
A Template-Based Approach to Modeling Variability
Soheila Bashardoust Tajali, Jean-Pierre Corriveau and Wei Shi

School of Computer Science, Carleton University
Colonel By Drive
Ottawa, CANADA
1-613-520-2600

{sbtajali, jeanpier, wei_shi}@scs.carleton.ca

ABSTRACT
Arnold and Corriveau have recently described ACL/VF, a non-
state-based quality-driven approach to software specification that
enables the requirements of stakeholders to be validated against
the actual behavior of an implementation under test.
Simultaneously, in recent years, the software product line (SPL)
approach, initiated by Parnas back in the 1970s, has emerged as a
promising way to improve software productivity and quality. The
problem we address here can be summarized in one question: how
can ACL/VF support product lines? The solution we propose
adopts Cleaveland's template-based general approach to
variability. We first explain how to go from the traditional feature
diagram and feature grammar used in SPL to a) ACL domain
contracts capturing commonalities between the requirements
contracts of a domain and b) variability contracts capturing how
features and their relationships (captured in a feature grammar)
can affect these domain contracts. Domain and variability
contracts are then captured in XML files and we rely on XSLT to
specify how variability is to be resolved in order to generate a
specific member contract.

Keywords— Variability, XSLT Template, Generators, Feature
Diagrams

Contact author for SERP 2013 paper: J-Pierre Corriveau

1. ON GENERATIVE APPROACHES TO
VARIABILITY

In recent years, the software product line (SPL) approach
[7, 8, 9] initiated by Parnas back in the 1970s [17] has
emerged as a promising way to improving software
productivity and quality. A product line, which corresponds
to a domain, arises from situations when we need to
develop multiple similar products. A commonality is a
property held across this domain, whereas a variant (or
variability) is a property specific to certain members of this
domain. Most importantly, Zhang and Jarzabek [20] remark
that “the explosion of possible variant combinations and
complicated variant relationships make the manual, ad hoc
accommodation and configuration of variants difficult.”
Thus, it is generally agreed that a variability mechanism
that supports automated customization and assembly of
product line assets is required. Consequently, a significant
amount of work has focused on the creation of generators
to automate going from a model of variability to a specific
member of a family of products. Let us elaborate.

With respect to terminology, we will adopt the one of
Czarnecki and Eisenecker [9]: In System Family
Engineering (or equivalently, Software Product Lines),
members of a domain share a set of common features, as
well as possibly possessing their specific ones.
Commonalities, we repeat, refer to the characteristics that
are common to all family members, while variabilities
distinguish the members of a family from each other and
need to be explicitly modeled and separated from the
common parts. Conceptually, a feature is a variation point
in a space of requirements (the domain) and has several
variants (also called feature values) associated with it. The
two main processes of SPL engineering are a) domain
engineering (for analyzing the commonality and variability
between members) and application engineering (for
generating individual members of the domain).

Domain engineering rests on the creation of a domain
model via feature modeling [9]. Conceptually, application
engineering then consists in defining a specific
configuration of feature values and generating from the
domain model and from this configuration the
corresponding member (of the domain). Thus, SPL
engineering is a model-driven activity involving both the
modeling of commonalities and variabilities of a domain,
and the generation of a member of this domain from this
model. Many languages and approaches have been
proposed for modeling variability (see [4] and [18] for
recent in-depth reviews). As for approaches to generation,
they can be separated into two categories, each including
many proposals:

• transformational methods, which define explicit
mappings between semantic elements of a source model
and those of a target model.

• generative approaches, which build a target model from
what amounts to a parameterized source model and a
configuration list (that supplies specific values for these
parameters).

It has been argued that generative approaches correspond
to a more powerful semantic approach to the production of
a target model than transformations [7, 9]. This paper
focuses on the creation of a particular generator. We first
introduce the specific problem we address, then overview
the solution we propose for it.

2. PREMISES
A quality-driven approach to software development and

testing demands that, ultimately, the requirements of
stakeholders be validated against the actual behavior of an
Implementation Under Test (hereafter IUT). That is, there
needs to be a systematic (ideally objective and automated)
approach to the validation of the requirements of the
stakeholder against the actual behavior of an IUT [3].
Unfortunately, such systematic approach to validation
remains problematic [5, 11] and, in practice, testers mostly
carry out only extensive unit testing [6, 16].

In order to validate the requirements of a stakeholder
against the actual behavior of an IUT, it is necessary to
have a specification language from which tests can be
generated and executed 'against' an actual IUT (as opposed
to a model of the latter). Arnold and Corriveau have
described at length elsewhere [1] such an approach and its
corresponding tool, the Validation Framework (hereafter
VF [2]).

The VF operates on three input elements. The first
element is the Testable Requirements Model (hereafter
TRM). This model is expressed in ACL, a high-level
general-purpose requirements contract language. We use
here the word ‘contract’ because a TRM is formed of a set
of contracts, as illustrated shortly. ACL is closely tied to
requirements by defining syntax/semantics for the
representation of scenarios, and design-by-contract
constructs [15] such as pre and post-conditions, and
invariants (rooted in [12, 13]).

The second input element is the candidate IUT against
which the TRM will be executed. This IUT is a .NET
executable (for which no source code is required).

Bindings represent the third and final input element
required by the VF. Before a TRM can be executed, the
types, responsibilities, and observability requirements of
the TRM (see example below) must be bound to concrete
implementation artifacts located within the IUT. A
structural representation of the IUT is first obtained
automatically. The binding tool, which is part of the VF,
uses this structural representation to map elements from the
TRM to types and procedures defined within the candidate
IUT. In particular, this binding tool is able to automatically
infer most of the bindings required between a TRM and an
IUT [1, 2, 3]. Such bindings are crucial for three reasons.
First, they allow the TRM to be independent of
implementation details, as specific type and procedure
names used with the candidate IUT do not have to exist
within the TRM. Second, because each IUT has its own
bindings to a TRM, several candidate IUTs can be tested
against a single TRM. Finally, bindings provide explicit
traceability between a TRM and IUT.

Once the TRM has been specified and bound to a
candidate IUT, the TRM is compiled. Upon a successful

compilation, all elements of the TRM have been bound to
IUT artifacts. The result of such a compilation is a single
file that contains all information required to execute the
TRM against a candidate IUT. The validation of a TRM
begins with a structural analysis of the candidate IUT, and
with the execution of any static checks (e.g., a type inherits
from another). Following execution of the static checks,
the VF starts and monitors the execution of the IUT. The
VF is able to track and record the execution paths generated
by the IUT, as well as execute any dynamic checks, and
gather user-specified metrics specified in the TRM. The
execution paths are used to determine if each scenario
execution matches the grammar of responsibilities
corresponding to it within the TRM.

The key point of this overview is that once a TRM is
automatically bound to an IUT, all checks are automatically
instrumented in the IUT whose execution is also controlled
by the VF. This enables verifying that actual sequences of
procedures occurring during an execution of an IUT 'obey'
the grammar of valid sequences defined in ACL scenarios.
Most importantly, no glue code (that is, code to bridge
between test specifications and actual tests coded to use the
IUT) is required.

The problem we address in this paper can be summarized
in one question: how can ACL/VF support domain
engineering and application engineering? In the specific
context of ACL/VF, this question can be broken down into
two more immediate ones:

1) how can ACL (i.e., the requirements modeling
language) be 'augmented' to support some modeling of
variability?

2) how can such augmented ACL models be used,
together with some specification of a configuration of
feature values, to generate a domain member contract, that
is, the set of contracts associated with a specific member of
a domain?

An answer to these questions requires that the reader first
get a basic understanding of the syntax and semantics of
ACL. To this end, we give below a short self-explanatory
example:
Namespace My.Examples

{

/*Each ACL contract is bound to one or more
types of the IUT. An ACL contract may define
variables, which will be stored and updated
by the VF. */

Contract ContainerBase<Type T>

/* The variable size tracks the number of
elements in a container according to the ACL
model. It is NOT associated or dependent on
any similar variable(s) in the IUT. */

{ Scalar Integer size;

/*An observability is a query-method that is
used to request state information from the
IUT. That is, they are read-only methods
that acquire and return a value stored by
the IUT. An observability thus defines some
data that the IUT MUST be able to supply to
the VF for the VF to properly monitor the
IUT.*/

 Observability Boolean IsFull();

 Observability Boolean IsEmpty();

 Observability T ItemAt(Integer index);

 Observability Integer Size();

Responsibility new()

{ size = 0; Post(IsEmpty() == true)
 }

Responsibility finalize()

{ Pre(IsEmpty() == true); }

Invariant SizeCheck

{ Check(context.size >= 0);

 Check(context.size == Size()) }

/* The next responsibility defines pre- and
post- conditions for addition. It is not to
be bound but rather to be extended by actual
responsibilities. The keyword ‘Execute’
indicates where execution occurs. */

Responsibility Add(T aItem)

{ Pre(aItem not= null);

 Pre(IsFull() == false); Execute();

 size = size + 1;

 Post(HasItem(aItem)); }

/*This responsibility extends Add. It
therefore reuses its pre- and post-
conditions of Add. */

Responsibility InsertAt(Integer index, T
aItem)

 extends Add(aItem)

{ Pre(index >= 0); Execute();

 Post(ItemAt(index) == aItem); }

/* other responsibilties for adding,
removing, searching, etc. are ommitted here.
/*

Scenario AddAndRemove

{ once Scalar T x;

 Trigger(Add(x) | Insert(dontcare, x)),

 Terminate((x == Remove()) |
(RemoveElement(x))); }

}

/* The Export section defines the types used
in this contract, as well as their
constraints. */

Exports

{ Type tItem conforms Item

{ not context; not derived context;
 } } }

} //end of contract ContainerBase

This single TRM has been applied to several simple data
structures (e.g., different kinds of arrays and linked lists)
implemented in C# and C++/CLI, with and without coding
errors, in order to verify that ACL/VF indeed detects
responsibility and scenario violations. This ability to bind
the same TRM against several distinct IUTs may mislead
some readers to believe ACL/VF already handles some
form of variability. In fact, it does not: all the IUTs that can
bind to this TRM can do so specifically because there is no
variablity in the TRM they must conform with. In other
words, regardless of their differences at the level of code,
all the IUTs that can bind to this TRM can do so because
they have been adapted to support the observabilities
required by this TRM.

So the question remains: how can ACL/VF be augmented
to support variability? As previously mentioned, many
languages and approaches have been proposed for
modeling variability. But few are relevant to this work due
to a fundamental restriction we are faced with: neither the
ACL nor the VF can be modified. That is, given the
ACL/VF is an experimental tool of over 250,000 lines of
code, which is still undergoing testing, we decided to
support variability in ACL contracts without altering the
syntax or semantics of ACL, or the working of the ACL
compiler, or the modus operandi of the VF.

To achieve this goal, we adopt Cleaveland's [7] template-
based general approach to variability, captured in Figure 1.

Figure 1: Cleaveland's Generative Approach

In a nutshell, following this approach, modeling
variability is a task that ultimately must produce an XML
representation of variabilities and commonalities of the
domain. It is this representation that is used to generate a
specific member of the domain. The advantage of choosing
XML is that it makes available the much wider world of
XML technologies and tools. In particular, XSLT is a
standard transformation language for transforming between
XML languages or to other text-based languages. That is,
XSLT is readily usable for creating a generator. Czarnecki
[10] explains (in the specific context of code generation):

Browse/Edit/Storage
Modeling Tools

XML Representation

of the Models

Generator Tools

"In a template-based generative approach (a) an arbitrary
text file such as a source program file in any programming
language or a documentation file is instrumented with code
selection and iterative code expansion constructs. The
instrumented file called template needs a template
processor. A template processor takes a template file and a
set of configuration parameters as inputs and generates a
concrete instance of that template as output”.

Figure 2: Overview of our Generative Approach

In contrast, a programming language based generative
approach, such as Czarnecki and Eisenecker's [9] C++
metaprogramming, typically uses advanced programming
techniques (such as partial template specialization in C++)
that are not only hard to master and problematic to debug
(leading to complex generators), but also do not offer as

much semantic flexibility as an XML based approach. For
these reasons, the generative approach we propose (see
Figure 2) for tackling variability in ACL adopts a template-
based approach rooted in XML. In the rest of this paper, we
overview the different steps identified in Figure 2 (in which
the white arrows show the evolution from one artifact to
another, and the blue arrows on the right of the figure
indicate where user input is required, in contrast to those on
the left that show where the configuration list is used).

3. DETAILS
In Phase I of our approach, the domain engineer first

identifies commonality and variability in the domain at
hand. This analysis of the domain leads to the production of
a feature model [9]. The syntax and semantics of this model
are that of FODA [14] and similar notations [see 9 for a
review]. A feature diagram captures variation points and
their variants. Here, for example, variation point VP1,
“Length Type”, has two variants VP1-1 “Variable” and
VP1-2 “Fixed”. It captures the fact that containers can have
a variable length or fixed length, where length is number of
elements.1

While a feature diagram is a good starting point for
domain analysis, it is crucial to understand that the
complexity of a generative approach lies first and foremost
in its handling of interactions between features and feature
values, which are captured in a feature grammar [9].
Consequently, it is unfortunately often the case that the
processing of such a feature grammar is entirely manual
(e.g., [18]). In contrast, in our solution, the feature
interactions identified by the domain engineer are captured
in a table whose use is automated. We call such a table a
feature grammar table, or equivalently a feature relational
table (RT). Table 1 (next page) presents a few of the rows
of the large RT developed for one of our case studies. Rows
1 and 11 of the complete table [4] are examples of how to
define the exact relationship between a variation point and
its variants. For example, row 1 below states that VP0 has
two mutually exclusive variants VP0-1 and VP0-2. It also
states that if the configuration list (defining a specific
member of the domain through a specific set of variants)
includes one of the variants of VP-0, there are no
conditions to verify and this variant can be taken as the
value of VP0 (for further verification of the feature
grammar, as well as subsequent generation). Rows 13 to 21
in the complete table [4] deal with feature interactions
proper. Row 13 below, for example, states that if VP31 is
assigned any one of its valid variants in the configuration
list, then VP30 must also appear in this configuration and
must be set to variant LC-Type. VP30 is an optional feature

1 We also refer to VP0 (whether a container is key-based or not),

VP4 (whether a container is circular, VP4-1 or not, VP4-2), and
VP5 (whether a container allows 2-way, VP5-1, or 1-way
traversal, VP5-2).

Phase II

Phase I

Phase III

Phase IV

VF

Specifying

Variability

Contracts

Specifying

Domain

Contracts

Executing MC

for IUT Validation

Compiling & Binding MC

Integrating

Domain Contracts with

Variability Contracts

Analyzing Domain Requirements & Creating
a Relational Table (RT)

Creating

Variability

Selection Templates

Creating a

Variability

Contracts Repository

Automatically Instrumenting

a Member Contract (MC)

Configuration
List

capturing whether or not the container keeps track, via a
counter, of the number of its elements. VP31 merely
captures the type of this counter.

Rows 18 and 19 illustrate how multiple valid
combinations of variants are handled: one action is
associated with a circular container supporting two-way
traversal (row 18) and another action is used for a circular
container supporting only one-way traversal (row 19). The
key point to be grasped is that all such valid combinations
of features and variants must be explicitly captured in this
feature grammar (according to specific syntax and
semantics defined in [4] and similar to FODA).

In Phase II of our approach, first, the commonalities of
the domain at hand are captured in ACL contracts forming
the domain contracts. These contracts are merely ACL
contracts augmented in Phase III with plugIn labels (see
Figure 3) marking where variability (and thus the
generator) may modify such contracts. In Figure 3, we are
simply indicating that IsFull may be affected by the variant
chosen for VP1. (Several variation points may affect the
same element of an ACL contract.)

The feature diagram and relationship table of phase I also
lead, in Phase II, to variability contracts (via algorithms we
have developed for this specific purpose [4]). The idea is to
capture how each variant of a variation point affects the
domain contract. Without going into (syntactic and
semantic) details (given in [4]), a portion of such a
variability contract is shown in Figure 4. Intuitively, if
length is variable (VP1-1), then the IsFull observability
necessarily returns false, otherwise (VP1-2), it returns
whether the actual size of the container has reached the
maximum size.
Observability Boolean IsFull()

 { //plugin_VP1(); }

Figure 3: Variability in a Domain Contract

Variation VP1 <Length-Type> [1..1] outof 2

{case "Variable":

 plug-in: VP1-1 //Container has variable length

 Refine-a: Observability

 Boolean IsFull(){ value = false; }

 case "Fixed":

 plug-in: VP1-2 //Container has fixed length

 Refine-a: Observability

 Boolean IsFull() { value = (size() == max_size()); }
}

Figure 4: A Variability Contract

It must be emphasized that there is a direct
correspondence between the features and variants identified
in the feature diagram and relational table of Phase I, and
these variability contracts (as well as the plugIn labels of
domain contracts). Conceptually, variability contracts
define the actions to be performed (by the generator) on the
template (i.e., the domain contracts in our work) when a
particular feature value is present in a configuration list
input to generate a specific member of the domain. A
template processor (i.e., our chosen kind of generator) can
carry out such actions only if the domain contracts define
where these actions are to take place (and thus the need for
the plugIn labels we introduced). That is, as in other
template-based generative approaches, the artifact
capturing the domain model must be instrumented (to use
Czarnecki's terminology) to indicate where in it template
manipulations can occur. Then, both the domain and the
variability contracts must be transformed into their XML
equivalents in order to be made usable by the template
processor. This is what Phase III of our approach tackles:.

Table 1: A portion of a Relation Table for Sequential Containers
No Related

VP(s)
Var(s)

Related
VP & Var
Types

Related
VP & Var
Names

Relation:
Rule#
Constraints &
Actions

Relation: <depends>,
<requires>,<excludes>
Constraints and Actions in
Contracts

1 VP0
VP0-1
VP0-2

Var. point
Variant
Variant

“Is-key-based”
”True”
“False”

Rule 1, 2:
VP0 X VP0-1
VP0 X VP0-2

VP0 <depends>VP0-1, VP0-2
Cond = -
Action = variant

11 VP31
VP31-1
VP31-2
VP32-3

Var. point
Variant
Variant
Variant

“LC-Type”
“int”
“short”
“long”

Rule 1, 2:
VP31 X VP31-1
VP31 X VP31-2
VP31 X VP31-3

VP31<depends>VP31-1,
VP31-2, VP31-3
Cond = -
Action = variant

13 VP31
VP31-1
VP31-2

Var. point
Variant
Variant

_ Rule 7:
If(VP31 !=null &&
VP31 ==VP31-1 ||

VP31 <requires>VP30? = VP31

Cond1 = (VP30? == LC-Type)

VP31-3
VP30

Variant
Var. point

VP31 ==VP31-2 ||
VP31 ==VP31-3)
IMPLIES
VP30?==LC-Type

Action = variant1

18 VP4
VP4-1
VP5
VP5-1

Var. point
Variant
Var. point
Variant

_ Rule 5:
If(VP4==VP4-1)
IMPLIES
VP5 == VP5-1

VP4-1<requires>VP5-1
Cond1=“VP5==Twoway”
Action= variant1

19 VP4
VP4-1
VP5
VP5-2

Var. point
Variant
Var. point
Variant

_ Rule 5:
If(VP4==VP4-1)
IMPLIES
VP5 == VP5-2

VP4-1<requires>VP5-2
Cond2=“VP5==Oneway”
Action= variant2

a) The variability contracts of Phase II are transformed
(again according to specific algorithms) into an XML-
ready repository of these contracts.

b) Everywhere in the domain contracts where a plugIn
label is used, a variability selection template is inserted.
Given our specific approach to template processing, in
our work these variability selection templates take the
form of XSLT style sheets as explained at length in [4].

Finally, in order for these selection templates to be able
to use the information of the variability contract
repository, we still need to augment the domain contracts
with XSLT code to bridge to the variability contract
repository. At the end of phase III, both the variability
contracts and the domain model have been transformed
into XML-based artifacts that serve as input to the
template-based generator, which also requires a
configuration list specifying the exact list of feature
values (i.e., the configuration) to be used to generate a
specific member of the domain. Phase IV of our approach
deals with the generation of such a member contract, that
is, of an ACL contract corresponding to the specific input
configuration list at hand. In a nutshell, the configuration
list, as well as the variability contracts and selection
templates (compiled using both an XML and an XSLT
compiler) are integrated. The resulting ACL contract can
then serve as input to ACL/VF so that it can be compiled
and tested.

4. CONCLUSION
The main contribution of this work is a domain-

independent generative process we propose for obtaining
ACL member contracts from ACL-based domain and
variability contracts. It is worth repeating that this process
is comprehensive inasmuch as it addresses how the two
traditional artifacts of domain engineering, namely a
feature diagram and a feature grammar, can be evolved
into domain and variability contracts whose XML
equivalents serve as inputs (along with a configuration
list) to the proposed generative process, which generates a
member's contract (that can be compiled and run in
ACL/VF).

ACL/VF is still an experimental model-based testing
tool at this point in time, with advantages and drawbacks
that its creators have discussed elsewhere [3]. We chose it
to illustrate the power and generality of the template-
based approach to generation advocated by Cleaveland
[7]) for two main reasons:

1) It's a textual requirements language and ACL/VF
already produced an XML equivalent of the ACL
contracts specified by a user [1]. (Dealing with a visual
language is somewhat more complex.)

2) The semantics of ACL are sufficiently
comprehensive to tackle domain modeling and yet, most
importantly, almost all of ACL's semantic elements (e.g.,
responsibilities, scenarios, observabilities, etc.) are
relevant to variability.

Furthermore, we stress that, in contrast to many existing
generative approaches, we have not only defined the
artifacts relevant to the generative process but, most
importantly, we also specified elsewhere [4] detailed
algorithms to go from the more abstracts artifacts to those
directly used by the generator. In fact, these algorithms
inherently define traceability between the different
artifacts of Figure 2. In turn, such traceability is essential
to support an iterative approach to domain and application
engineering. We also emphasize that, in contrast to many
existing approaches (e.g., [18]), these algorithms do not
assume that the user only inputs valid configurations.
Such an assumption is a gross oversimplification: in our
opinion, 'enforcing' that a configuration does respect the
rules of a feature grammar must be automated, as is the
case in our solution. Similarly, our work does not depend
on any notion of the 'semantic correctness' of a feature
diagram, feature grammar or domain contract supplied by
a user. Such notion appears quite problematic [1].

Finally, the validation of our solution for the generation
of an ACL member contract from domain contracts,
variability contracts and a configuration specific to that
member rests two extensive case studies. Both case
studies [4] pertain to containers, reflecting the fact that the
use of off-the-shelf component (COTS) libraries is
pervasive in current software development processes. The

first case study focuses specifically on sequential
containers (such as arrays, lists, stacks and queues). This
choice was straightforward given existing work [9, 19] on
feature modeling across a large set of such container
libraries (including those found in the Standard Template
Library of C++). In other words, we wanted to avoid the
all-too-frequent 'toy' example in favor of a realistic
example based on public domain libraries. For our second
case study, our focus was specifically on exercising more
of the mechanisms we had developed for variability
contracts. To do so we decided to tackle another facet of
the STL, namely associated containers (such as

dictionaries, multisets, etc.). The point we want to
emphasize is that having an actual code base to take
inspiration from for domain modeling eliminated the risk
of creating an artificial domain conveniently scoped to
work with our proposal. But this choice also meant
tackling the modeling of some of the complexities of
actual industrial code.

We have now turned our attention to the modeling of
variability in design patterns, a radically different domain,
in order to demonstrate that our proposal is not domain
dependent.

5. REFERENCES

[1] Arnold, D.: “Supporting Generative Contracts in .Net”,
Doctoral dissertation, School of Computer Science, Carleton
University, April 2009.

[2] Arnold, D.: “Validation Framework and Another Contract
Language”, http://vf.davearnold.ca/, last accessed in October
2012.

[3] Arnold, D., Corriveau, J.-P., Shi, W.: “Modeling and
Validating Requirements using Executable Contracts and
Scenarios", SERA 2010: 311-320.

[4] Bashardout-Tajali, S., Generative Contracts, Doctoral
Dissertation, School of Computer Science, Carleton
University, December 2012.

[5] Bertolino, A.: “Software Testing Research: Achievements,
Challenges and Dreams”, In IEEE – Future of Software
Engineering (FOSE ’07), Minneapolis, pp. 85-103, May
2007

[6] Binder, R.: Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, MA, 2000.

[7] Cleaveland, C.: “Program Generators with XML and Java”,
Prentice-Hall, Upper Saddle River, NJ, ISBN-10:
0130258784, Jan. 2001.

[8] Coplien, J., Hoffman, D., Weiss, D.: “Commonality and
Variability in Software Engineering”, Bell Labs, IEEE
Software, pp.37-45, Dec. 1998.

[9] Czarnecki, K., Eisenecker, U.W.: “Generative Programming:
Methods, Tools, and Applications”, Addison-wesley, Boston,
MA, 2000.

[10] Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.:
“Generative Programming for Embedded Software: An
Industrial Experience Report”, In Don Batory et al., editors,
Generative Programming and Component Engineering:
ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, LNCS
2487, Pittsburgh, PA, USA, pp. 156-172, October 2002.

[11] Grieskamp, W.: “Multi-Paradigmatic Model-Based Testing”,
Technical Report #MSR-TR-2006-111, Microsoft Research,
August 2006.

[12] Helm, R., Holland, I. M., Gangopadhyay, D.: “Contracts:
Specifying Behavioural Compositions in Object-Oriented
Systems”, In Proceedings of the ACM European conference
on object-oriented programming systems, languages, and
applications, Conference (OOPSLA'90), pp. 169-180,
October 1990.

[13] Holland, I. M.: “Specifying reusable components using
Contracts”, In Proceedings of the 6th European Conference
on Object-oriented Programming (ECOOP ’92), pp. 287-308,
1992, LNCS/615.

[14] Kang K., Cohen S., Hess J., Novak W., Peterson A.:
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Technical report, CMU/SEI-90-TR-021, November
1990.

[15] Meyer, B.: “Design by Contract”, In IEEE Computer, vol.
25, no. 10, pp. 40-51, IEEE Press, New York, October 1992.

[16] Meszaros, G.: “xUnit Test Patterns: Refactoring Test Code”,
Addison-Wesley Professional, ISBN-10: 0131495054, 2007.

[17] Parnas, D.L.: “On the Design and Development of Program
Families”, IEEE Trans. Software Engineering, vol. 2, no, 1,
pp. 1-9, March 1976.

[18] Tawhid, R.: “Integrating Performance Analysis in Model
Driven Software Product Line Engineering”, Doctoral
dissertation, School of Computer Science, Carleton
University, May 2012.

[19] Tian, B., Corriveau, J.-P.: “On Facilitating the Reuse of C++
Graph Libraries”, In Proceedings of the IASTED
International Conference on Software Engineering, part of
the 23rd Multi-Conference on Applied Informatics,
Innsbruck, Austria, pp. 7-12, February 2005.

[20] Zhang, H., Jarzabek, S.: “XVCL: A Mechanism for Handling
Variants in Software Product Lines”, Special issue on
Software Variability Management of Science of Computer
Programming, Vol. 53, No. 3, pp. 381–407, December 2004.

