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Abstract. In this paper, we consider task-level scheduling algorithms with re-
spect to budget constraints for a bag of MapReduce jobs on a set of provisioned
heterogeneous (virtual) machines in cloud platforms. The heterogeneity is man-
ifested in the popular ”pay-as-you-go” charging model where the service ma-
chines with different performance would have different service rates. We orga-
nize a bag of jobs as aκ-stage workflow and consider the scheduling problem
with budget constraints. In particular, given a total monetary budget, by com-
bining a greedy-based local optimal algorithm and dynamic programming tech-
niques, we first propose a global optimal scheduling algorithm to achieve a min-
imum scheduling length of the workflow in pseudo-polynomialtime. Then, we
extend the idea in the greedy algorithm to efficient global distribution of the bud-
get among the tasks in different stages for overall scheduling length reduction.
Our empirical studies verify the proposed optimal algorithm and show the effi-
ciency of the greedy algorithm to minimize the scheduling length.

1 Introduction

The Cloud, with its abundant on-demand computing resourcesand elastic charg-
ing models, have emerged as a promising platform to address various data pro-
cessing and task computing problems [1,2]. Also, MapReduce[3], characterized
by its remarkable simplicity, fault tolerance, and scalability, is becoming a pop-
ular programming framework to automatically parallelize large scale data pro-
cessing as in web indexing, data mining, and bioinformatics. Since a cloud sup-
ports on-demand “massively parallel” applications with loosely coupled com-
putational tasks, it is amenable to the MapReduce frameworkand thus suit-
able for diverse MapReduce applications. Therefore, many cloud infrastructure
providers have deployed the MapReduce framework on their commercial clouds
as one of their infrastructure services (e.g., Amazon Elastic MapReduce).

Given MapReduce is extremely powerful and runs fast for diverse applica-
tion areas, it is becoming a viable service in the form ofMapReduce as a Service
(MRaaS) for cloud service providers (CSPs). It is typicallyset up as a kind of
Software as a Service (SaaS) on the provisioned MapReduce cluster of cloud
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instances. Clearly, for CSPs to reap the benefits of such a deployment, many
challenging problems have to be addressed. However, most current studies fo-
cus solely on the system issues pertaining to deployment, such as overcoming
the limitations of the cloud infrastructure to build-up theframework [4], evaluat-
ing the performance harm from running the framework on virtual machines [5],
and other issues in fault tolerance [6], reliability [7], data locality [8], etc.

We are also aware of some recent research tackling the scheduling prob-
lem of MapReduce in Clouds [9–11]. These contributions mainly address the
scheduling issues with various concerns placed on dynamic loading [9], energy
reduction [10], and network performance [11]. To the best ofour knowledge, no
one has optimized the scheduling of MapReduce jobs with budget constraints
at the task level. In our opinion several factors that may account for this sta-
tus quo. Specifically, as mentioned above, the MapReduce service, like other
basic database and system services, could be provided as an infrastructure ser-
vice by the cloud infrastructure providers (e.g., Amazon),rather than CSPs.
Consequently, it would be charged together with other infrastructure services.
Hence, the problem we are proposing to study would be irrelevant. Also, some
properties of the MapReduce framework (e.g., automatic fault tolerance with
speculative execution [12]) make it difficult for CSPs to track job execution in a
reasonable way, thus making scheduling very complex.

Since cloud resources are typically provisioned on demand with a ”pay-as-
you-go” billing model, cloud-based applications are usually budget driven. Con-
sequently, in practice the cost-effective use of resourcesto satisfy relevant per-
formance requirements within budget is always a pragmatic concern for CSPs,
and solving this problem with respect to MapReduce framework could dramat-
ically exploit the cloud potentials.

A MapReduce job essentially consists of two sets of tasks: map tasks and
reduce tasks as shown in Fig. 1. The executions of both sets oftasks are syn-
chronized into a map stage followed by a reduce stage. In the map stage, the
entire dataset is partitioned into several smaller chunks in forms of key-value
pairs, each chunk being assigned to a map node for partial computation results.
The map stage ends up with a set of intermediate key-value pairs on each map
node, which are further shuffled based on the intermediate keys into a set of
scheduled reduce nodes where the received pairs are aggregated to obtain the
final results.

A bag of MapReduce jobs may have multiple stages of MapReducecompu-
tation, each stage running either map or reduce tasks in parallel, with enforced
synchronization only between them. Therefore, the executions of the jobs can be
viewed as a fork&join workflow characterized by multiple synchronized stages,
each consisting of a collection of sequential or parallel map/reduce tasks. An
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Fig. 1: MapReduce framework. Fig. 2: A 4-stage MapReduce workflow.

example of such a workflow is shown in Fig. 2 which is composed of 4 stages,
respectively with8, 2, 4 and 1 (map or reduce) tasks. These tasks are to be
scheduled on different nodes for parallel execution. However, in heterogeneous
clouds, different nodes may have different performance and/or configuration
specifications, and thus may have different service rates. Since resources are
provisioned on-demand in cloud computing, the CSPs are faced with a gen-
eral practical problem: how are resources to be selected andutilized for running
each task in a cost-effective way? This problem is, in particular, directly relevant
to CSPs wanting to compute their MapReduce workloads, especially when the
computation budget is fixed.

In this paper, we investigate the problem of scheduling a bagof MapRe-
duce jobs within budget constraints. This bag of MapReduce jobs could be an
iterative MapReduce job, a set of independent MapReduce jobs, or a collection
of jobs related to some high-level applications such as Hadoop Hive [13]. We
addresstask-level scheduling, which is fine grained compared to the frequently-
discussed job-level scheduling, where the scheduled unit is a job instead of a
task. Specifically, given a fixed amount of budget, we focus onhow to efficiently
select a machine from a candidate set for each task so that thetotal scheduling
length of the job (aka makespan of the job) is minimum withoutbreaking the
budget. This problem is of particular interest to CSPs wanting to deploy MRaaS
on heterogeneous cloud instances in a cost-effective way.

To address this problem, we first design an efficient greedy algorithm for
computing the minimum execution time with a given budget foreach stage and
show its optimality with respect to execution time and budget use. Then, with
this result we develop a dynamic programming algorithm to achieve a global
optimal solution within time ofO(κB2). To overcome the time complexity, we
extend the idea in the greedy algorithm to efficient global distribution of the
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budget among the tasks in different stages for overall scheduling length reduc-
tion. Our empirical studies verify the proposed optimal algorithm and show the
efficiency of the greedy algorithm to minimize the scheduling length.

The rest of this paper is organized as follows: in Section 2, we introduce
some background knowledge regarding the MapReduce framework and survey
some related work. Section 3 formulates our problem. The proposed budget-
driven algorithms including the optimal and the greedy algorithms are discussed
in Section 4. We follow with the results of our empirical studies in Section 5,
and conclude the paper in Section 6.

2 Background and Related Work

The MapReduce framework was first advocated by Google in 2004as a pro-
gramming model for its internal massive data processing [14]. Since then it
has been widely discussed and accepted as the most popular paradigm for data
intensive processing in different contexts. Therefore there are many implemen-
tations of this framework in both industry and academia (such as Hadoop [15],
Dryad [16], Greenplum [17]), each with its own strengths andweaknesses.

MapReduce is made up of an execution runtime and a distributed file system.
The execution runtime is responsible for job scheduling andexecution. It is
composed of one master node and slave nodes. A distributed file system is used
to manage task and data across nodes. When the master receives a submitted job,
it first splits the job into a number of map and reduce tasks andthen allocates
them to the slave nodes, As with most distributed systems, the performance of
the task scheduler greatly affects the scheduling length ofthe job, as well as, in
our particular case, the budget consumed.

There exists research on the scheduler of MapReduce aiming at improving
its scheduling policies. For instance, Hadoop adoptsspeculative task scheduling
to minimize the slowdown in the synchronization phases caused by straggling
tasks in a homogeneous environment [15]. To extend this ideato heterogeneous
clusters, Zaharia et al. [12] proposed the LATE algorithm. But this algorithm
does not consider the phenomenon of dynamic loading, which is common in
practice. This limitation was studied by You et al. [9] who proposed a load-
aware scheduler. In addition, there are Other work onpower-aware schedul-
ing [18], deadline constraint scheduling [19], and scheduling based on auto-
matic task slot assignments [20]. While these contributions do address different
aspects of MapReduce scheduling, they are mostly centred onsystem perfor-
mance and do not consider the budget, which is our main focus.

Budget constraints have been considered in studies focusing on scientific
workflow scheduling on HPC platforms including the Grid and Cloud [21–23].



V





t1jl t
2
jl ... t

mjl

jl

p1jl p
2
jl ... p

mjl

jl





Table 1: Time-price table of taskJjl

For example, Yu et al. [21] discussed this problem based on service Grids and
presented a QoS-based workflow scheduling method to minimize execution cost
and yet meet the time constraints imposed by the user. In the same vein, Zeng et
al. [22] considered the executions of large scale many-taskworkflows in Clouds
with budget constraints. They proposedScaleStar, a budget-conscious schedul-
ing algorithm to effectively balance execution time with the monetary costs.
Now recall that, in the context of this paper, we view the executions of the jobs
as a fork&join workflow characterized by multiple synchronized stages, each
consisting of a collection of sequential or parallel map/reduce tasks. From this
perspective, this abstract fork&join workflow can be viewedas a special case
of general workflows. However, our focus is on MapReduce scheduling with
budget constraints, rather than on general workflow scheduling. Therefore, the
characteristics of MapReduce framework are fully exploited in the designs of
the scheduling algorithms.

3 Problem Formulation

3.1 Workflow Model

We model a bag of MapReduce job as a multi-stage fork&join workflow that
consists ofκ stages (called aκ-stage job), each stagej having a collection of
independent map or reduce tasks, denoted asJj = {Jj0, Jj1, ..., Jjnj

}, where
0 ≤ j < κ, andnj +1 is the size of stagej. In a cloud, each map or reduce task
may be associated with a set of machines that are provided by acloud infrastruc-
ture provider to run this task, each machine with possibly distinct performance
and configuration and thus with different charge rates. Morespecifically, for
TaskJjl, 0 ≤ j < κ and0 ≤ l ≤ nj the available machines and corresponding
prices (service rates) are listed in Table 1, the values could be determined by the
VM power and the computational loads of each task, wheretujl, 1 ≤ u ≤ mjl

represents the time to run taskJjl on machineMu whereaspujl represents the
corresponding price for using that machine, andmjl is the total number of the
machines that can runJjl.

Without loss of generality, we assume that times have been sorted in in-
creasing order and prices in decreasing order, and furthermore, that both time
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Table 2: Notation frequently used in model and algorithm descriptions
Symbol Meaning Symbol Meaning

κ the number of stages mjl the total number of the machines
Jji the ith task in stagej m the total size of time-price tables of

the workflow
Jj task set in stagej Bjl the budget used byJjl

nj the number of tasks in stagej B the total budget for the MapReduce job
n the total number of tasks in Tjl(Bjl) the shortest time to finishJjl givenBjl

the workflow
tujl time to run taskJjl on machineMu Tj(Bj) the shortest time to finish stagej givenBj

pujl the cost rate for usingMu T (B) the shortest time to finish the job givenB

and price values are unique in their respective sorted sequence. These assump-
tions are reasonable since given any two machines with same run time for a task,
the expensive one should never be selected. Similarly, given any two machines
with same price for a task, the slow machine should never be chosen.

For clarity and quick reference, we provide in Table 2 a summary of some
symbols frequently used hereafter.

3.2 Budget Constraints

Given budgetBjl for taskJjl, the shortest time to finish it, denoted asTjl(Bjl)
is defined as

Tjl(Bjl) = t
u
jl p

u+1
jl < Bjl < p

u−1
jl (1)

Obviously, ifBjl < p
mjl

jl , Tjl(Bjl) = +∞.
The time to complete a stagej with budgetBj, denoted asTj(Bj), is defined

as the time consumed when the last task in that stage completes within the given
budget:

Tj(Bj) = max∑
l∈[0,nj ]

Bjl≤Bj

{Tjl(Bjl)} (2)

In fork&join, a stage cannot start until its immediately preceding stage has
terminated. Thus the total makespan under budgetB to complete the workflow
is defined as the sum of all stages’ time. Our goal is to minimize the time within
the given budgetB.

T (B) = min∑
j∈[0,κ) Bj≤B

∑

j∈[0,κ)

Tj(Bj) (3)

Some readers may question the feasibility of this model since the number
of stages and the number of tasks in each stage need to be knowna prior to
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the scheduler. But, in reality, it is entirely possible since a) the number of map
tasks for a given job is driven by the number of input splits (which is known
to the scheduler) and b) the number of reduce tasks can be preset as with all
other parameters (e.g., parameter mapred.reduce.tasks inHadoop). As for the
number of stages, it is not always possible to predefine it forMapReduce work-
flows. This is the main limitation of our model. But under the default FIFO job
scheduler, we can treat a set of independent jobs as a single fork&join workflow.
Therefore, we believe our model is still representative of most cases in reality.

4 Budget-Driven Algorithms

In this section, we propose our task-level scheduling algorithms for MapReduce
workflows with the goals of optimizing Equations (3) under budget constraints.
To this end, we first leverage dynamic programming techniques to obtain an
optimal solution and then present an efficient greedy algorithm to overcome its
inherent complexity.

4.1 Optimization under Budget Constraints

The proposed algorithm should be able to distribute the budget among the stages,
and in each stage distributing the assigned budget to each constituent task in an
optimal way. To take these effects, we design the algorithm in two steps:

1. Given budgetBj for stagej, distribute the budget to all constituent tasks in
such a way thatTj(Bj) is minimum (see Equation (2)). Clearly, the compu-
tation for each stage is independent of other stages. Therefore such compu-
tations can be treated in parallel usingκ machines.

2. Given budgetB for a workflow and the results in Equation (2), optimize our
goal of Equation (3).

In-Stage Distribution To address the first step, we develop an optimal local
greedy algorithm to distribute budgetBj between thenj + 1 tasks for stage
j, 0 ≤ j ≤ κ− 1 in such a way thatTj(Bj) is minimized.

The idea of the algorithm is simple. To ensure that all the tasks in stage
j have sufficient budget to finish while minimizingTj(Bj), we first require
B′

j = Bj −
∑

l∈[0,nj ]
p
mjl

jl ≥ 0 and then iteratively distributeB′
j in a greedy

manner each time to the task whose current execution time determinesTj(Bj)
(i.e., the slowest one). This process continues until no sufficient budget is left.
Clearly, having considered the structure of this problem, we can easily show its
optimality with respect to minimizing the scheduling length within the given
budget.
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Global Distribution Given the results of the first step, we now consider the
second step by using a dynamic programming recursion to compute the global
optimal result. To this end, we useT (j, r) to represent the minimum total time to
complete stages indexed fromj toκ when budgetr is available and useTj [nj, q]
to store the optimal time computed for stagej given budgetq. Then, we have
the following recursion (0 < j ≤ κ, 0 < r ≤ B):

T (j, r) =

{

min
0<q≤r

{Tj(nj , q) + T (j + 1, r − q)} if j < κ

Tj(nj , r) if j = κ
(4)

where the optimal solution can be found inT (1, B). The scheduling scheme
can be reconstructed fromT (1, B) by recursively backtracking the Dynamic
Programming (DP) matrix in (4) up to the initial budget distribution at stageκ
which can, phase by phase, steer to the final optimal result. To this end, in addi-
tion to the time value, we only store the budgetq and the index of the previous
stage (i.e.,T (j +1, r− q)) in each cell of the matrix since, given the budget for
each stage, we can simply use the algorithm in the first step torecompute the
budget distribution. Based on these descriptions, we can easily have the follow-
ing results:

Theorem 1. Given budget B for a κ-stage MapReduce job, each stage j having
nj tasks, Recursion (4) yields an optimal solution to the distribution of budget
B to all the κ stages with time complexity O(κB2) when Tj(nj , q), 0 < j ≤
κ, 0 < q ≤ B is pre-computed.

4.2 Efficiency Improvements

In the previous subsection, we briefly introduced an optimalsolution to the
distribution of a given budget among different stages to minimize the work-
flow execution time. The time complexity of the proposed algorithm is pseudo-
polynomial and proportional to the square of the budget, which is fairly high.
To address this problem, we now propose a heuristic algorithm, calledGlobal
Greedy Budget (GGB), which extends the idea of the algorithm in computing
Tj [nj, Bj ] (Section 4.1) to the whole multi-stage workflow. More specifically,
GGB applies the idea of the algorithm in Section 4.1 with someextensions to
the selection of candidate tasks for budget assignments acrossall the stages of
the workflow. The pseudo code of GGB is shown in Algorithm 1. Similar to the
algorithm in Section 4.1, we also need to ensure the given budget has a lower
bound

∑

j∈[1,κ]Bj whereB′
j =

∑

l∈[0,nj ]
p
mjl

jl that guarantees the completion
of the workflow (Lines 2-3). We also use the three profile variablesTjl, Bjl and
Mjl for each taskJjl in stagej to record its execution time, assigned budget,
and selected machine (Lines 6-12).
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Since in each stage, the slowest task determines the stage completion time,
we first need to allocate the budget to the slowest task in eachstage. After the
slowest task is allocated, the second slowest will become the bottleneck. In our
heuristic, we must consider this fact. To this end, we first identify the slowest
and the second slowest tasks in each stagej, which are indexed byjl andjl′,
respectively. Then we gather these index pairs in a setL thereby determining
which task inL should be allocated budget (Lines 14-18). To measure the qual-
ity of a budget investment, we define autility value, vujl, for each given taskJjl,
which is a value assigned to an investment on the basis of anticipated perfor-
mance:3

v
u
jl = αβj + (1− α)β′

j (5)

whereβj =
tu
jl
−tu

′

jl′

pu−1
jl

−pu
jl

≥ 0, β′
j =

tu
jl
−tu−1

jl

pu−1
jl

−pu
jl

≥ 0, andα is defined as:

α =

{

1 if
∑κ

j=1 βj > 0

0 Otherwise
(6)

βj represents time saving on per-budget unit when taskJjl is moved from ma-
chineu to run on the next faster machineu − 1 in stagej (βj > 0) while β′

j is
used when there are multiple slowest tasks in stagej (βj = 0). α is defined to
allowβj to have a higher priority thanβ′

j in task selection. Put simply, unless for
∀j ∈ [1, κ], βj = 0 in which caseβ′

j is used, we use the value ofβj , j ∈ [1, κ]
as the criteria to select the allocated tasks.

In the algorithm, all the values of the tasks inL are collected into a setV
(Lines 19-28). We note that the tasks running on machineu = 1 in each stage
have no definition of this value since they are already running on the fastest
machine under the given budget (and thus no further improvement is available).

Given setV , we can iterate over it to select the task inV that has the largest
utility value, indexed byjl∗, to be allocated budget for minimizing the stage
computation time (Lines 29-30). We fist obtain the machineu to which the se-
lected task is currently mapped and then compute the extra monetary costδjl∗
if the task is moved fromu to the next faster machineu − 1 (Lines 31-32). If
the leftover budgetB′ is insufficient, the selected task will not be considered
and removed fromV (Line 40). In the next step, a task in a different stage will
be selected for budget allocation (given each stage has at most one task inV ).
This process will be continued until either the leftover budgetB′ is sufficient for
a selected task orV becomes empty. In the former case,δjl∗ will be deducted
fromB′ and added to the select task. At the same time, other profile information
related to this allocation is also updated (Lines 33-37). After this, the algorithm
exits from the loop and repeats the computation ofL (Line 13) sinceL has been

3 Recall that the sequences oftujl andpujl are sorted, respectively in Table 1.
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Fig. 3: Impact of time-price table (TP) size on the scheduling length (e.g.,
makespan of the job in terms of indivisible time units) and the scheduling time
(Stage:8, Task:≤ 20/each stage, and the numbers in the brackets represent the
different TP table sizes)

changed due to this allocation. In the latter case, whenV becomes empty, the
algorithm returns directly, indicating that the final results of the budget distribu-
tion and the associated execution time of each tasks in each stage are available
as recorded in the corresponding profile variables.

Theorem 2. The time complexity of GGB is not greater than O(B(n+κ log κ)).
In particular, when n ≥ κ log κ, the complexity of GGB is upper bounded by
O(nB).

Proof. The time complexity of this algorithm is largely determinedby the nested
loops (Lines 13-42). Since each allocation of budgetB′ is at least min

1≤≤κ,0≤l≤nj

{δjl},

the algorithm has at mostO( B
min{δjl}

), 1 ≤ j ≤ κ, 0 ≤ l ≤ nj iterations at Line
13. On the other hand, if some advanced data structure such asa priority queue
is used to optimize the search process, the algorithm can achieve a time com-
plexity ofO(

∑κ
j=1 log nj) at Line 15 andO(κ log κ) at Line 29. Therefore, the

overall time complexity can be written as

O(n+
B

min{δjl}
(

κ
∑

j=1

log nj + κ log κ)) < O(B(n+ κ log κ)) (7)

whereδjl = pu−1
jl − pujl, 1 ≤ j ≤ κ, 0 ≤ l ≤ nj andn =

∑κ
j=1 nj the total

number of tasks in the workflow. Here, we leverage the fact that log n < n.
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Obviously, whenn ≥ κ log κ, which is reasonable in multi-stage MapReduce
jobs, we obtain a time complexity ofO(nB).

5 Empirical Studies

To verify and evaluate the proposed algorithms and study their performance be-
haviours in reality, we developed aBudget Distribution Solver (BDS) in Java
that efficiently implements the algorithms for the specifiedscheduling problem
in MapReduce. Since the monetary cost is our primary interest, in BSD we did
not consider some properties and features of the network platforms. Rather, we
focus on the factors closely related to our research goal. Inpractical, how effi-
cient the algorithms are in minimizing the scheduling lengths of the workflow
subject to different budget constraints are our concern.

The BDS accepts as an input a bag of MapReduce jobs that are organized
as a multi-stage fork&join workflow by the scheduler at run-time. Each task of
the job is associated with a time-price table, which is pre-defined by the cloud
providers. As a consequence, the BDS can be configured with several param-
eters, including those described time-price tables, the number of tasks in each
stage and the total number of stages in the workflow. Since there is no well-
accepted model to specify these parameters, we assume them to be automati-
cally generated in a uniform distribution where the task execution time and the
corresponding prices in particular are varied in the rangesof [1, 12.5*tablesize]
and [1, 10*tablesize], respectively. As intuitively, with the table size being in-
creased, the scheduler has more choices to select the candidate machines to exe-
cute a task. On the other hand, in each experiment we allow thebudget resources
to be increased from its lower bound to upper bound and thereby comparing the
scheduling lengths and the scheduling time of the proposed algorithms with re-
spect to different configuration parameters. Here, the lower and upper bound are
defined to be the minimal and maximal budget resources, respectively, that can
be used to complete the workflow.

All the experiments are conducted by comparing the proposedGGB algo-
rithm with the optimal algorithm Opt and the numerical results are obtained
from a Ubuntu 12.04 platform having a hardware configurationof 3392.183
MHz processors, with a total of 8 processors activated, eachwith 8192K cache.

5.1 Impact of Time-Price Table Size

We first evaluate the impact of the time-price table size on the total scheduling
length of the workflow with respect to different budget constraints. To this end,
we fix a8-stage workflow with at most20 tasks in each stage. The size of the
time-price table associated with each task varies from4, 8, 16 to 32.
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The results of the GGB algorithm compared with those of the optimal algo-
rithm are shown in Fig. 3. While the budget increases, for allsizes of the tables,
the scheduling lengths decrease super-linearly. These results are interesting also
difficulty to make from algorithm analysis alone. We attribute these results to
the fact that the opportunities of reducing the execution time of each stage are
super-linearly increased with the budget growth, especially for those large size
workflows. This phenomenon implies that theperformance/cost ratio increases
if cloud users are willing to pay more for MapReduce computation. This figure
also shows that the performance of GGB is very close to the optimal algorithm,
but its scheduling time is significantly less than that of theoptimal algorithm
(quadratic in its time complexity). These results demonstrate how effective and
efficient the proposed GGB algorithm is to achieve the best performance for
MapReduce workflows subject to different budget constraints.

5.2 Impact of Workflow Size

In this set of experiments, we evaluate the performance changes with respect to
different workflow sizes when the budget resources for each workflow are in-
creased from the lower bound to the upper bound as we defined before. To this
end, we fix the maximum number of tasks in the MapReduce workflow to 20 in
each stage, and each task is associated with a time-price table with a maximum
size of16. We vary the number of stages from4, 8, 16 to 32, and observe the
performance and scheduling time changes in Fig. 4. From thisfigure, we can
see that all the algorithms exhibit the same performance patterns with those we
observed when the impact of the table size is considered. These results are ex-
pected as both the number of stages and the size of tables are linearly correlated
with the total workloads in the computation. This observation can be also made
when the number of tasks in each stage is changed.

6 Conclusions

In this paper, we studied the scheduling of a bag of MapReducejobs with bud-
get constraints on a set of (virtual) machines in Clouds. To this end, we first
presented a parallel optimal algorithm to address the constraints within pseudo
polynomial time. The algorithm is based on dynamic programming techniques
and integrates an in-stage local greedy algorithm to achieve the global optimal-
ity.

To further improve the efficiency, we then developed a globalgreedy algo-
rithm GGB that extends the idea of the local greedy algorithmto the distribu-
tion of the budget among the tasks across different stages ofthe workflow while
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Fig. 4: Impact of the number of stages on the total schedulinglength (e.g.,
makespan of the job in terms of indivisible time units) and scheduling time
(Task:≤ 20, Table Size≤ 16, and the numbers in the brackets represent the
different number of stages)

minimizing the scheduling length as a goal. The performanceof the proposed
algorithms were evaluated by empirical studies. The results show that the GGB
is close to the optimal results in terms of the scheduling length but entails much
lower time overhead.
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XV

Algorithm 1 Global-Greedy-Budget Algorithm (GGB)
1: procedureT (1, B) ⊲ Dist.B amongκ stages
2: B′ = B −

∑

j∈[1,κ] B
′
j ⊲ B′

j =
∑

l∈[0,nj ]
p
mjl

jl

3: if B′ < 0 then return (+∞)
4: end if ⊲ No sufficient budget!
5: ⊲ Initialization
6: for j ∈ [1, κ] do ⊲ O(

∑κ

j=1 nj) = # of tasks

7: for Jjl ∈ Jj do
8: Tjl ← t

mjl

jl ⊲ record exec. time

9: Bjl ← p
mjl

jl ⊲ record budget dist.
10: Mjl ← mjl ⊲ record assigned machine index.
11: end for
12: end for
13: while B′ ≥ 0 do ⊲ ≤ O( B

min1≤j≤κ,0≤l≤nj
{δjl}

)

14: L← ∅

15: for j ∈ [1, κ] do ⊲ O(
∑κ

j=1 log nj)

16: < jl, jl′ >∗← argmax
l∈[0,nj ]

{Tjl(Bjl)}

17: L← L ∪ {< jl, jl′ >∗} ⊲ |L| = κ

18: end for
19: V ← ∅

20: for < jl, jl′ >∈ L do ⊲ O(κ)
21: u←Mjl

22: if u > 1 then
23: < pu−1

jl , pujl >← Lookup(Jjl, u− 1, u)
24: vujl ← αβj + (1− α)β′

j

25: V ← V ∪ {vujl} ⊲ |V | ≤ κ

26: end if
27: end for
28: while V 6= ∅ do ⊲ O(κ log κ)
29: ⊲ sel. task with max. u.value
30: jl∗ ← argmax

vu
jl

∈V

{vujl}

31: u←Mjl∗ ⊲ Lookup matrix in Table 1
32: δjl∗ ← pu−1

jl∗ − pujl∗ ⊲ u > 1
33: if B′ ≥ δjl∗ then ⊲ reduceJjl∗ ’s time
34: B′ ← B′ − δjl∗

35: Bjl∗ ← Bjl∗ + δjl∗

36: Tjl∗ ← tu−1
jl∗

37: Mjl∗ ← u− 1
38: break ⊲ restart from scratch
39: else
40: V ← V \ {vujl∗} ⊲ select the next one inV
41: end if
42: end while
43: if V = ∅ then
44: return ⊲ Bj =

∑

l∈[0,nj ]
Bjl

45: end if
46: end while
47: end procedure


