selectedt#izééd for running
each task in a cost-effective way? This problem is, in paldic directly relevant

to CSPs wanting to compute their MapReduce workloads, edjyewhen the
computation budget is fixed.

In this paper, we investigate the problem of scheduling adfdglapRe-
duce jobs within budget constraints. This bag of MapRedabs fould be an
iterative MapReduce job, a set of independent MapReduce @ta collection
of jobs related to some high-level applications such as Haddive [13]. We
addresgdask-level scheduling, which is fine grained compared to the frequently-
discussed job-level scheduling, where the scheduled simitjob instead of a
task. Specifically, given a fixed amount of budget, we focusam to efficiently
select a machine from a candidate set for each task so thaitiescheduling
length of the job (aka makespan of the job) is minimum withiongaking the
budget. This problem is of particular interest to CSPs wayntb deploy MRaaS
on heterogeneous cloud instances in a cost-effective way.

To address this problem, we first design an efficient greedgrishm for
computing the minimum execution time with a given budgetdach stage and
show its optimality with respect to execution time and budgee. Then, with
this result we develop a dynamic programming algorithm toiexe a global
optimal solution within time of)(xB2). To overcome the time complexity, we
extend the idea in the greedy algorithm to efficient globatritiution of the
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budget among the tasks in different stages for overall sdimedlength reduc-
tion. Our empirical studies verify the proposed optimabaiipm and show the
efficiency of the greedy algorithm to minimize the scheduliength.

The rest of this paper is organized as follows: in Section ,imroduce
some background knowledge regarding the MapReduce frarkeamal survey
some related work. Section 3 formulates our problem. Thegsed budget-
driven algorithms including the optimal and the greedy athms are discussed
in Section 4. We follow with the results of our empirical se&lin Section 5,
and conclude the paper in Section 6.

2 Background and Related Work

The MapReduce framework was first advocated by Google in 2804 pro-
gramming model for its internal massive data processing. [Sihce then it
has been widely discussed and accepted as the most poprddigoa for data
intensive processing in different contexts. Thereforedlae many implemen-
tations of this framework in both industry and academialf{sas Hadoop [15],
Dryad [16], Greenplum [17]), each with its own strengths amdknesses.

MapReduce is made up of an execution runtime and a distdHiléesystem.
The execution runtime is responsible for job scheduling execution. It is
composed of one master node and slave nodes. A distribugesl/ftem is used
to manage task and data across nodes. When the master sexeisanitted job,
it first splits the job into a number of map and reduce tasksthed allocates
them to the slave nodes, As with most distributed systenespénformance of
the task scheduler greatly affects the scheduling lengtheofob, as well as, in
our particular case, the budget consumed.

There exists research on the scheduler of MapReduce airhingpeoving
its scheduling policies. For instance, Hadoop adgpdsulative task scheduling
to minimize the slowdown in the synchronization phases eadury straggling
tasks in a homogeneous environment [15]. To extend thist@baterogeneous
clusters, Zaharia et al. [12] proposed the LATE algorithmt s algorithm
does not consider the phenomenon of dynamic loading, wisicdmimmon in
practice. This limitation was studied by You et al. [9] whaoposed a load-
aware scheduler. In addition, there are Other workpower-aware schedul-
ing [18], deadline constraint scheduling [19], and scheduling based on auto-
matic task slot assignments [20]. While these contribstido address different
aspects of MapReduce scheduling, they are mostly centresysiam perfor-
mance and do not consider the budget, which is our main focus.

Budget constraints have been considered in studies fagusinscientific
workflow scheduling on HPC platforms including the Grid andu@l [21-23].
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For example, Yu et al. [21] discussed this problem based viceeGrids and
presented a QoS-based workflow scheduling method to miaiexecution cost
and yet meet the time constraints imposed by the user. Irathe sein, Zeng et
al. [22] considered the executions of large scale manyueaskflows in Clouds
with budget constraints. They propos&zhleSar, a budget-conscious schedul-
ing algorithm to effectively balance execution time witle tmonetary costs.
Now recall that, in the context of this paper, we view the exiens of the jobs
as a fork&join workflow characterized by multiple synchroail stages, each
consisting of a collection of sequential or parallel maghiee tasks. From this
perspective, this abstract fork&join workflow can be viewasla special case
of general workflows. However, our focus is on MapReduce dualey with
budget constraints, rather than on general workflow scivegiul herefore, the
characteristics of MapReduce framework are fully exptbite the designs of
the scheduling algorithms.

3 Problem Formulation

3.1 Workflow Model

We model a bag of MapReduce job as a multi-stage fork&joinkftow that
consists ofx stages (called a-stage job), each stagehaving a collection of
independent map or reduce tasks, denoted;as {Jjo, Jj1, ..., Jjn; }, Where
0 < j < k,andn; + 1is the size of stagg. In a cloud, each map or reduce task
may be associated with a set of machines that are providedloyd infrastruc-
ture provider to run this task, each machine with possikdyimiit performance
and configuration and thus with different charge rates. Maprecifically, for
TaskJj;, 0 < j < kand0 < I < n; the available machines and corresponding
prices (service rates) are listed in Table 1, the valuegddoeildetermined by the
VM power and the computational loads of each task, Wln%:é <u < my
represents the time to run tadly on machine)M,, whereasp}; represents the
corresponding price for using that machine, ang is the total number of the
machines that can rus;.

Without loss of generality, we assume that times have bedrdsm in-
creasing order and prices in decreasing order, and furtiresnthat both time
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Table 2: Notation frequently used in model and algorithncdpsons

| Symbol [Meaning ||[Symbol  [Meaning |
K the number of stages mji the total number of the machines
Jji the ith task in stagg m the total size of time-price tables of
the workflow

J; task set in stagg Bji the budget used by,
n; the number of tasks in stage B the total budget for the MapReduce job
n the total number of tasks in T;1(Bj1) [the shortest time to finisk;; given Bj;

the workflow
3 time to run task/;; on machinel/,, ||T;(B;) |the shortest time to finish stagegiven B;
P} the cost rate for using/., T(B) [the shortest time to finish the job givéh

and price values are unique in their respective sorted segudhese assump-
tions are reasonable since given any two machines with samteme for a task,
the expensive one should never be selected. Similarlynging two machines
with same price for a task, the slow machine should never bserh

For clarity and quick reference, we provide in Table 2 a sumynodsome
symbols frequently used hereafter.

3.2 Budget Constraints

Given budgetB; for task.J;;, the shortest time to finish it, denoted Bg(B;;)
is defined as

Tj(Bj) =tj  pit < Bu <pj " 1)

Obviously, if B;; < p;"", Tji(Bji) = +00.

The time to complete a stagavith budgetB;, denoted ag);(B;), is defined
as the time consumed when the last task in that stage compldten the given
budget:

T;(B;) max _ {T;(Bj)} @)

- Yiefo,n;] Bjt<B;

In fork&join, a stage cannot start until its immediately geding stage has
terminated. Thus the total makespan under budiyet complete the workflow
is defined as the sum of all stages’ time. Our goal is to mirertie time within
the given budgeB.

T(B) = min T;(Bj)
jei0.n) ngsje%;ﬁ) A 3)

Some readers may question the feasibility of this modelesthe number

of stages and the number of tasks in each stage need to be kngwior to
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the scheduler. But, in reality, it is entirely possible sir&) the number of map
tasks for a given job is driven by the number of input splitdi@h is known
to the scheduler) and b) the number of reduce tasks can bet @esvith all
other parameters (e.g., parameter mapred.reduce.taskadioop). As for the
number of stages, it is not always possible to predefine iV@pReduce work-
flows. This is the main limitation of our model. But under thefalilt FIFO job
scheduler, we can treat a set of independent jobs as a simig&idin workflow.
Therefore, we believe our model is still representative ofticases in reality.

4 Budget-Driven Algorithms

In this section, we propose our task-level scheduling &lyois for MapReduce
workflows with the goals of optimizing Equations (3) undedgat constraints.
To this end, we first leverage dynamic programming techridoeobtain an
optimal solution and then present an efficient greedy dlgorito overcome its
inherent complexity.

4.1 Optimization under Budget Constraints

The proposed algorithm should be able to distribute the éalgong the stages,
and in each stage distributing the assigned budget to eadhittent task in an
optimal way. To take these effects, we design the algoritinitwo steps:

1. Given budge; for stagej, distribute the budget to all constituent tasks in
such a way thal’;(B;) is minimum (see Equation (2)). Clearly, the compu-
tation for each stage is independent of other stages. Tdrerstich compu-
tations can be treated in parallel usimgnachines.

2. Given budgef3 for a workflow and the results in Equation (2), optimize our
goal of Equation (3).

In-Stage Distribution To address the first step, we develop an optimal local
greedy algorithm to distribute budgét; between then; + 1 tasks for stage
7,0 < j <k —1insuch away thal;(B;) is minimized.

The idea of the algorithm is simple. To ensure that all th&gas stage
J have sufficient budget to finish while minimizirigj;(B;), we first require
B = Bj — Zle[o,nj]p;?ﬂ > 0 and then iteratively distributés} in a greedy
manner each time to the task whose current execution tinegrdetes?’; (B;)
(i.e., the slowest one). This process continues until nbcserit budget is left.
Clearly, having considered the structure of this problemcan easily show its
optimality with respect to minimizing the scheduling lemgtithin the given
budget.
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Global Distribution Given the results of the first step, we now consider the
second step by using a dynamic programming recursion to ataripe global
optimal result. To this end, we ugéj, r) to represent the minimum total time to
complete stages indexed fronto x when budget is available and usg;n;, q]
to store the optimal time computed for staggiven budget;. Then, we have
the following recursion < j < k,0 < r < B):
min {T;(n;,q) + TG +1,r—q} ifj <&
T(j,r) = { oa=r 4
T;(nj,r) ifj=k
where the optimal solution can be foundif{1, B). The scheduling scheme
can be reconstructed froffi(1, B) by recursively backtracking the Dynamic
Programming (DP) matrix in (4) up to the initial budget distition at stagex
which can, phase by phase, steer to the final optimal resuthi¥ end, in addi-
tion to the time value, we only store the budgeind the index of the previous
stage (i.e.7'(j + 1,7 — q)) in each cell of the matrix since, given the budget for
each stage, we can simply use the algorithm in the first stepctmmpute the
budget distribution. Based on these descriptions, we csilydwve the follow-
ing results:

Theorem 1. Given budget B for a x-stage MapReduce job, each stage j having
n; tasks, Recursion (4) yields an optimal solution to the distribution of budget
B to all the x stages with time complexity O(xB?) when T} (nj,q),0 < j <
k,0 < ¢ < B ispre-computed.

4.2 Efficiency Improvements

In the previous subsection, we briefly introduced an optis@ution to the
distribution of a given budget among different stages toimiire the work-
flow execution time. The time complexity of the proposed &thm is pseudo-
polynomial and proportional to the square of the budgetctviig fairly high.

To address this problem, we now propose a heuristic algoritalledGlobal
Greedy Budget (GGB), which extends the idea of the algorithm in computing
Tj[n;, B;] (Section 4.1) to the whole multi-stage workflow. More speseifly,
GGB applies the idea of the algorithm in Section 4.1 with s@xtensions to
the selection of candidate tasks for budget assignmentssatt the stages of
the workflow. The pseudo code of GGB is shown in Algorithm Ini&ir to the
algorithm in Section 4.1, we also need to ensure the givegdiudas a lower
bound}”; .y,  Bj whereBj = 37,0, 1 py," that guarantees the completion
of the workflow (Lines 2-3). We also use the three profile \@&aT’;, B;; and
M;;, for each task/j; in stagej to record its execution time, assigned budget,
and selected machine (Lines 6-12).
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Since in each stage, the slowest task determines the stagdetmn time,
we first need to allocate the budget to the slowest task in s&@&ge. After the
slowest task is allocated, the second slowest will becomddtiitieneck. In our
heuristic, we must consider this fact. To this end, we firentdy the slowest
and the second slowest tasks in each sgagehich are indexed byl and jl’,
respectively. Then we gather these index pairs in a sitereby determining
which task inL should be allocated budget (Lines 14-18). To measure the qua
ity of a budget investment, we definauility value, U3, for each given task;,
which is a value assigned to an investment on the basis dfipatied perfor-
mance3

vy = af + (1 - a)f; ®)

!
Y —tu v —e1 . .
wheref; = 22 >0, 8 = L2 > (), anda is defined as:
Pji —Pj J Pji —Pj

a_{l ifz;:1ﬂj>0 (6)

0 Otherwise

B; represents time saving on per-budget unit when tgsks moved from ma-
chinew to run on the next faster machime— 1 in stagej (5; > 0) while ﬁ;. is
used when there are multiple slowest tasks in sfagg = 0). « is defined to
allow 3; to have a higher priority thaﬁg in task selection. Put simply, unless for
Vj € [1,x],8; = 0in which case3 is used, we use the value 6f,j € [1, ]

as the criteria to select the allocated tasks.

In the algorithm, all the values of the tasksiinare collected into a séf
(Lines 19-28). We note that the tasks running on machire 1 in each stage
have no definition of this value since they are already rummin the fastest
machine under the given budget (and thus no further impreweis available).

Given setl/, we can iterate over it to select the tasWirthat has the largest
utility value, indexed byjl*, to be allocated budget for minimizing the stage
computation time (Lines 29-30). We fist obtain the machirte which the se-
lected task is currently mapped and then compute the extreetay cosb ;-
if the task is moved from: to the next faster machine — 1 (Lines 31-32). If
the leftover budge’ is insufficient, the selected task will not be considered
and removed fronV (Line 40). In the next step, a task in a different stage will
be selected for budget allocation (given each stage has sttane task in/).
This process will be continued until either the leftover etd3’ is sufficient for
a selected task dr becomes empty. In the former casg; will be deducted
from B’ and added to the select task. At the same time, other profidenation
related to this allocation is also updated (Lines 33-37je#this, the algorithm
exits from the loop and repeats the computatioih ¢Eine 13) sincel has been

3 Recall that the sequencesidf andpj; are sorted, respectively in Table 1.
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changed due to this allocation. In the latter case, whdmecomes empty, the
algorithm returns directly, indicating that the final rasudf the budget distribu-
tion and the associated execution time of each tasks in ¢éagh are available
as recorded in the corresponding profile variables.

Theorem 2. Thetime complexity of GGB isnot greater than O (B (n+k log k)).
In particular, when n > klog x, the complexity of GGB is upper bounded by

O(nB).

Proof. The time complexity of this algorithm is largely determiri®dthe nested

loops (Lines 13-42). Since each allocation of budgéis at least

the algorithm has at moa(ﬁ;ﬂ}), 1 <7 <k,0<1<njiterations at Line
13. On the other hand, if some advanced data structure sucprasity queue
is used to optimize the search process, the algorithm caevaech time com-
plexity of O(3_"_, log n;) at Line 15 and)( log ) at Line 29. Therefore, the
overall time complexity can be written as

whered;; = pli ' —p¥,1 < j < k,0 <l <njandn = >,

O(n+

B
min{d;; }

(Z logn; + klogk)) < O(B(n + klogk))
j=1

min

{65},

@)

n; the total

number of tasks in the workflow. Here, we leverage the fadt lihign < n.
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Obviously, whem > «log k, which is reasonable in multi-stage MapReduce
jobs, we obtain a time complexity 6¥(nB).

5 Empirical Studies

To verify and evaluate the proposed algorithms and study peeformance be-
haviours in reality, we developedBudget Distribution Solver (BDS) in Java
that efficiently implements the algorithms for the specifietieduling problem
in MapReduce. Since the monetary cost is our primary intere8SD we did

not consider some properties and features of the netwottopias. Rather, we
focus on the factors closely related to our research goadrdntical, how effi-
cient the algorithms are in minimizing the scheduling lésgof the workflow
subject to different budget constraints are our concern.

The BDS accepts as an input a bag of MapReduce jobs that earized
as a multi-stage fork&join workflow by the scheduler at rimé. Each task of
the job is associated with a time-price table, which is pgérgd by the cloud
providers. As a consequence, the BDS can be configured widradeparam-
eters, including those described time-price tables, thebau of tasks in each
stage and the total number of stages in the workflow. Since tiseno well-
accepted model to specify these parameters, we assume dheenautomati-
cally generated in a uniform distribution where the taskcexien time and the
corresponding prices in particular are varied in the ranggk, 12.5*tablesize]
and [1, 10*tablesize], respectively. As intuitively, with the table sizeidgein-
creased, the scheduler has more choices to select the atndidchines to exe-
cute a task. On the other hand, in each experiment we allohuitiget resources
to be increased from its lower bound to upper bound and thereimparing the
scheduling lengths and the scheduling time of the propolggrlitams with re-
spect to different configuration parameters. Here, thel@md upper bound are
defined to be the minimal and maximal budget resources, ctgply, that can
be used to complete the workflow.

All the experiments are conducted by comparing the prop&eé algo-
rithm with the optimal algorithm Opt and the numerical réswre obtained
from a Ubuntu 12.04 platform having a hardware configurabdr3392.183
MHz processors, with a total of 8 processors activated, @dtth8192K cache.

5.1 Impact of Time-Price Table Size

We first evaluate the impact of the time-price table size entdital scheduling
length of the workflow with respect to different budget coaistts. To this end,
we fix a8-stage workflow with at mos20 tasks in each stage. The size of the
time-price table associated with each task varies ftof) 16 to 32.
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The results of the GGB algorithm compared with those of th@vag algo-
rithm are shown in Fig. 3. While the budget increases, fosiaés of the tables,
the scheduling lengths decrease super-linearly. Thesktg@se interesting also
difficulty to make from algorithm analysis alone. We atttdbuhese results to
the fact that the opportunities of reducing the executioretdf each stage are
super-linearly increased with the budget growth, esplgdiai those large size
workflows. This phenomenon implies that therformance/cost ratio increases
if cloud users are willing to pay more for MapReduce compaoitatThis figure
also shows that the performance of GGB is very close to thenaptlgorithm,
but its scheduling time is significantly less than that of tdpéimal algorithm
(quadratic in its time complexity). These results dematsthow effective and
efficient the proposed GGB algorithm is to achieve the bedbpraance for
MapReduce workflows subject to different budget constsaint

5.2 Impact of Workflow Size

In this set of experiments, we evaluate the performancegdsawith respect to
different workflow sizes when the budget resources for eaatkflow are in-
creased from the lower bound to the upper bound as we defirieteb@&o this
end, we fix the maximum number of tasks in the MapReduce wavkid320 in
each stage, and each task is associated with a time-prieaéh a maximum
size of 16. We vary the number of stages frofm8, 16 to 32, and observe the
performance and scheduling time changes in Fig. 4. Fronfithise, we can
see that all the algorithms exhibit the same performandenpatwith those we
observed when the impact of the table size is consideredseltesults are ex-
pected as both the number of stages and the size of tabléseady correlated
with the total workloads in the computation. This obsevaitan be also made
when the number of tasks in each stage is changed.

6 Conclusions

In this paper, we studied the scheduling of a bag of MapRejhlxsewith bud-
get constraints on a set of (virtual) machines in Clouds.hi® ¢nd, we first
presented a parallel optimal algorithm to address the mingt within pseudo
polynomial time. The algorithm is based on dynamic programgntechniques
and integrates an in-stage local greedy algorithm to aehis global optimal-
ity.

To further improve the efficiency, we then developed a glgakdy algo-
rithm GGB that extends the idea of the local greedy algoritbrthe distribu-
tion of the budget among the tasks across different stagiae evorkflow while
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minimizing the scheduling length as a goal. The performasfdbe proposed
algorithms were evaluated by empirical studies. The resllbw that the GGB
is close to the optimal results in terms of the schedulingtleibut entails much
lower time overhead.
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Algorithm 1 Global-Greedy-Budget Algorithm (GGB)

1: procedureT(1, B) > Dist. B amongk stages
22 B'=B-Y,..B > Bj = Yiciom;) Pit
3 if B" < 0thenreturn (4+oc0)
4: end if > No sufficient budget!
5: > Initialization
6: for j € [1, k] do > O3 [, n;) = # of tasks
7 for J;; € J; do
8 (AT > record exec. time
o: Bj + p;.';” > record budget dist.
10: M < mj > record assigned machine index.
11: end for
12: end for
13 while B’ > 0 do b= O(miﬂlgjgm,ogzinj {51‘1})
14: L+ g
15: for j € [1,x] do > O3], logn;)
16: < gjl, jlI! >*+ argmax{T;;(Bji)}
1€[0,n;]
17: L+ Lu{<jl,jl' >*} >|L| =k
18: end for
19: Vo
20: for < jl, 51’ >€ L do > O(k)
21: u < Mj
22: if w > 1then
23: < p¥ ', pYy >« Lookup(J;,u—1,u)
24: v af + (1 —a)f;
25: Ve« Vu{vy} > V] <k
26: end if
27: end for
28: while V' # @ do > O(k log k)
29: > sel. task with max. u.value
30: JU* < arg max{vj; }
vj’.‘lEV
3L w — M > Lookup matrix in Table 1
32: 6ﬂ* — pzflil — p;l* >u > 1
33: if B > §,,- then > reducej;«'s time
34: B + B — 1%
35: Bﬂ* — le* + 5ﬂ*
36: Tjie — ti."
37: Mjl* —u—1
38: break > restart from scratch
39: else
40: V= V\{vj-} > select the next one i
41: end if
42: end while
43: if V=g then
44: return > Bj = Zze[o,nj] Biji
45: end if

46: end while
47: end procedure




