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Abstract—Designing outlier detection algorithms over stream-
ing data involves several issues such as concept drift, temporal
context, transience, uncertainty, etc. Moreover, to produce results
in real-time with limited memory resources, the processing of
such data must occur in an online fashion. Therefore, real time
detection of outliers on streaming data faces more challenges than
performing the same task on batches of data. Several methods
have been proposed to detect outliers over streaming data, among
which a sliding window technique is frequently used. In this
technique, only a chunk of data is kept in memory at each point
in time and used to build predictive models. The size of the data
in memory simultaneously is referred to as the size of a sliding
window. The correctness of the outlier detection results depends
largely on the choice of window size. Other similar techniques
exist but most of them fail to address the properties of streaming
data, and thus produce results exhibiting poor accuracy.

In this paper, we present an online outlier detection algo-
rithm, over streaming data, that addresses the aforementioned
challenges. The proposed algorithm adopts the sliding window
technique, however efficiently mines in memory a statistical
summary of previous observed data, which contributes to the
prediction of incoming data. It further addresses the concept drift
problem that exists in streaming data. We evaluated the accuracy
of our algorithm on both synthetic and real-world datasets.
Results show that the proposed method detects outliers over
streaming data with higher accuracy than SOD GPU algorithm
proposed in [9], even when concept drifts occur. The algorithm
does not require a secondary memory for processing and is
further accelerated using CUDA GPU.

Index Terms—outlier detections, streaming data, parallel pro-
cessing, sliding-window, CUDA

I. INTRODUCTION

A. Background

An outlier in a dataset is a data point that is considerably
different from the rest of the data as if it is generated by a
different mechanism [9]. The minority groups form by outliers

in a dataset create patterns that can be recognized from their
distributions in the dataset. Applications of outlier detections
occur in numerous fields, including fraud detection, network
intrusion detection, environment monitoring, etc.

Streaming data is a continuous, unbounded sequence of
data records accompanied and ordered by implicit or explicit
timestamps [17]. Therefore, when a data stream is transient,
namely the data points are only available partially at any given
point in time, it is impossible to achieve random access on the
entire dataset, which is commonly required on outlier detection
on static data. Moreover, comparing to static data, streaming
data carries uncertainty and concept drift. Uncertainty means
that data points are vulnerable to noises and thus unreliable
[21]. Concept drift means that the distribution of data points is
not fixed, and it may change over time [10]. Apart from these
considerations, when working on applications that process
streaming data, the temporal context and its impact on the
results should be considered accordingly. In addition, since
the processing on streaming data is online, when designing
solutions, computational and memory resource limitations
must be taken into consideration. These make data mining
over streaming data a challenging task.

B. Contributions

In this paper, we propose a new solution that is based
on a non-parametric algorithm SOD GPU (Stream Outlier
Detector-GPU) presented by Xia et al. [9]. SOD GPU is
based on a density estimation over non-overlapping win-
dow and a statistical binned summary to detect outliers in
streaming data. Our proposed algorithm Cumulative Kernel
Density Estimator with Retrospect, or C KDE WR in short,
further extends SOD GPU algorithm by introducing a novel
retrospective step, which takes retroactively into consideration



the historical outliers detected, when detecting outliers in the
current window. We also introduce a weight assigning scheme
to further evaluate data points based on its temporal context.
The proposed algorithm is implemented and accelerated using
a parallel GPU programming framework, NVIDIA CUDA 1.
We compare and report the accuracy of our method with
SOD GPU [9] based on different criteria using both synthetic
and real datasets. A t-test result further confirms that the
accuracy of our method is significantly improved due to the
novelties introduced into the outlier detection process.

II. RELATED WORKS

A. Distance-based Model

The distance-based model introduced by Knorr and Ng [11]
was among the very first outlier detection methods that detect
outliers on static data. It calculates the pair-wise Euclidian
distance between all data and, if one data point has less than
k neighbours within distance R, it is considered an outlier.
There are variants of this static distance-based approach. For
instance, Ramaswamy et al. [14] purposed a method where an
outlier is defined by considering the total number of objects
whose distance to its kth nearest neighbour is smaller than
itself. Angiulli and Pizzuti [1] introduced a method where
an outlier is defined by taking into account the sum of the
distances from 1st up to the kth nearest neighbours. Later
on, several methods have been proposed to extend outlier
detection onto streaming data [3], [8], [12], [17]. One of
the most popular methods uses a sliding-window to help
with detecting outliers. Based on the benchmark among all
DODDS algorithms given by Luan Tran et al. [22], the MCOD
algorithm introduced by M.Kontaki et al. [12] appear to have
the best performance. In [12], the solution uses a event-based
framework to avoid unnecessary computations. In addition,
to minimize the cost of range query due to the arrival of
new object, it employs evolving micro-clusters to minimize
the complexity. The time complexity of this algorithm is
guaranteed to be O(n log k) while maintaining the space
complexity to be O(nk), where n is the number of data points
and k refers to the parameter of KNN.

B. Density-based Model

The density-based model is another way to detect outlier
on static data. The idea is to assign a degree of being outlier
(a score) based on the density of local neighbourhood, given
some predefined restrictions. One of the popular density-based
methods is LOCI (Local Correlation Integral). In [13], D.
Pokrajac et al. presented an incremental version of LOCI over
streaming data. The authors gave theoretical evidence to show
that the insertion of new data points as well as deletion of an
old data point affects only a limited number of neighbours.
The outlier detection does not depend on the total number of
records in current dataset and is bounded by O(n · logn) time
complexity after insertion of n data points.

1Compute Unified Device Architecture: https://developer.nvidia.com/cuda-
zone

C. Statistical-based (Parametric) Model

The statistical-based model is also known as parametric
model. The detection model is formulated based on the distri-
bution of data [20] (e.g. Gaussian distribution). One of the
most popular distribution used is Gaussian mixture, where
each data point is given a formulated score. A data point that
has a higher score than a given threshold is declared as an
outlier. Another popular model is auto regression. It works
by building a predictive model and defining a cutoff limit. An
outlier is detected if it is beyond the cutoff limit by comparing
the metrics against the predictive model. Statistical-based
models are usually computational inexpensive but assume a
fixed distribution in a static dataset. An autoregressive or AR
model, also known as an infinite impulse response filter or
all-pole model, describes the evolution of a variable measured
over the same sample period as a linear function of only its
past evolution [4]. It is popular for time series outlier detection
and its definition is as follows:

x(t) = a1(t)× x(t− 1) + ...+ an(t)× x(t− n) + ξ(t)

where x(t) is the series under investigation, ai (0 < i ≤
n) are the autoregression coefficients, n is the order of the
autoregression and ξ(t) is usually assumed to be a Gaussian
white noise. The coefficient parameters ai(t) are estimated
based on the given time series x(t), ...x(t − n). The model
can then be used to predict future time series by defining a
threshold.

D. Sliding-window-based Model

One of the most popular outlier detection technique that
considers the temporal notation of streaming data uses a
sliding-window [3], [8], [12]. In each sliding-window, a portion
of the data that shares the same temporal context is kept in
memory. Outliers are decided solely based on those data in
memory. Data is deleted from memory when it expires.

Window size W decides when a data point expires and the
slide size S defines the frequency of an algorithm execution
involving this data point. Base on W and S, a sliding window
can be categorized as time-based or count-based. In a time-
based window, W and S are both defined as time intervals
[12]. Each time-based window of size W has a starting time
Tstart, an ending time Tend = Tstart + W . The number of
data points in each window may vary. S is a time interval
between the starting time of any two contiguous windows. In
case of count-based window, W is measured as a fixed amount
of data points, and S is a predefined number of data points
after which the count for a new window starts.

For both time-based window and count-based window,
depending on the relationship between window size W and
slide size S, a sliding-window can be further categorized into
non-overlapping window and overlapping window. Base on
the definition of W and S, each point in a sliding window
will experience x = | WSlide | slides before it expires [12]. If
x = 1, which means window size W is equal to slide size
S, a window is referred to as non-overlapping and each data



point in it will be used for calculation only once. Otherwise, a
window is called an overlapping window and each data point
will be calculated multiple times.

Fig. 1: Non-overlapping (left) vs Overlapping time-based window
(right)

E. Kernel Density (Non-parametric) Model

The Kernel Density Estimator (KDE) is a non-parametric
method to estimate probability density function of random
variables [19]. It has become increasing popular as an efficient
way to detect outliers over streaming data. The probability
density function f(x) is defined as:

f(x) =
1

n

n∑
n=1

khi
(xi − x)

where khi(x) is the kernel functions with bandwidth hi. The
bandwidth can be calculated online using Scott’s rule [19]. In
[9], Xia et al. use GPU to accelerate kernel density estimator.
The proposed solution uses non-overlapping sliding window
and a statistical binned summary to detect outliers in high
volume and high dimensional streaming data. In this method
historical data are mined efficiently into bins.

F. Clustering-based Model

K-Mean clustering is used in outlier detection in solution
proposed in [6]. Data in each sliding window is clustered. But
unlike the distance based approach, the detected outliers are
not reported immediately but rather considered as candidate
outliers. A metric which measure the mean value of each
cluster is maintained and carried over to the next window
in the stream in order to be further compared with data
in future windows. On the other hand, K-Median clustering
algorithm presented in [5] clusters each chunk of data into k
to k log(n) clusters. The weighted medians found in current
window is passed to the next one in order to detect outliers.
Both approaches require user input on value k a priori.

III. ALGORITHM C KDE WR

A. SOD GPU and C KDE WR General Description

SOD GPU is based on a cumulative approximation of
the probability density function f(x) on current data points
contained in a non-overlapping sliding window as well as
statistical binned summary that is mined from historical data.
In SOD GPU, Gaussian kernel density estimator is used to
approximate the density function as it gives smooth estimation
over the entire dataset [9]. A popular technique presented in [7]
is used to turn all historical data into a binned summary. When
the density on f(x) is larger than a threshold θ, a data point is

Algorithm 1 C KDE WR

Input: bins, candidate outliers, window data
Output: inliers, outliers

1: bandwidths = calculate bandwidth (window data);
// using E.q 3

2: query = window data + candidate outliers;
3: window density = calculate window density (query,

window data, bandwidths); // using E.q 4
4: bin density = calculate bin density (query,

bins.values(), bandwidths, bins.weights()); // using E.q 8
5: threshold = 1 / AVG (window density + bin density) * ξ;

// using E.q 9
6: next candidates outliers = {};
7: for p in query do
8: if (p.density < threshold) then
9: p.rank += 1;

10: else
11: p.rank -= 1;
12: end if
13: if (p.rank == RANK) then
14: outliers ∪ p;
15: else if (p.rank ≤ 0) then
16: inliers ∪ p;
17: else
18: next candidates outliers ∪ p;
19: end if
20: end for
21: candidate outliers = next candidates outliers;
22: points with indices=calculate bin index(window data);

// using E.q 5
23: bins=maintain bin statistics (bins, points with indices);

// using E.q 6, 7
24: return bins, inliers, outliers

considered as an outlier. θ is estimated dynamically based on
the average of all data points in the current window. We adopt
the basic SOD GPU framework and propose C KDE WR to
further address concept drifting problem on streaming data
in order to reduce false positive on the results. A complete
list of steps of C KDE WR is described in Algorithm 1.
We describe a detailed new KDE calculation on a sliding
window in subsections III-B and III-C. We then present how to
calculate a bin index, how to maintain bin statistics as well as
how to perform a density estimation on a binned summary in
subsection III-D. We further present how to choose a density
estimation threshold and set up an outlier factor in subsection
III-E. Finally, we introduce how to detect and address concept
drift in subsection III-F.

B. Kernel Density Estimator

In order to address the concept drift problem associated
with streaming data, we estimate it dynamically as new data
points arrive, so that the probability density function f(x)
always reflects the most recent data distribution. To address
the uncertain property of streaming data, we use kernel density



estimator to estimate the probability density function. Differ-
ent from the histogram-based estimation, where the occurrence
of each data point xi increases by 1 the density of f(x) at its
corresponding bin, the kernel estimator increase the density
at xi only by a probability of p(xi), then distribute the rest
1 − p(xi) to xi’s neighbours. The closer the data values are
to xi, the higher their probabilities will be distributed. Such
probability estimation models the uncertainty carried from
streaming data points.

If (x1, x2, ..., xn) are n data points that have been observed
so far, the probability density function f(x) is defined by Eq.
1, where k(x) is called the kernel function.

f(x) =
1

n

n∑
i=1

k(xi − x) (1)

The kernel function is responsible for distributing the prob-
ability of occurrence around data point xi. In this application,
we choose Gaussian kernel as it gives a smooth estimation.
The Gaussian kernel is given by:

k(x, x′) =
1

(2π)D/2H
exp
{
− 1

2

(x− x′
H

)2}
(2)

where D is the dimension of data points and H =
(h1, h2, ...hn) is the bandwidth of the kernel function. The
bandwidth is used to control the extend to which, the rest
of data value, other than x′ should be distributed. The larger
the bandwidth H , the more it will be distributed to data
points other than x′. As we use Gaussian kernel, probability
of occurrence will be distributed to all data points from −∞
to +∞ [19]. However, the majority of density will still be
distributed to the neighbourhood of x′ only. We use Scott’s
rule [19] to calculate the bandwidth at each dimension based
on the following formula:

hi = σin
1/D+4 (3)

where σi is the standard deviation of data points at dimension
i. In our application, to estimate the overall distribution of the
probability density function f(x), we defined the cumulative
kernel density estimator function fcumulative(x) by adding the
kernel estimator in the sliding window fwindow(x) and the
kernel estimator in a binned summary fbin(x) accordingly.
Therefore,

fcumulative(x) = fwindow(x) + fbin(x)

In particular, for a binned summary, we modified the kernel
estimators slightly using the bin implementation so that it
would not require to store the entire historical data points,
and the number of evaluations is therefore reduced. To address
the temporal notation of streaming data, we also introduce
a factor on kernel estimator function of binned summary to
weight each bin accordingly. The details are presented in the
following subsections.

C. Sliding Window

Due to the unbounded nature of streaming data, it is unprac-
tical to store all observed data in a limited amount of memory
in order to approximate the kernel estimators. In C KDE WR,
we only store the most recent data points in memory at each
time in the sliding-window as introduced in Section II-D. We
divide streaming data into chunks of windows at a regular time
interval. If we let W denote the window size and T0 denote the
starting time, the window boundaries will therefore be T0+W ,
T0 + 2W , ..., T0 + jW (j > 0).

For the data points in a sliding window, they contribute
directly to the density function f(x) as defined in Eq. 1.
Outliers are found over these windowed data. Therefore, each
data point x that is in the current sliding window, its density
over the sliding window is defined by Eq. 4 after applying
Gaussian kernel, where n is the number of data points in a
sliding window.

fwindow(x) =
1

n

n∑
i=1

1

(2π)D/2H
exp
{
− 1

2

(x− xi
H

)2}
(4)

However, as decisions are only made based on the current
window data and no historical data are considered, the result
might not be accurate. In addition, the effectiveness of this
naive windowed approach will highly depend on the hard-
to-define window size W . Therefore, only keeping the sliding
window is not enough both in terms of efficiency and accuracy.
We also need to maintain some synopsis of historical data.

D. Binned Summary

When data points expire from the current window, they are
not discarded. Rather, they are mined into something called
binned summary that has been calculated statistically. As the
kernel density estimator requires large amount of computations
and it is unpractical to store all expired data points in memory,
the binned summary is a popular and efficient implementation
for kernel estimator that would not require storing the entire
history of observed data and it can hugely reduce the number
of evaluations [7]. There are many implementations of binned
summary in literature and we apply the one introduced in [7].
In our proposed C KDE WR algorithm, the binned summary
needs to perform these computational steps, explained in the
following: These steps are: 1) calculate bin index; 2) maintain
bin statistics; and 3) density estimation over bins.

1) Calculate Bin Index: The idea in this binned implemen-
tation approach is to divide the entire range of data points
into some equally spaced intervals and bin each expired point
into these intervals accordingly. To find the bin index, assume
there are N data points and each consists of D dimensions.
For each dimension j, we find the upper bound max(xj) and
lower bound min(xj) in order to derive the length of that
dimension, and then divide it by a pre-defined value k to get
its width, ∆. Therefore:

∆ = [max(xj)−min(xj)]/k



To find the corresponding bin index (where this data point
belongs to) for each data point xi, firstly, we map the input
values in each dimension of xij into interval [0, 1] using the
following function:

xij =
xij −min(xj)

max(xj)−min(xj)

Then, we encode the data point xi as:

< Ii1, Ii2, Ii3, ......, IiD >

where Iij = xij/∆. After that, we use the following formula
to find the corresponding bin index for data point xi:

Bxi
= (IiD−1)kD−1+(Ii(D−1)−1)kD−2+...+(Ii2−1)k+Ii1

(5)
The result of these operations is to assign each expired data

point into its corresponding bin Bi, where 0 ≤ i ≤ kD. It is
worth noticing that the number of total possible bins, which
is kD, grows exponentially with the number of dimension;
however we are only interested in the non-empty bins. As data
in the real-world turns to be clustered, the number of actual
non-empty bins m turns out to be much smaller than the total
number of possible bins m << kD [9]. Therefore, we are not
worried about the curse of dimension problem here.

2) Maintain Bin Statistics: For each bin, we maintain the
number of data points (noted as bin count Ci) and their aggre-
gate mean value vector (noted as Mi =< µi1, µi2, ..., µiD >)
for the points that fall into this bin. The µij here is the
average mean value of all data points in Bi at dimension j.
Additionally, we also maintain the mean value vector µ and
the standard deviation Σ over the entire dataset. These bin
statistics are maintained and updated at the end of each batch
when current window expires as follows.

Assume we are currently processing the nth window and for
each non-empty bin Bi, we have processed and aggregated n−
1th windows of expired data. Cn−1i denotes the total number
of data points that fall into bin Bi up to window n−1th; Mn−1

i

denotes the mean value vector of data points in bin Bi up to
window n − 1; cni denotes the number of data points at bin
Bi in current nth window; And µni is the mean value vector
of data points at bin Bi in current nth window. To update the
mean value vector (Mn

i ) and the bin count (Cni ) at bin index i
before expiring nth window, we apply the following formulas
respectively:

Mn
i =

cni ∗ µni + Cn−1i ∗Mn−1
i

cni + Cn−1i

(6)

Cni = cni + Cn−1i (7)

3) Binned Summary Density Estimation: For a binned
summary, its density function is calculated slightly differently
than those in sliding widow defined by Eq. 4. The bin
Bi contributes to the density function f(x) by taking into
considerations both its mean value vector Mi and the number
of data points Ci in Bi bin. We modify the kernel estimators

slightly as the one defined in Eq. 1 for a binned summary.
Therefore, for a data point x in the current window, its density
over a binned summary is defined by Eq. 8 after applying
Gaussian kernel, where m is the number of bins in the binned
summary:

fbin(x) =
1

C

m∑
i=1

Ci
(2π)D/2H

exp
{
− 1

2

(x−Mi

H

)2}
(8)

The density of a data point is calculated cumulatively by
applying Eq. 4 and Eq. 8 together, in order to define the outlier
factor of data points. However, density of a bin Bi is purely
dependent on the number of data points Ci in that bin. Past
bins that have not been updated for a long period that may not
match the current trend of data distribution could still have
an equal impact as those recent bins. This will not help in
addressing the temporal property of streaming data as we want
the model to always be consistent with the most up-to-date
trend of data distribution.

E. Threshold and Outlier Factor

To decide the outlierness of a data point x, we define its
outlier factor by calculating the inverse of the density of the
point x on the cumulative kernel density function f(x). Thus,
the outlier factor fo is defined by Eq. 9

fo =
1

f(x)
(9)

We also define threshold θthreshold on outlier factor fo
to cut-off the limit on the precise definition of outlier. The
threshold θthreshold is defined by the average density of all
points in fcumulative(x), noted as pavg and the parameter ξ,
given by:

θthreshold =
1

pavg ∗ ξ
where 0 < ξ < 1. Notice that the threshold θ will be
adjusted and re-calculated as data points are continuously
being observed since the pavg is updated dynamically.

F. Concept Drift Detection

1) Candidate Outliers Retrospection: In order to address
the concept drift problem on streaming data, we use the
following strategy: when an outlier is detected in the current
window, rather than reporting and confirming the decision
immediately, it will be treated as candidate outlier and re-
evaluated again in the future windows. This is because when
a concept drift occurs, the underlying kernel estimator model
needs time to self-adjust to reflect the latest change of data
distribution. Reporting outliers immediately may generate a
large number of false positive when concept drift starts to
emerge. Therefore, we introduce a retrospect step to re-
consider the decision made on the candidate outliers in the
current window. Such re-evaluate occurs in a number of future
windows. More specifically, we assign a rank r to track the
number of times a candidate outlier is has been continuously



considered as a candidate outlier. Each r is incremented by
1 or −1 accordingly depending on whether it is consider a
candidate outliers or not in this window. When a r reaches
a pre-defined value R, it is considered as a true outlier and
reported consequently. In the case that r count reaches zero,
it is removed from the candidate outlier list.

2) Forgetting Factor: When calculating the density of a
data point over a binned summary, the freshness of the
summary must be considered. Namely, bins that are older
should gradually fade away, consequently have less impact
on deciding the densities of current data than those recent
ones. Therefore, we introduce a forgetting factor over binned
summary when calculating the kernel estimator. The introduc-
tion of the forgetting factor will help us address the temporal
property of streaming data. Recent bins are clearly more
interesting to us than the old bins; therefore, recent bins should
receive more weights than the less recent ones.

Exponential forgetting is a weight assigning scheme which
gives more weight to the recent data points and less weight
to the older data points when weight decreases exponentially
from present to past [2]. We apply exponential forgetting in
a binned summary by storing the timestamp for each bin
when it was last updated, then sort the bins accordingly. The
relative weight between two consecutive bins is a constant
called forgetting factor λ, where 0 < λ < 1. The most recent
bin receives weight 1 and the older ones will receive a weight
λ on top of the weight from its previous bin. Therefore each
bin receives a weight according to it relative position to the
most recent bin in this sorted list. The forgetting factor λ is
selected using the bootstrapping method presented in [2].

Let (B1, B2, B3, ..., Bm) be bins that are sorted according to
their last updated timestamps, (M1,M2,M3, ...,Mm) be their
corresponding mean value vectors, and (C1, C2, C3, ..., Cm)
be their bin counts. The corresponding bin weights are denoted
as (λn−1, λn−2, λn−3, ..., 1). If we apply these weights to the
KDE function defined over a binned summary in Eq. 8, the
probability density function becomes Eq. 10 after applying the
exponential forgetting factor.

fbin(x) = 1∑m
i=1 λ

m−iCi

∑m
i=1

λm−iCi

(2π)D/2H
exp
{
− 1

2

(
x−Mi

H

)2}
(10)

IV. IMPLEMENTATION

A. Density Estimation on GPU

The density estimation is performed on GPU in the same
fashion as SOD GPU method [9], taking advantages of CUDA
streams and shared memory technique introduced in CUDA
platform. The only difference in here is that in Kernel 2 and
Kernel 3 functions, where we not only need to transfer data
in the current window, but also those data tuple that have
been detected as candidate outliers in previous windows to
calculate their outlier factors. Other implementation details
remain unchanged.

For further details of GPU implementation, please refer to
the original paper of the SOD GPU method in [9].

B. Binned Summary Maintenance on CPU

Unlike GPU, programming on a multi-core CPU follows
MIMD (Multiple Instructions Multiple Data) architecture. For
updating on a binned summary, most of the computations
are statistically based, which can simply be implemented by
using a reduce operation. The reduce operation can easily be
parallelized on a multi-core system as we have seen in many
frameworks. In our case, each time we receive a new sliding
window full of data points, we need to mine their statistics and
update these information into our existing binned summary.
Hence, we design the maintenance step on a binned summary
in following two phases:

1) In-window Mining: During a In-window mining, we
calculate statistics on all data points within the current window.
As mentioned in Section III-D2, we calculate the mean value
vector µni and bin count cni for each of its corresponding bin Bi
in order to calculate its cumulative mean value vector Mn

i and
bin count Cni at bin index i in this window. Before calculating
µni and cni , we first need to determine the bin index i for all
data points in the current window using Eq. 5 and group them
by using the keyedBy operation. We then apply the reducers
for each of these indexed groups to derive the µni and cni for
their corresponding bins appeared in this window. In addition,
we also need to find the most recent data point (point with the
largest timestamp) for each bin Bi in this window and mark
it as the last updated timestamp for this bin.

2) Out-of-window Mining: Once we get the µni , cni from
the current window, we can easily derive the next bin statistic
for Bi+1, including mean value vector Mn

i , bin count Cni .
Once we obtained the bin statistic for each updated bin Bi,
we also need to update its last-updated timestamp by setting
it to the timestamp of the most recent data point in that bin
from the last window.

V. EXPERIMENTS

A. Datasets

1) Synthetic Datasets: We measured the accuracy of
C KDE WR on synthetic datasets generated from Gaussian
mixture distribution with outlier points generated from uniform
distribution within a given range. We chose the Gaussian
mixture model because its distribution can change over time. A
change of distribution simulates the concept drift of streaming
data. In order to simulate this change, we generate 10, 000 data
samples from eight multi-dimensional data using Gaussian
distributions with different means but same variances. These
points were considered as inliers and are ordered by the
distributions that they belong to. 100 outlier points were
generated uniformly and inserted into inlier points in a random
order.

2) Real-world Datasets: We also measured the accuracy of
C KDE WR on two real-world datasets obtained from UCI
machine learning library (2): KDDCup99 network dataset for
the intrusion detector learning task, and Covertype forest cover
dataset for cover type prediction task in forest. Both of these

2http://archive.ics.uci.edu/ml/datasets.html



datasets are originally designed for classification tasks. In our
case, we chose classes with minority instances as outlier points
(i.e. less than 10% occurrence). For KDDCup99 dataset, we
chose points belong to normal, smurf and nepturn classes as
inliers. Points belongs to other classes were considered as
outliers. For Covertype dataset, points belong to class Spruce-
Fir and Lodgepole Pine were chosen as inliers. Other points
were considered to be outliers. We did feature selections on
those datasets and take log on the selected attributes whose
values deviate largely from the rest. For each of these two
datasets, we randomly chose 10, 000 samples based on the
proportion of each class, in which outlier points are uniformly
distributed. Our proposed C KDE WR work with both time-
based sliding window and count-based sliding window. The
performance evaluation reported in this paper is based on
count-based implementation. Therefore, window size is chosen
as containing 1, 000 data points so there would be 10 windows
in each experiment.

B. Test Environment

We used NVIDIA CUDA framework to accelerate the
algorithm in order to achieve low latency for real-time com-
putation. Furthermore, we leverage shared memory in thread
block to reduce the bandwidths of memory transfer between
host and device, and used CUDA streams to overlap memory
transfer between different kernels invocations. All experiments
were performed on a server with Ubuntu 16.04 operating
system, equipped with an Intel 3.3GHz quad-core CPU and
64GB host memory, along with an NVIDIA GTX 1080 Ti
GPU (6.1 compute capability) with 11GB device memory and
3584 CUDA cores. The CUDA runtime version used is 9.2,
which was the latest one at writing time. Implementation is
written in Python running with Numba compiler 3, which is a
just-in-time compiler for CUDA.

C. Evaluation Criteria

Outlier detection can be thought of as a special type of
binary classification task since each data point needs to be
classified as either inlier or outlier. The only difference is
that the dataset used for outlier detection is hugely unbal-
anced. In order to measure the model accurately, we use
Precision, Recall and F-Score metrics, which are widely used
for accuracy evaluation in machine learning. Furthermore,
we performed t-test between our C KDE WR algorithm and
the SOD GPU algorithm proposed in [9]. We recorded the
p-value, confidence interval and the variance on different
datasets to further demonstrate that our proposed novelties
have improved over its counterpart in terms of accuracy.

Precision is defined as the number of correctly detected
outliers (true positives) divided by the total number of detected
outliers (true positives + false positives). Recall is defined
as the number of correctly detected outliers divided by the
total number of outliers in the dataset (true positives + false
negatives), and F-Score is defined as:

3http://numba.pydata.org/numba-doc/latest/index.html

Fscore =
2× precision× recall
precision+ recall

D. Accuracy Evaluation

We set ξ to 0.1 and k to 100 in C KDE WR. Three
retrospects are required to finalizing a true outlier detection.
0.5 is selected as forgetting factor λ and the window size
is set at 1000 for all synthetic and real-world datasets. We
performed the experiments 30 times in each case by shuffling
the outlier points uniformly within the inlier points. Fig. 2 il-
lustrates the comparison of results between the two algorithms.
More specifically, Fig. 2 (a) shows the average accuracies of
C KDE WR and SOD GPU, in terms of Precision, Recall and
F-Score, after 30 independent runs on KddCup99 dataset. Our
proposed C KDE WR algorithm performs better in terms of
Precision but slightly lower than SOD GPU in terms of Recall
score. The results on CoverType and those synthetic datasets
are very similar as we can see from Fig. 2 (b) (c) and (d).

(a) KddCup99 (b) CoverType

(c) Synthetic (3-dimensional) (d) Synthetic (4-dimensional)

Fig. 2: Average accuracy comparisons on KddCup99 dataset (a),
CoverType dataset (b), and Synthetic datasets (c) (d)

Furthermore, our results show that C KDE WR improves
over SOD GPU in the overall F-Score on all datasets. This
claim is further supported by Fig 3 and the t-test results
we have obtained in Table I. In Fig 3, the F-Scores of our
C KDE WR algorithm after a number of repeated experi-
ments are significantly higher than those of the SOD GPU
algorithm on both synthetic and real-world datasets as illus-
trated. The same conclusion can be made on table I that further
supports the hypothesis that our C KDE WR algorithm have
improved over the SOD GPU algorithm significantly in terms
of Precision and F-Score.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel algorithm C KDE WR
to effectively and accurately detect outliers from streaming



TABLE I: T-test: C KDE WR vs SOD GPU

KddCup99 Dataset CoverType Dataset Synthetic Dataset
Precision F-Score Precision F-Score Precision F-Score

p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
confidence (0.106, (0.045, (0.064, (0.014, (0.264, (0.018,
interval 0.119) 0.055) 0.680) 0.018) 0.291) 0.056)

variance 9.964e-6 5.669e-5 1.059e-6 2.853e-4 6.982e-5 9.941e-5
coefficient 2.813% 4.792% 1.561% 5.611% 3.015% 26.691%
of variation

(a) KddCup99 (b) CoverType

(c) Synthetic (3-dimensional) (d) Synthetic (4-dimensional)

Fig. 3: F-Score differences on KddCup99 dataset (a), CoverType
dataset (b), and Synthetic datasets (c) (d)

data. To achieve real-time results with low latency, we leverage
NVIDIA CUDA framework to accelerate the execution of our
algorithm on GPU. As supported by the experiment results
performed on both synthetic and real-world datasets, our
proposed C KDE WR outperforms SOD GPU in terms of
detection accuracy, which is the state of the art at writing time.
More specifically, C KDE WR achieves a lower number of
false positives and thus, increases the precision and F-score
metrics. This further proves the effectiveness of our novelties
introduced. We conclude that C KDE WR algorithm can be
applied to applications with continuous streaming data on
detecting anomalies in real-time without requiring any prior
knowledge and secondary memory.

Although in most cases the false positive count of
C KDE WR is considerably reduced, comparing to
SOD GPU, we believe that the number in some specific
cases can still be further reduced. Furthermore, a good
outlier detection result relies on the efficiency of raw dataset
pre-processing as well as the selection of features. We hope
to further reduce the false negative count when more precise
definition of outliers is provided in more specific applications.
A more efficient data pre-processing step for datasets in a
more general context is yet to be found.
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