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ABSTRACT  
Arnold and Corriveau have recently described ACL/VF, a non-
state-based quality-driven approach to software specification that 
enables the requirements of stakeholders to be validated against 
the actual behavior of an implementation under test. 
Simultaneously, in recent years, the software product line (SPL) 
approach, initiated by Parnas back in the 1970s, has emerged as a 
promising way to improve software productivity and quality. The 
problem we address here can be summarized in one question: how 
can ACL/VF support product lines? The solution we propose 
adopts Cleaveland's template-based general approach to 
variability. We first explain how to go from the traditional feature 
diagram and feature grammar used in SPL to a) ACL domain 
contracts capturing commonalities between the requirements 
contracts of a domain and b) variability contracts capturing how 
features and their relationships (captured in a feature grammar) 
can affect these domain contracts. Domain and variability 
contracts are then captured in XML files and we rely on XSLT to 
specify how variability is to be resolved in order to generate a 
specific member contract. 

Keywords— Variability, XSLT Template, Generators, Feature 
Diagrams 
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1. ON GENERATIVE APPROACHES TO 
VARIABILITY 

In recent years, the software product line (SPL) approach 
[7, 8, 9] initiated by Parnas back in the 1970s [17] has 
emerged as a promising way to improving software 
productivity and quality. A product line, which corresponds 
to a domain, arises from situations when we need to 
develop multiple similar products. A commonality is a 
property held across this domain, whereas a variant (or 
variability) is a property specific to certain members of this 
domain. Most importantly, Zhang and Jarzabek [20] remark 
that “the explosion of possible variant combinations and 
complicated variant relationships make the manual, ad hoc 
accommodation and configuration of variants difficult.” 
Thus, it is generally agreed that a variability mechanism 
that supports automated customization and assembly of 
product line assets is required. Consequently, a significant 
amount of work has focused on the creation of generators 
to automate going from a model of variability to a specific 
member of a family of products. Let us elaborate. 

With respect to terminology, we will adopt the one of 
Czarnecki and Eisenecker [9]: In System Family 
Engineering (or equivalently, Software Product Lines), 
members of a domain share a set of common features, as 
well as possibly possessing their specific ones. 
Commonalities, we repeat, refer to the characteristics that 
are common to all family members, while variabilities 
distinguish the members of a family from each other and 
need to be explicitly modeled and separated from the 
common parts. Conceptually, a feature is a variation point 
in a space of requirements (the domain) and has several 
variants (also called feature values) associated with it. The 
two main processes of SPL engineering are a) domain 
engineering (for analyzing the commonality and variability 
between members) and application engineering (for 
generating individual members of the domain). 

Domain engineering rests on the creation of a domain 
model via feature modeling [9]. Conceptually, application 
engineering then consists in defining a specific 
configuration of feature values and generating from the 
domain model and from this configuration the 
corresponding member (of the domain). Thus, SPL 
engineering is a model-driven activity involving both the 
modeling of commonalities and variabilities of a domain, 
and the generation of a member of this domain from this 
model. Many languages and approaches have been 
proposed for modeling variability (see [4] and [18] for 
recent in-depth reviews). As for approaches to generation, 
they can be separated into two categories, each including 
many proposals: 

• transformational methods, which define explicit 
mappings between semantic elements of a source model 
and those of a target model. 

• generative approaches, which build a target model from 
what amounts to a parameterized source model and a 
configuration list (that supplies specific values for these 
parameters).  

It has been argued that generative approaches correspond 
to a more powerful semantic approach to the production of 
a target model than transformations [7, 9]. This paper 
focuses on the creation of a particular generator. We first 
introduce the specific problem we address, then overview 
the solution we propose for it.  



2. PREMISES 
A quality-driven approach to software development and 

testing demands that, ultimately, the requirements of 
stakeholders be validated against the actual behavior of an 
Implementation Under Test (hereafter IUT). That is, there 
needs to be a systematic (ideally objective and automated) 
approach to the validation of the requirements of the 
stakeholder against the actual behavior of an IUT [3]. 
Unfortunately, such systematic approach to validation 
remains problematic [5, 11] and, in practice, testers mostly 
carry out only extensive unit testing [6, 16]. 

In order to validate the requirements of a stakeholder 
against the actual behavior of an IUT, it is necessary to 
have a specification language from which tests can be 
generated and executed 'against' an actual IUT (as opposed 
to a model of the latter). Arnold and Corriveau have 
described at length elsewhere [1] such an approach and its 
corresponding tool, the Validation Framework (hereafter 
VF [2]).  

The VF operates on three input elements.  The first 
element is the Testable Requirements Model (hereafter 
TRM).  This model is expressed in ACL, a high-level 
general-purpose requirements contract language.  We use 
here the word ‘contract’ because a TRM is formed of a set 
of contracts, as illustrated shortly. ACL is closely tied to 
requirements by defining syntax/semantics for the 
representation of scenarios, and design-by-contract 
constructs [15] such as pre and post-conditions, and 
invariants (rooted in [12, 13]).  

The second input element is the candidate IUT against 
which the TRM will be executed. This IUT is a .NET 
executable (for which no source code is required). 

Bindings represent the third and final input element 
required by the VF.  Before a TRM can be executed, the 
types, responsibilities, and observability requirements of 
the TRM (see example below) must be bound to concrete 
implementation artifacts located within the IUT. A 
structural representation of the IUT is first obtained 
automatically.  The binding tool, which is part of the VF, 
uses this structural representation to map elements from the 
TRM to types and procedures defined within the candidate 
IUT.  In particular, this binding tool is able to automatically 
infer most of the bindings required between a TRM and an 
IUT [1, 2, 3].  Such bindings are crucial for three reasons.  
First, they allow the TRM to be independent of 
implementation details, as specific type and procedure 
names used with the candidate IUT do not have to exist 
within the TRM.  Second, because each IUT has its own 
bindings to a TRM, several candidate IUTs can be tested 
against a single TRM. Finally, bindings provide explicit 
traceability between a TRM and IUT. 

Once the TRM has been specified and bound to a 
candidate IUT, the TRM is compiled. Upon a successful 

compilation, all elements of the TRM have been bound to 
IUT artifacts. The result of such a compilation is a single 
file that contains all information required to execute the 
TRM against a candidate IUT. The validation of a TRM 
begins with a structural analysis of the candidate IUT, and 
with the execution of any static checks (e.g., a type inherits 
from another).  Following execution of the static checks, 
the VF starts and monitors the execution of the IUT.  The 
VF is able to track and record the execution paths generated 
by the IUT, as well as execute any dynamic checks, and 
gather user-specified metrics specified in the TRM.  The 
execution paths are used to determine if each scenario 
execution matches the grammar of responsibilities 
corresponding to it within the TRM. 

The key point of this overview is that once a TRM is 
automatically bound to an IUT, all checks are automatically 
instrumented in the IUT whose execution is also controlled 
by the VF. This enables verifying that actual sequences of 
procedures occurring during an execution of an IUT 'obey' 
the grammar of valid sequences defined in ACL scenarios. 
Most importantly, no glue code (that is, code to bridge 
between test specifications and actual tests coded to use the 
IUT) is required.  

The problem we address in this paper can be summarized 
in one question: how can ACL/VF support domain 
engineering and application engineering? In the specific 
context of ACL/VF, this question can be broken down into 
two more immediate ones:  

1) how can ACL (i.e., the requirements modeling 
language) be 'augmented' to support some modeling of 
variability? 

2) how can such augmented ACL models be used, 
together with some specification of a configuration of 
feature values, to generate a domain member contract, that 
is, the set of contracts associated with a specific member of 
a domain? 

An answer to these questions requires that the reader first 
get a basic understanding of the syntax and semantics of 
ACL. To this end, we give below a short self-explanatory 
example:  
Namespace My.Examples 

{  

/*Each ACL contract is bound to one or more 
types of the IUT. An ACL contract may define 
variables, which will be stored and updated 
by the VF. */ 

Contract ContainerBase<Type T> 

/* The variable size tracks the number of 
elements in a container according to the ACL 
model. It is NOT associated or dependent on 
any similar variable(s) in the IUT. */ 

{  Scalar Integer size;   



/*An observability is a query-method that is 
used to request state information from the 
IUT. That is, they are read-only methods 
that acquire and return a value stored by 
the  IUT. An observability thus defines some 
data that the IUT MUST be able to supply to 
the VF for the VF to properly monitor the 
IUT.*/ 

  Observability Boolean   IsFull(); 

  Observability Boolean   IsEmpty(); 

  Observability T ItemAt(Integer index); 

  Observability Integer   Size(); 

Responsibility new() 

{ size = 0;   Post(IsEmpty() == true) 
 } 

Responsibility finalize() 

{ Pre(IsEmpty() == true);  } 

Invariant SizeCheck 

{ Check(context.size >= 0); 

   Check(context.size == Size())  } 

/* The next responsibility defines pre- and 
post- conditions for addition. It is not to 
be bound but rather to be extended by actual 
responsibilities. The keyword ‘Execute’ 
indicates where execution occurs. */ 

Responsibility Add(T aItem) 

{ Pre(aItem not= null);     

   Pre(IsFull() == false);  Execute(); 

   size = size + 1; 

  Post(HasItem(aItem));   } 

/*This responsibility extends Add. It 
therefore reuses its pre- and post-
conditions of Add. */ 

Responsibility InsertAt(Integer  index, T 
aItem)  

 extends Add(aItem) 

{  Pre(index >= 0);  Execute(); 

    Post(ItemAt(index) == aItem);       } 

/* other responsibilties for adding, 
removing, searching, etc. are ommitted here. 
/*  

Scenario AddAndRemove 

{ once Scalar T x; 

   Trigger(Add(x) | Insert(dontcare, x)), 

   Terminate((x == Remove()) | 
(RemoveElement(x)));  } 

}     

/* The Export section defines the types used 
in this contract, as well as their 
constraints. */ 

Exports 

{ Type tItem conforms Item 

{ not context;  not derived context;
 }  } } 

}  //end of contract ContainerBase 

This single TRM has been applied to several simple data 
structures (e.g., different kinds of arrays and linked lists) 
implemented in C# and C++/CLI, with and without coding 
errors, in order to verify that ACL/VF indeed detects 
responsibility and scenario violations. This ability to bind 
the same TRM against several distinct IUTs may mislead 
some readers to believe ACL/VF already handles some 
form of variability. In fact, it does not: all the IUTs that can 
bind to this TRM can do so specifically because there is no 
variablity in the TRM they must conform with. In other 
words, regardless of their differences at the level of code, 
all the IUTs that can bind to this TRM can do so because 
they have been adapted to support the observabilities 
required by this TRM.  

So the question remains: how can ACL/VF be augmented 
to support variability? As previously mentioned, many 
languages and approaches have been proposed for 
modeling variability. But few are relevant to this work due 
to a fundamental restriction we are faced with: neither the 
ACL nor the VF can be modified. That is, given the 
ACL/VF is an experimental tool of over 250,000 lines of 
code, which is still undergoing testing, we decided to 
support variability in ACL contracts without altering the 
syntax or semantics of ACL, or the working of the ACL 
compiler, or the modus operandi of the VF.  

To achieve this goal, we adopt Cleaveland's [7] template-
based general approach to variability, captured in Figure 1.   

 

 

 

 

 

 

 

 

Figure 1: Cleaveland's Generative Approach 

In a nutshell, following this approach, modeling 
variability is a task that ultimately must produce an XML 
representation of variabilities and commonalities of the 
domain. It is this representation that is used to generate a 
specific member of the domain. The advantage of choosing 
XML is that it makes available the much wider world of 
XML technologies and tools. In particular, XSLT is a 
standard transformation language for transforming between 
XML languages or to other text-based languages. That is, 
XSLT is readily usable for creating a generator. Czarnecki 
[10] explains (in the specific context of code generation): 
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"In a template-based generative approach (a) an arbitrary 
text file such as a source program file in any programming 
language or a documentation file is instrumented with code 
selection and iterative code expansion constructs. The 
instrumented file called template needs a template 
processor. A template processor takes a template file and a 
set of configuration parameters as inputs and generates a 
concrete instance of that template as output”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of our Generative Approach 

In contrast, a programming language based generative 
approach, such as Czarnecki and Eisenecker's [9] C++ 
metaprogramming, typically uses advanced programming 
techniques (such as partial template specialization in C++) 
that are not only hard to master and problematic to debug 
(leading to complex generators), but also do not offer as 

much semantic flexibility as an XML based approach. For 
these reasons, the generative approach we propose (see 
Figure 2) for tackling variability in ACL adopts a template-
based approach rooted in XML. In the rest of this paper, we 
overview the different steps identified in Figure 2 (in which 
the white arrows show the evolution from one artifact to 
another, and the blue arrows on the right of the figure 
indicate where user input is required, in contrast to those on 
the left that show where the configuration list is used). 

3. DETAILS 
In Phase I of our approach, the domain engineer first 

identifies commonality and variability in the domain at 
hand. This analysis of the domain leads to the production of 
a feature model [9]. The syntax and semantics of this model 
are that of FODA [14] and similar notations [see 9 for a 
review]. A feature diagram captures variation points and 
their variants. Here, for example, variation point VP1, 
“Length Type”, has two variants VP1-1 “Variable” and 
VP1-2 “Fixed”. It captures the fact that containers can have 
a variable length or fixed length, where length is number of 
elements.1 

While a feature diagram is a good starting point for 
domain analysis, it is crucial to understand that the 
complexity of a generative approach lies first and foremost 
in its handling of interactions between features and feature 
values, which are captured in a feature grammar [9]. 
Consequently, it is unfortunately often the case that the 
processing of such a feature grammar is entirely manual 
(e.g., [18]). In contrast, in our solution, the feature 
interactions identified by the domain engineer are captured 
in a table whose use is automated. We call such a table a 
feature grammar table, or equivalently a feature relational 
table (RT). Table 1 (next page) presents a few of the rows 
of the large RT developed for one of our case studies. Rows 
1 and 11 of the complete table [4] are examples of how to 
define the exact relationship between a variation point and 
its variants. For example, row 1 below states that VP0 has 
two mutually exclusive variants VP0-1 and VP0-2. It also 
states that if the configuration list (defining a specific 
member of the domain through a specific set of variants) 
includes one of the variants of VP-0, there are no 
conditions to verify and this variant can be taken as the 
value of VP0 (for further verification of the feature 
grammar, as well as subsequent generation). Rows 13 to 21 
in the complete table [4] deal with feature interactions 
proper. Row 13 below, for example, states that if VP31 is 
assigned any one of its valid variants in the configuration 
list, then VP30 must also appear in this configuration and 
must be set to variant LC-Type. VP30 is an optional feature 
                                                                    
1 We also refer to VP0 (whether a container is key-based or not), 

VP4 (whether a container is circular, VP4-1 or not, VP4-2), and 
VP5 (whether a container allows 2-way, VP5-1, or 1-way 
traversal, VP5-2). 
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capturing whether or not the container keeps track, via a 
counter, of the number of its elements. VP31 merely 
captures the type of this counter.  

Rows 18 and 19 illustrate how multiple valid 
combinations of variants are handled: one action is 
associated with a circular container supporting two-way 
traversal (row 18) and another action is used for a circular 
container supporting only one-way traversal (row 19). The 
key point to be grasped is that all such valid combinations 
of features and variants must be explicitly captured in this 
feature grammar (according to specific syntax and 
semantics defined in [4] and similar to FODA). 

In Phase II of our approach, first, the commonalities of 
the domain at hand are captured in ACL contracts forming 
the domain contracts. These contracts are merely ACL 
contracts augmented in Phase III with plugIn labels (see 
Figure 3) marking where variability (and thus the 
generator) may modify such contracts. In Figure 3, we are 
simply indicating that IsFull may be affected by the variant 
chosen for VP1. (Several variation points may affect the 
same element of an ACL contract.)  

The feature diagram and relationship table of phase I also 
lead, in Phase II, to variability contracts (via algorithms we 
have developed for this specific purpose [4]). The idea is to 
capture how each variant of a variation point affects the 
domain contract. Without going into (syntactic and 
semantic) details (given in [4]), a portion of such a 
variability contract is shown in Figure 4. Intuitively, if 
length is variable (VP1-1), then the IsFull observability 
necessarily returns false, otherwise (VP1-2), it returns 
whether the actual size of the container has reached the 
maximum size. 
Observability Boolean IsFull() 

 { //plugin_VP1();   } 

Figure 3: Variability in a Domain Contract 

Variation VP1 <Length-Type> [1..1] outof 2 

{case "Variable":  

   plug-in: VP1-1 //Container has variable length 

   Refine-a: Observability 

   Boolean IsFull(){ value = false; } 

  case "Fixed": 

     plug-in: VP1-2 //Container has fixed length 

     Refine-a: Observability 

     Boolean IsFull() { value = (size() == max_size()); }               
} 

Figure 4: A Variability Contract 

It must be emphasized that there is a direct 
correspondence between the features and variants identified 
in the feature diagram and relational table of Phase I, and 
these variability contracts (as well as the plugIn labels of 
domain contracts). Conceptually, variability contracts 
define the actions to be performed (by the generator) on the 
template (i.e., the domain contracts in our work) when a 
particular feature value is present in a configuration list 
input to generate a specific member of the domain. A 
template processor (i.e., our chosen kind of generator) can 
carry out such actions only if the domain contracts define 
where these actions are to take place (and thus the need for 
the plugIn labels we introduced). That is, as in other 
template-based generative approaches, the artifact 
capturing the domain model must be instrumented (to use 
Czarnecki's terminology) to indicate where in it template 
manipulations can occur. Then, both the domain and the 
variability contracts must be transformed into their XML 
equivalents in order to be made usable by the template 
processor. This is what Phase III of our approach tackles:.  

 

Table 1: A portion of a Relation Table for Sequential Containers 
No Related  

VP(s) 
Var(s) 

Related  
VP & Var 
Types 

Related  
VP & Var 
Names 

Relation:  
Rule# 
Constraints &  
Actions   

Relation: <depends>,  
<requires>,<excludes> 
Constraints and Actions in  
Contracts 

1 VP0 
VP0-1 
VP0-2 

Var. point 
Variant 
Variant 
 

“Is-key-based” 
”True” 
“False” 

Rule 1, 2: 
VP0 X VP0-1 
VP0 X VP0-2 

VP0 <depends>VP0-1, VP0-2 
Cond = - 
Action = variant 
 

11 VP31 
VP31-1 
VP31-2 
VP32-3 

Var. point 
Variant 
Variant 
Variant 

“LC-Type” 
“int” 
“short” 
“long” 
 

Rule 1, 2: 
VP31 X VP31-1 
VP31 X VP31-2 
VP31 X VP31-3 
 

VP31<depends>VP31-1, 
VP31-2, VP31-3 
Cond = - 
Action = variant 
 

13 VP31 
VP31-1 
VP31-2 

Var. point 
Variant 
Variant 

_ Rule 7: 
If(VP31 !=null && 
VP31 ==VP31-1 ||  

VP31 <requires>VP30? = VP31 

Cond1 = (VP30? == LC-Type) 



VP31-3 
VP30 
 

Variant 
Var. point 
 

VP31 ==VP31-2 ||  
VP31 ==VP31-3) 
IMPLIES  
VP30?==LC-Type 

Action = variant1 

18 VP4 
VP4-1 
VP5 
VP5-1 
 

Var. point 
Variant 
Var. point 
Variant 

_ Rule 5: 
If(VP4==VP4-1) 
IMPLIES 
VP5 == VP5-1 
 

VP4-1<requires>VP5-1 
Cond1=“VP5==Twoway” 
Action= variant1 

19 VP4 
VP4-1 
VP5 
VP5-2 
 

Var. point 
Variant 
Var. point 
Variant 

_ Rule 5: 
If(VP4==VP4-1) 
IMPLIES 
VP5 == VP5-2 
 

VP4-1<requires>VP5-2 
Cond2=“VP5==Oneway” 
Action= variant2 

 

a) The variability contracts of Phase II are transformed 
(again according to specific algorithms) into an XML-
ready repository of these contracts.  

b) Everywhere in the domain contracts where a plugIn 
label is used, a variability selection template is inserted. 
Given our specific approach to template processing, in 
our work these variability selection templates take the 
form of XSLT style sheets as explained at length in [4].  

Finally, in order for these selection templates to be able 
to use the information of the variability contract 
repository, we still need to augment the domain contracts 
with XSLT code to bridge to the variability contract 
repository. At the end of phase III, both the variability 
contracts and the domain model have been transformed 
into XML-based artifacts that serve as input to the 
template-based generator, which also requires a 
configuration list specifying the exact list of feature 
values (i.e., the configuration) to be used to generate a 
specific member of the domain. Phase IV of our approach 
deals with the generation of such a member contract, that 
is, of an ACL contract corresponding to the specific input 
configuration list at hand. In a nutshell, the configuration 
list, as well as the variability contracts and selection 
templates (compiled using both an XML and an XSLT 
compiler) are integrated. The resulting ACL contract can 
then serve as input to ACL/VF so that it can be compiled 
and tested.  

4. CONCLUSION 
The main contribution of this work is a domain-

independent generative process we propose for obtaining 
ACL member contracts from ACL-based domain and 
variability contracts. It is worth repeating that this process 
is comprehensive inasmuch as it addresses how the two 
traditional artifacts of domain engineering, namely a 
feature diagram and a feature grammar, can be evolved 
into domain and variability contracts whose XML 
equivalents serve as inputs (along with a configuration 
list) to the proposed generative process, which generates a 
member's contract (that can be compiled and run in 
ACL/VF).  

ACL/VF is still an experimental model-based testing 
tool at this point in time, with advantages and drawbacks 
that its creators have discussed elsewhere [3]. We chose it 
to illustrate the power and generality of the template-
based approach to generation advocated by Cleaveland 
[7]) for two main reasons:  

1) It's a textual requirements language and ACL/VF 
already produced an XML equivalent of the ACL 
contracts specified by a user [1]. (Dealing with a visual 
language is somewhat more complex.) 

2) The semantics of ACL are sufficiently 
comprehensive to tackle domain modeling and yet, most 
importantly, almost all of ACL's semantic elements (e.g., 
responsibilities, scenarios, observabilities, etc.) are 
relevant to variability.   

Furthermore, we stress that, in contrast to many existing 
generative approaches, we have not only defined the 
artifacts relevant to the generative process but, most 
importantly, we also specified elsewhere [4] detailed 
algorithms to go from the more abstracts artifacts to those 
directly used by the generator. In fact, these algorithms 
inherently define traceability between the different 
artifacts of Figure 2. In turn, such traceability is essential 
to support an iterative approach to domain and application 
engineering. We also emphasize that, in contrast to many 
existing approaches (e.g., [18]), these algorithms do not 
assume that the user only inputs valid configurations. 
Such an assumption is a gross oversimplification: in our 
opinion, 'enforcing' that a configuration does respect the 
rules of a feature grammar must be automated, as is the 
case in our solution. Similarly, our work does not depend 
on any notion of the 'semantic correctness' of a feature 
diagram, feature grammar or domain contract supplied by 
a user. Such notion appears quite problematic [1]. 

Finally, the validation of our solution for the generation 
of an ACL member contract from domain contracts, 
variability contracts and a configuration specific to that 
member rests two extensive case studies. Both case 
studies [4] pertain to containers, reflecting the fact that the 
use of off-the-shelf component (COTS) libraries is 
pervasive in current software development processes. The 



first case study focuses specifically on sequential 
containers (such as arrays, lists, stacks and queues). This 
choice was straightforward given existing work [9, 19] on 
feature modeling across a large set of such container 
libraries (including those found in the Standard Template 
Library of C++). In other words, we wanted to avoid the 
all-too-frequent 'toy' example in favor of a realistic 
example based on public domain libraries. For our second 
case study, our focus was specifically on exercising more 
of the mechanisms we had developed for variability 
contracts.  To do so we decided to tackle another facet of 
the STL, namely associated containers (such as 

dictionaries, multisets, etc.). The point we want to 
emphasize is that having an actual code base to take 
inspiration from for domain modeling eliminated the risk 
of creating an artificial domain conveniently scoped to 
work with our proposal. But this choice also meant 
tackling the modeling of some of the complexities of 
actual industrial code. 

We have now turned our attention to the modeling of 
variability in design patterns, a radically different domain, 
in order to demonstrate that our proposal is not domain 
dependent.
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