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Abstract. The pervasiveness of camera technology in every-day life
begets a modern reality in which images of individuals are routinely
captured on a daily basis. Although this has enabled many benefits,
it also infringes on personal privacy. To mitigate the loss of privacy,
researchers have investigated methods of facial obfuscation in images. A
promising direction has been the work in the k-same family of meth-
ods which employ the concept of k-anonymity from database privacy.
However, there are a number of deficiencies of k-anonymity which carry
over to the k-same methods, detracting from their usefulness in practice.
In this paper, we first outline several of these deficiencies and discuss
their implications in the context of facial obfuscation. We then develop
the first framework to apply the formal privacy guarantee of differen-
tial privacy to facial obfuscation in generative machine learning models
for images. Next, we discuss the theoretical improvements in the pri-
vacy guarantee which make this approach more appropriate for practi-
cal usage. Our approach provides a provable privacy guarantee which
is not susceptible to the outlined deficiencies of k-same obfuscation and
produces photo-realistic obfuscated output. Finally, while our approach
provides a stronger privacy guarantee, we demonstrate through exper-
imental comparisons that it can achieve comparable utility to k-same
approaches in the context of preservation of demographic information in
the images. The preservation of such information is of particular impor-
tance for enabling effective data mining on the obfuscated images.

Keywords: Privacy protection · Facial obfuscation ·
Differential privacy · Neural networks

1 Introduction

With the ever expanding presence of devices used to capture photos and video,
visual privacy has become increasingly important. Images and video frames con-
taining faces are routinely captured, e.g., through cameras, closed-circuit tele-
vision systems [5], visual sensor networks [40] and a host of other devices and

The authors gratefully acknowledge the financial support from the Natural Sciences
and Engineering Research Council of Canada (NSERC) under Grants No. RGPIN-
2015-05390, No. RGPIN-2016-06253 and No. CGSD2-503941-2017.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
A. Holzinger et al. (Eds.): CD-MAKE 2019, LNCS 11713, pp. 229–249, 2019.
https://doi.org/10.1007/978-3-030-29726-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29726-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-29726-8_15


230 W. L. Croft et al.

methods. These systems have many benefits including mitigation of crime [5,40],
improved care in assisted-living [34], and useful services such as Google Street
View [17]. However, despite the benefits of the legitimate applications, the poten-
tial for infringement on personal privacy must be taken seriously.

Although many systems require only visual monitoring of behaviour, identi-
ties are often captured as well [40]. In some areas, the degree of public surveil-
lance is reaching levels where it becomes possible to profile and track much of
the population [34]. In cases where visual information is disseminated to the
public, such as with Google Street View, it is imperative to hide the identities
of individuals before the images are published [15]. Failure to sufficiently pro-
tect privacy may allow undesirable inferences to be drawn about individuals or
enable malicious activities such as voyeurism or stalking. Users of mobile devices
have also expressed strong aversion to the collection of images from their mobile
devices via the applications they use [31]. Even in scenarios where users willingly
share images to online platforms, they have expressed concerns over who is able
to view their images [22]. In a similar context, the privacy of individuals cap-
tured in the backgrounds of images uploaded to such platforms should be taken
into consideration. Rich visual information from these sources combined with
the great advances in machine learning approaches to facial recognition (e.g.,
VGGFace [35]) make the exploitation of unprotected visual data a relatively
easy task. While such machine learning algorithms are no doubt beneficial in
many contexts, it is essential for approaches of privacy protection to be resistant
to them.

To protect the privacy of individuals, methods for hiding identity via manip-
ulation of the data can be employed. Many methods focus on the face as it
is often the most identifiable piece of information. Trivially, the face could be
covered by a uniformly coloured rectangle. This destroys all information about
the face, guaranteeing that it can no longer be exploited to reveal an identity.
However, this also destroys a great deal of utility. In scenarios where images are
shared in online platforms, users have expressed a strong aversion to the use
of such rectangles with respect to the visual quality and information content of
the images [28]. Less severe methods of obfuscation present trade-offs between
the level of privacy attainable and the utility of the data. Preservation of util-
ity is especially important for machine learning and data mining. Visual data
can be used to learn about customers in retail environments [29] and to detect
anomalous or illegal events [39]. It is therefore essential for a good method of
obfuscation to preserve as much of the non-sensitive information as possible.

A number of research directions have been explored for the obfuscation
of visual identity in images, e.g., pixelization, blurring, etc. [34]. While many
approaches lack a formal privacy guarantee, the k-same [33] family of approaches
has gained a great deal of traction, largely thanks to its guarantee that for a cho-
sen privacy parameter k, obfuscated individuals are indistinguishable within a
group of k potential true identities. While this privacy guarantee is appealing, it
suffers from susceptibilities (e.g., composition attacks [16]) carried over from the
disclosure control method of k-anonymity on which it is based. In this paper, we
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outline these susceptibilities in the context of privacy in images and propose an
alternative, based on differential privacy, which addresses these susceptibilities.

1.1 Contributions and Paper Outline

Our contributions in this work are as follows:

– We examine susceptibilities of k-same obfuscation to composition attacks and
background knowledge. We demonstrate how the privacy guarantee can be
violated and discuss the implications this has on privacy in images.

– To address the deficiencies of k-same obfuscation carried over from k-
anonymity, we propose as an alternative, the formal guarantee of differen-
tial privacy. We develop the first framework to apply differential privacy for
the obfuscation of facial identity in images via generative machine learning
models.

– We conduct a series of experiments to compare the quality of differential
privacy to k-same obfuscation on two well-known datasets. The results of
our experiments suggest that differential privacy offers a comparable level
of utility in the obfuscated images to k-same obfuscation even though the
privacy guarantee is improved.

We provide a review of existing work on the obfuscation of facial images
in Sect. 2. We then cover the deficiencies of k-same in Sect. 3 and lay out a
framework for differentially private obfuscation of images in Sect. 4. Finally, we
describe our experimental comparisons and their results in Sect. 5.

2 Literature Review

Perhaps the most well-known and earliest studied alterations to images for the
prevention of human recognition of faces are pixelization [21] and blurring [20].
Pixelization decreases the information conveyed in an image by dividing the
image into a grid of cells and setting all pixels within each cell to a common
pixel intensity. Blurring involves the addition of, typically Gaussian, noise to the
image. While these methods have been successful at foiling human recognition,
they have been shown to be highly ineffective against machine recognition [33].

Other ad hoc methods of privacy protection involving variations on blurring
[26], warping [24], morphing [23] and face swapping [3] have been studied, how-
ever, the methods which have gained the most momentum are those which offer
a formal guarantee of privacy. This trend has been reinforced by the legal and
legislative demands in the broader context of the release of sensitive data [4,38].
To this end, k-same approaches have been quite successful. These approaches
use an adaptation of k-anonymity [36], a concept from the field of database pri-
vacy which guarantees that an anonymized database record is linkable to at least
k possible identities. The first adaptation of this concept to image obfuscation
worked by aligning a set of input images on their facial features, partitioning
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the set into clusters of k or more similar images, and then averaging the pixels
within each cluster to produce an averaged face which would replace each of the
original faces in the cluster [33]. By releasing only the averaged faces, it could
be guaranteed that neither human nor machine recognition could do better than
identifying the cluster of identities which produced the image, thus limiting the
probability of successful re-identification by an upper bound of 1

k .
One issue with the original k-same averaging of pixels was poor visual quality

due to inexact alignment of facial features, leading to superimposed features.
The k-same-m [18] approach improved upon this by using an active appearance
model (AAM) [8] to obfuscate faces. AAMs are generative machine learning
models for the approximation of visual representations of a particular class of
objects (e.g., human faces). A model is trained on a set of images in order to
learn about visual patterns and minimize differences with respect to shape and
texture between the original images and the generated output of the model. The
k-same-m approach first trains an AAM and then performs the clustering and
averaging process within the parameter space of the model representations of
faces to be obfuscated, thus eliminating the issue of superimposed features.

More recently, generative neural networks (GNNs) have been applied for k-
same obfuscation [7,32]. GNNs are machine learning models which have shown
great success in the generation of visual representations of input class labels
[9]. A GNN passes the input labels through a sequence of convolutional layers,
transforming them into features of finer granularity at each layer until reaching
a pixel-space output. A training process adjusts weights used by filters in each
convolutional layer in order to learn feature representations which minimize a loss
function measuring the quality of the output. When trained on a set of images
using identities as class labels, a GNN is able to produce a visual approximation
of an identity based on an input class vector. By providing input vectors in which
k identities are specified, the GNN produces k-anonymous output.

Efforts have also been devoted to the preservation of utility in the obfuscated
images. The k-same-select approach [19] proposed partitioning the input images
into classes based on the information to be preserved (e.g., male and female
identities) before clustering such that the images within each cluster would share
the same class, thus preserving this information in the averaged version. This idea
has been extended to the k-same-m model by training a different AAM for each
combination over the demographic attributes of age, gender and race [10]. By
using the appropriately trained AAM for obfuscation, the attributes for which it
was trained can be preserved in the output. In the context of GNNs, preservation
of information has been considered by designing the network architecture to allow
for multiple input vectors over different types of classes [9]. This has been applied
to produce obfuscated images with specific facial expressions [32].

We note that differentially private obfuscation of images has been studied in
the context of noise applied to pixel intensities [13]. While achieving a strong
privacy guarantee, this leads to poor visual quality in the output as the obfus-
cated images no longer resemble the original class of the object (e.g., a human
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face). To the best of our knowledge, our work is the first to study differential
privacy applied to generative models for the obfuscation of facial images.

3 Weaknesses in Existing Facial Obfuscation

Given the importance of preserving privacy in images, a good method of obfus-
cation must assert a meaningful guarantee about the level of privacy it provides.
Without such a guarantee, it is impossible to formally assess the effectiveness of
the obfuscation. Empirical results may help to gain intuition on which approaches
appear promising, however, without a formal guarantee to back up the results,
it is impossible to assert that privacy will remain protected in untested scenar-
ios against unknown attacks. For this reason, we focus our attention only on
methods of obfuscation which offer a formal privacy guarantee.

The necessity of this restriction is underscored by the concept of parrot
attacks [33]. A parrot attack uses a neural network to classify identities using
labeled instances of obfuscated images as the training set. Having learned about
patterns in the obfuscation during training, the network is made much more effec-
tive at defeating the obfuscation. Despite pixelization being reasonably effective
against human recognition and even naive machine recognition, it can be com-
pletely defeated by a parrot attack. This formed a strong basis for the need of a
formal privacy guarantee such as that provided by the k-same family.

The k-same approaches employ a privacy guarantee derived from k-
anonymity [36] which asserts that the original identity for any obfuscated image
is indistinguishable from at least k − 1 others. This guarantee is a result of the
obfuscation process which draws upon clusters of k or more images to produce
averaged instances as replacements for all images in each cluster. This makes it
impossible for any software to achieve a better probability of re-identification
than 1

k .
However, the k-same guarantee relies on assumptions about the nature of

the attack. In this section, we discuss these assumptions. We show why they are
often unrealistic in practice, making the guarantee weaker than it appears to be.

3.1 Background Information

A well-known deficiency of k-anonymity is its susceptibility to attacks which
employ background information [2]. This refers to cases where the attacker uses
prior knowledge about the sensitive information to draw inferences which violate
the privacy guarantee. This concept carries directly over to the k-same privacy
guarantee. If, via prior knowledge, the attacker knows with certainty that some
of the k individuals could not be in the obfuscated image, they can discount them
from the set of k identities. An attacker could come by this knowledge in a num-
ber of ways: personal knowledge about friends and family, information scrapped
from other data sources such as social media, etc. The simple combination of
knowledge about the time at which an photo was taken and the approximate
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locations of some of the k individuals at that time can be enough to derive a
proper subset of the k individuals which violates the privacy guarantee.

Contextual information in an image can often enable these types of inferences.
Using signs, architecture or landscapes in an image, an attacker might recognize
the location or employ software to determine it. Knowledge about locations that
individuals frequent may greatly increase the probability of some possibilities
over others. Similarly, if some of the k identities are known to live in different
cities than where the photo was taken or worse yet, different continents, these
identities become much less probable. Other cues such as accessories or clothing
on obfuscated individuals may also greatly impact the probabilities accorded to
the k possible identities. Since the privacy guarantee asserts that each of the k
identities are equally probable, this is also in violation of the guarantee.

We note that the original k-same paper does acknowledge this vulnerability
to contextual information and asserts that the privacy guarantee applies strictly
to the information contained within the face, not to the image as a whole [33].
While this important distinction allows for the privacy guarantee to be upheld,
it is a major restriction on the practical applicability of the k-same guarantee.
Most contexts in which facial obfuscation is applied will be rich with contextual
information, making the privacy guarantee much less meaningful.

3.2 Composition Attacks

Another deficiency of k-anonymity is a susceptibility to composition attacks [16].
This is a class of attacks which exploit information from multiple, potentially
uncoordinated, obfuscated releases to violate the privacy guarantee. A simple
instance of this is the intersection attack. An attacker first identifies the clusters
in which a particular individual exists from two different releases. If the releases
were uncoordinated, the clusters likely differ, allowing the attacker to take their
intersection to achieve a new set with a cardinality less than k.

This attack again carries directly over to the k-same approach. Consider
a scenario where an individual takes a photo which they wish to upload to
social media. Privacy protection might be applied to the individual or perhaps
to bystanders who were captured in the background of the photo. Should the
individual decide to upload the same photo to two or more social media plat-
forms, the issue of uncoordinated obfuscation immediately arises. An attacker
needs only scrape these platforms for similar photos to apply an intersection
attack.

Intersection attacks may even be effective for multiple releases from the same
organization if care is not taken. For example, an individual may take consecutive
photos and then upload all of them. Algorithms for k-same determine clusters
based on the similarity of faces but many factors beyond facial identity (e.g.,
pose, angle and lighting) could impact similarity. It is therefore not unlikely that
multiple images of the same individual will result in different clusters. Sequences
of images uploaded in this way would be an ideal target for intersection attacks.

Most k-same approaches require each individual to appear only once in the
gallery of images to be obfuscated. This prevents intersection attacks for releases
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from the same organization but does not protect against uncoordinated releases
across multiple organizations. Furthermore, enforcing this restriction may be
very challenging in practice. While the primary subject in a photo might be
determined based on the account used to upload the photo, other individuals
in the photo cannot be correctly identified 100% of the time. Face recognition
software has not yet reached this level of accuracy. Without manual labeling,
such a policy cannot be enforced. Beyond this, the restriction of one image per
identity is very severe and does not match typical use cases for image sharing.

3.3 Other Difficulties

We discuss here two other difficulties that arise when using k-same obfuscation
in practice. Although these difficulties do not violate the privacy guarantee, they
hinder meaningful applications for k-same obfuscation in some contexts.

The first problem arises from the requirement of an input gallery of images.
This may be appropriate for scenarios where batches of images are obfuscated
but it is awkward to apply to cases where images are sporadically uploaded
(e.g., in social media platforms). One might consider the use of a preloaded static
gallery or even a dynamic gallery that gets updated as new images are uploaded.
This, however, is not a good solution since identities can then participate in more
than one cluster. Furthermore, if an attacker records information about identities
known to be in the gallery, those identities can be discounted when an image
is uploaded for a new identity. An alternative solution could rely on buffering
uploaded images to form a gallery which can eventually be used to release a
batch of obfuscated images. However, this necessitates a trade-off between the
size of the gallery (and thus the quality of the output) and ability to deliver a
timely service. In an era where users expect images to be uploaded instantly,
this is not likely to be a manageable trade-off. The release of multiple batches
also increases the chances of enabling composition attacks.

The second problem relates to the preservation of utility in the obfuscated
output. Approaches which partition the gallery according to classes to be pre-
served (e.g., combinations of age and gender) place an even greater strain on the
input gallery requirement. Working separately with the subset of images from
each class greatly reduces the number of images available for clustering. Such
an approach is not scalable for large numbers of classes that would be needed
for finely grained attention to utility. In the worst case, some classes may be
outliers in the overall distribution and could lack sufficient images to form a
cluster. These classes would have to be merged with others in order to achieve
the k-same guarantee, thus failing to achieve the desired granularity of classes.

4 Differential Privacy for Generative Models

Due to the deficiencies of the k-same privacy guarantee in practical applications
of facial obfuscation, we argue that a more robust privacy guarantee is required.
Following the advances in the field of database privacy, we consider the potential
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of differential privacy to provide a stronger privacy guarantee. In this section,
we first review basic theory of differential privacy. We then adapt the privacy
guarantee to fit the context of generative machine learning models for images
and we formalize a framework to apply differential privacy to facial images. We
discuss how the derived privacy guarantee addresses the issues identified with the
k-same approach. Finally, we apply our framework to implement differentially
private facial obfuscation using an AAM and a GNN.

4.1 Differential Privacy for Databases

A privacy guarantee which offers an absolute bound on re-identification risk
necessitates restrictive assumptions about the attacker. This is due to the fact
that it is impossible to prevent an attacker from learning about the sensitive
information through means other than the obfuscated release [11]. Differential
privacy recognizes this difficulty and instead adopts a privacy guarantee which
limits the increase in an attacker’s knowledge about the sensitive information.
In the context of databases, the goal is to release aggregate information about
the database while preventing that information from being exploited to derive
sensitive details about the individual records. Differential privacy functions by
using a randomization mechanism to add controlled noise to database query
responses in order to release useful responses while achieving a desired level of
indistinguishability between potential configurations of the database contents.

Two databases are considered to be adjacent if they differ by a single record.
Informally, the privacy guarantee enforces that any pair of adjacent databases
must be bounded within a multiplicative factor of eε (where ε is the privacy
parameter) in their probabilities of producing the same noisy query response.
This is often interpreted as a ratio of eε between these probabilities. With a
sufficiently small ratio, similar databases have similar probability distributions
over their noisy query responses, causing them to behave similarly with respect
to the noisy query responses they produce. This limits the usefulness of the
noisy responses as a means to distinguish between potential configurations of the
database. The privacy guarantee [12] in Formula 1 formally states this require-
ment in terms of any pair of adjacent databases D1,D2 ∈ D, where D is the set
of valid database configurations, and a randomization mechanism K : D → R

n,
where n ∈ Z

+.

Pr (K (D1) = R) ≤ eε Pr (K (D2) = R) ∀R ∈ R
n. (1)

To achieve this privacy guarantee, the mechanism K must take into account
the value of ε and the query sensitivity. The sensitivity ΔF of a query f : D → R

n

is defined as the maximum possible L1 distance between the query responses
for any pair of adjacent databases. The guarantee can be achieved by adding
to the query response a vector of n continuous random variables, each drawn
independently from a Laplace distribution with ΔF

ε as its scaling parameter [12].
The exponential decay of probability density in the Laplace distribution benefits
the utility of the mechanism by limiting the expected perturbation of the query
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responses. Through the selection of an appropriate value for ε, a data custodian
can control how much information is revealed about the contents of the database.

4.2 Framework for Generative Models

We now consider how differential privacy can be applied to generative models
for images. A generative model can represent images of instances from specific
classes (e.g., human faces) using a numeric representation which abstracts from
pixel intensities. Our goal is to protect the privacy of individuals in images by
modifying these numeric representations to prevent facial identification while
maintaining utility and visual quality. Differential privacy is ideal for this pur-
pose as it provides a robust guarantee against the accuracy of the inferences
an attacker can make about the original data. The application of noise to the
numeric representation of the model allows for the generation of photo-realistic
instances of novel human faces. This avoids the significant degradation in visual
quality which results from the addition of noise to pixel intensities.

When moving from the domain of databases to that of generative model
representations, the concepts of adjacency and query sensitivity can no longer
be applied for the configuration of a mechanism. In place of a database where
each record is an individual, we have a numeric representation of a single indi-
vidual. To protect sensitive data in this form, one can apply a generalization of
differential privacy to arbitrary secrets [6], where a secret is any numeric repre-
sentation of data. In our case, the secret is the generative model representation
of an individual. This generalization substitutes the notion of adjacency between
databases with distance between secrets. By controlling noise according to an
appropriate distance metric, the privacy guarantee is adapted to ensure that
similar secrets are highly indistinguishable while very different secrets remain
distinguishable. For a pair of databases, the distance between them is the num-
ber of records by which they differ. For other types of secrets, the distance metric
must be carefully chosen in order to provide an appropriate privacy guarantee.

The notion of distance between secrets is appropriate for the representa-
tion of images within a generative model. Any model which employs a numeric
representation of images allows for the calculation of distance between images.
While the exact representation of an image differs from model to model, they
can generally mapped to a vector of fixed length with little difficulty. We pro-
vide details on how this concept can be applied to both AAMs and GNNs in
Sect. 4.4. To develop a general framework here, we consider the representation
of an image to be a vector X ∈ R

n and the randomization mechanism to be a
function K : Rn → R

n used to produce an obfuscated instance of the image.
Although the differential privacy generalization only deals explicitly with one
and two-dimensional secrets [6], its generalization to an n-dimensional vector is
straightforward. We therefore adapt the privacy guarantee to suit this purpose
in Formula 2, using a distance function d : Rn × R

n → R.

Pr (K (X1) = R) ≤ eεd(X1,X2) Pr (K (X2) = R) ∀X1,X2, R ∈ R
n. (2)



238 W. L. Croft et al.

Comparing this to Formula (1), the databases D1 and D2 have been replaced
by secrets X1 and X2 and the distance function now appears in the exponent
of the multiplicative factor eε. The distance between any pair of secrets acts as
a coefficient to ε when interpreting the ratio of their probabilities. Intuitively,
the meaning is that the more similar a pair of images are to each other, the
harder is it to determine which of them led to a given obfuscated instance. This
hampers the accuracy with which attempts at re-identification can be made. To
achieve this guarantee, we must first determine an appropriate distance metric
to measure the distinguishability of the numeric representations of images.

A natural choice for the distance metric is L1 distance, however, we must be
wary of the meaning of each element in the vectors. Should certain elements have
differently sized ranges, they should be obfuscated using different magnitudes of
noise. If one element has a much larger range than the others, the addition of
noise configured to the smaller range would do little to prevent an inference of
high accuracy on the original value of the element. We therefore apply normal-
ization such that the distance between any pair of elements in the ith position
of a pair of vectors falls within the range [0, 1]. Letting Ri = [imin, imax] be the
range of elements in the ith position of a model representation vector, we define
a normalized, element-wise distance metric as follows:

de (x1, x2) =
|x1 − x2|

imax − imin
∀x1, x2 ∈ Ri. (3)

A distance metric for vectors defined as the sum of the element-wise distances
for each position would be appropriate for images represented by the same model.
However, a more useful framework would allow for reasoning about the level of
privacy across different models. Ideally, the meaning of a privacy parameter ε
applied to one model should have a similar meaning for a different model. For
this, we require another normalization to account for models having vectors of
different lengths. We therefore define the distance metric for vectors as follows:

d (X1,X2) =

n∑

i=1

de (X1i,X2i)

n
∀X1,X2 ∈ R

n. (4)

By using this distance metric in combination with Formula 2, we obtain a
meaningful privacy guarantee for the model representations of images. Although
this type of metric is not novel, its use in this context is. We must therefore
address how to configure a mechanism to satisfy this instantiation of the privacy
guarantee. This leads to our main result in the development of a framework for
the application of differential privacy to generative models for images.

Theorem 1. Any image X ∈ R
n can be protected by ε-differential privacy

through the addition of a vector (Y1, ..., Yn) ∈ R
n where each Yi is a random

variable independently drawn from a Laplace distribution using a scaling param-
eter σi = n(imax−imin)

ε .
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Proof. We must satisfy the privacy guarantee (Formula 2) using our proposed
distance metric (Formula 4). The form this privacy guarantee takes is our starting
point in Formula 5. Through manipulation of this inequality and the substitu-
tion of mechanism probabilities with a Laplace distribution, we prove that the
selection of an appropriate scaling parameter for each instance of the Laplace
distribution allows for the privacy guarantee to be satisfied.

n∏

i=1

Pr (K (X1i) = Ri) ≤ e

ε
n∑

i=1
de(X1i,X2i)

n

n∏

i=1

Pr (K (X2i) = Ri) ∀X1, X2, R ∈ R
n. (5)

n∏

i=1

Pr (K (X1i) = Ri) ≤
n∏

i=1

e
εde(X1i,X2i)

n

n∏

i=1

Pr (K (X2i) = Ri) ∀X1, X2, R ∈ R
n. (6)

n∏

i=1

e− |X1i,Ri|
σ

2σ
≤

n∏

i=1

e
εde(X1i,X2i)

n

n∏

i=1

e− |X2i,Ri|
σ

2σ
∀X1,X2, R ∈ R

n. (7)

n∏

i=1

e
|X2i,Ri|−|X1i,Ri|

σ ≤
n∏

i=1

e
|X2i−X2i|

σ ≤
n∏

i=1

e
εde(X1i,X2i)

n ∀X1, X2, R ∈ R
n. (8)

n∏

i=1

e
εde(X1i,X2i)

n =
n∏

i=1

e
ε|X2i−X2i|

n(imax−imin) ∀X1,X2. (9)

From Formula 9, it becomes clear that the inequality holds when using an
independent Laplace distribution for each pair of elements X1i,X2i, substituting
the scaling parameter σ with a corresponding value σi = n(imax−imin)

ε . ��
Using the generalization of differential privacy, the notion of query sensitivity

is implicitly captured in the distance metric. Since the distance metric of Formula
(4) has a range of [0, 1], the ratio of probabilities for a pair of maximally dissimilar
images to produce the same obfuscated output is eε. This is akin to the meaning
of the privacy guarantee for a pair of databases which differ on every record. In
order to select an appropriate value of ε, a data custodian must keep in mind
that similar images will have a very small distance between them, requiring much
larger values of ε to provide a reasonable ratio. In Sect. 5, we demonstrate the
implications of the choice of ε on the levels of privacy and utility.

4.3 Benefits of Differentially Private Facial Obfuscation

We now describe the improvements we obtain from the use of differential privacy
for each of the problems identified in Sect. 3.

Background Information. By removing dependence of the attack model on
an absolute level of re-identification risk, we are able to reason about the level of
privacy in the presence of attackers with background knowledge. If the location
in a photo is identified as a particular city, no facial obfuscation can prevent
the inference that individuals living in the identified city have a higher probabil-
ity of being the obfuscated identity than individuals living elsewhere. Yet, the
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differential privacy guarantee continues to hold as the background information
does not impact the conditional probability distribution used by the random-
ization mechanism. Since the privacy guarantee concerns only the change in the
attacker’s knowledge when presented with the obfuscated data (e.g., the face),
it is unaffected by other sources of information the attacker may gain access to.

Composition Attacks. Another very important property of differential pri-
vacy is its resilience to composition attacks. The composition theorem [12] states
that for two differentially private releases using privacy parameters ε1 and ε2
respectively, the privacy guarantee holds for a privacy parameter ε = ε1 + ε2.
Thus, even in the case of uncoordinated releases, we still have a valid privacy
guarantee. Furthermore, this removes the restriction on the same individual
appearing only once in the release of obfuscated images.

Input Image Gallery. Differentially private image obfuscation has no need
for a gallery of images in order to perform obfuscation. Since noise is added on
a per-image basis, there is no computation of clusters required. Given a trained
model, obfuscation of a single image or a batch of images can be performed with
ease. This makes the obfuscation process much more versatile.

4.4 Implementation Details

AAMs and GNNs have the very useful property of producing photo-realistic
images. We now describe how our framework can be applied to these models.
Provided that the addition of noise is properly controlled, the output will be a
photo-realistic image of any newly created identity.

The AAM representation of an image consists of a shape vector and a texture
vector. We take the concatenation of these vectors as the overall model vector.
It is important to note that this gives a representation of the identity which is
strictly contained within the contour of the face, leaving features such as hair and
ears as contextual information which is untouched by the obfuscation. This is
not ideal for the goal of hiding an identity since this contextual information can
greatly facilitate inferences about the identity. Although in theory an AAM could
be designed to incorporate the hair and ears, we are unaware of any research in
which this has been done. Thus, although we include AAMs in our experimental
comparisons, we recommend the use of GNNs instead.

For GNNs, we consider architectures which take one or more class vectors as
input and employ up-convolution to transform the input into a visual represen-
tation in pixel space [9]. By considering each identity to be a different class, an
input vector can specify the individual to be generated. The identity class vector
is an obvious choice as the model vector to be obfuscated. However, this leads
to some form of interpolation between the identities. To apply a finer degree of
modification to the identity, we propose the application of obfuscation at the
second layer of the network. Typically, the second layer applies convolution to
the class vector and transforms it into a vector of numeric representations of high
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level facial features. By applying obfuscation to these features instead, we can
achieve a richer variety in the potential modifications to the face. We therefore
apply obfuscation to the output of the first convolutional layer of the network
and pass the obfuscated feature vector on as the input to the next layer of the
network. A sample architecture is shown in Fig. 1.

Fig. 1. Visualization of the layer architecture in an up-convolutional neural network
using differential privacy. Noise is applied to the output of the second identity layer.
The numbers and shapes of the convolutional layers shown here are not exact and
represent only the general structure of such a network.

Information about the range of each model vector element can be used as a
means to preserve the visual quality of the obfuscated output. Noisy elements
which have gone too far beyond the valid range may lead to visual artifacts or
distortions in the output image. To prevent this, we snap any out-of-bounds
noisy value back to the nearest valid value. Since differential privacy is resistant
to any form of post-processing [12] and the ranges of the elements are non-
sensitive information, this step cannot violate the privacy guarantee.

5 Experiments

In this section, we run an experimental comparison between our proposed imple-
mentation of Sect. 4.4 and k-same implementations following the designs of k-
same-m [18] and k-same-net [32]. We employ these experiments to gain insight
into the relative performances of differential privacy and k-same obfuscation in
the context of a trade-off between re-identification risk and utility.

5.1 Experimental Design and Results

We have implemented AAM obfuscation using AAM-API [37] for model train-
ing and generation of output. For GNN obfuscation, we have built on top of the
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DeconvFaces [14] network which implements the concept of up-convolution for
the generation of images of input classes [9]. For both models, we have applied
differential privacy as described in Sects. 4.2 and 4.4. For the k-same implemen-
tation in the AAM, we have followed the process of k-same-m [18]. For the GNN,
we have followed the approach of k-same-net [32]. In both cases, we have imple-
mented clustering as described for k-same-m. This deviates from the use of a
proxy gallery as described for k-same-net. It is important to note that, while a
proxy gallery can reduce re-identification risk, it involves a step which is external
to the k-same privacy guarantee. Thus, in the absence of a privacy guarantee
which incorporates this detail, we omit the use of a proxy gallery in order to
focus our experiments on the formalized aspects of the privacy guarantees.

We apply each method of obfuscation to two different datasets - RAFD [25]
and KDEF [30]. These datasets provide frontal facial images of subjects wear-
ing same coloured shirts. The use of same coloured shirts prevents bias in re-
identification from the exploitation of information in unique clothing. The RAFD
and KDEF datasets contain images of 67 and 70 subjects, respectively, and pro-
vide a variety of facial expressions. Due to apparent issues with lens exposure in
the KDEF dataset, we have removed two of the subjects from our experiments.

The GNN architecture accepts class vectors for identity and facial expression
as input. The RAFD and KDEF datasets are therefore highly suitable for this
network. We have trained the network for 1000 epochs on each of the datasets
to obtain models capable of reproducing these identities. An example of obfus-
cated output is shown in Fig. 2. The AAM has the advantage of being able to
approximate previously unseen identities. To use this in our experiments, we
have trained a model for each dataset using the other dataset (e.g., RAFD as
training data for KDEF) with pre-processing to adjust the colour saturation
of the training data in order to better match the target data. Since the train-
ing requires annotations of facial landmarks, we have employed OpenFace [1] to
compute high accuracy approximations of the landmarks.

Fig. 2. Obfuscation via the GNN on the RAFD dataset. The top row employs differ-
ential privacy and the bottom row employs k-same obfuscation.
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To measure re-identification risk, we have employed VGGFace D [35], a deep
convolutional neural network which has been shown to achieve excellent facial
identity classification accuracy. This simulates how an attacker might leverage
machine learning models to launch an attack on obfuscated images. We have
trained a separate model for each dataset, using the neutral and sad expressions
for each identity for validation and the remaining expressions for training. To
improve the robustness of the models, we have also augmented the datasets by
creating two additional versions of each image - one with increased contrast and
one with decreased contrast.

In our experiments, we generate obfuscated images having a neutral facial
expression. We measure re-identification risk based on the accuracy of the top
1 guesses of the VGGFace network. Given that differential privacy is a stochas-
tic process, for each combination of a privacy parameter and an identity to be
protected, we have generated 10 obfuscated instances over which we take the
average of the re-identification risk. We measure overall re-identification risk for
a given privacy parameter as the average risk over all individuals in the dataset.
Since the k-same approaches are deterministic, we produce only a single output
image per identity and then take the average re-identification risk over the whole
dataset (Fig. 3). In contrast to the typical ε values applied to differentially pri-
vate mechanisms for databases, the values used in our experiments may appear
unusually high. The larger magnitude is simply a side-effect of the normalization
for the model vector, resulting in the interpretation of ε on a different scale.

To compare the methods of obfuscation in terms of utility, we have focused on
gender classification in the obfuscated output. As forms of demographic classifi-
cation may be desirable for data mining purposes, we consider high classification
accuracy to reflect good utility. To this end, we employ a convolutional neural
network for the classification of gender in facial images [27]. Since we wish to
compare differential privacy to k-same obfuscation, we plot the data as a func-
tion of identity classification error in order to abstract away from the proprietary
privacy parameters (Fig. 4). Given the poor obfuscation achieved by the AAMs,
we omit them from this comparison. To highlight the ability of GNNs to incorpo-
rate properties relevant to image utility into the network architecture, we have
also created a modified version of the architecture which preserves gender in the
obfuscated output. To do so, we have created an input layer having two classes
which specify the gender in the image. By training a model with gender labels, it
learns to separate features relevant to gender from those relevant to identity. This
enables us to focus obfuscation only on the features relevant to identity while
leaving the gender feature vector untouched. An example of gender-preserving
obfuscation is shown in Fig. 5.

5.2 Discussion

We first consider the results on re-identification risk. It is immediately notable
that the AAMs are ineffective at privacy protection, even under severe privacy
settings. This is due to the contextual information outside of the facial contour
such as the hair, ears and neck. In an alternative setting, the obfuscated face
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Fig. 3. Identity classification accuracy for the methods of obfuscation

Fig. 4. Gender classification accuracy for the methods of obfuscation
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could be released on its own (e.g., against a black background) to prevent leak-
ing this contextual information. While this would greatly improve the privacy
protection, it would omit a great deal of useful information in the image and
would lead to an output which is not very visually pleasing. We expect that in
most practical situations, it is desirable to release a full version of the image.
We therefore recommend against the use of AAMs for obfuscation, at least in a
form which does not obfuscate the full head.

Fig. 5. Gender-preserving obfuscation via the GNN on the RAFD dataset. The top
row employs differential privacy and the bottom row employs k-same obfuscation.

The k-same AAM results clearly demonstrate the violation of the k-same
privacy guarantee since the re-identification risk is well above the theoretical
maximum. We again note that if we only consider information within the con-
tour of the face, the guarantee is not violated, however, such a guarantee is not
useful in most practical situations. With differential privacy, we maintain a mean-
ingful privacy guarantee for images which contain such information. Although
our experiments do not illustrate the susceptibility of k-same obfuscation to
composition attacks, we plan to demonstrate this in future work.

In the gender classification comparisons, we see that the basic models for
differential privacy and k-same obfuscation suffer a degradation in classification
accuracy at high levels of privacy protection. Comparing the gender-preserved
models to their basic counterparts, we see a large improvement in the classifica-
tion accuracy, suggesting that this is an effective approach for the preservation
of specific properties in the obfuscated output. In some cases, the classification
accuracy of the obfuscated images has surpassed that of the original data. This
is a result of the explicit specification of gender labels in the network input which
can lead to obfuscated identities that more prominently display these features.

The overall comparison between the utility preserved in differential privacy
and k-same obfuscation appears to be inconclusive in these results. Some exper-
iments show better results for differential privacy while other experiments show
better results for k-same obfuscation. The k-same results are also more difficult
to assess given the sporadic nature of the plots. This is likely due to changes
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in clusters between each level of obfuscation which can greatly impact classifi-
cation accuracy, both for identity and for gender. It is clear that the utility is
also data-dependent given the variations in the results seen on the two datasets.
Notably, many subjects in the KDEF dataset, including some males, have long
hair whereas all subjects in the RAFD dataset have short hair. The males with
long hair in KDEF may have contributed to the lower gender classification
accuracy.

Given that differential privacy offers great improvements in the privacy guar-
antee over k-same obfuscation and that the levels of utility in our experiments
appear to be similar between the two approaches of obfuscation, we consider
differential privacy to be a preferable choice for the obfuscation of facial images.

6 Conclusions

We have studied how to obtain a formalized privacy guarantee for the obfusca-
tion of facial images in practice. We have identified shortcomings of the k-same
privacy guarantee including susceptibilities to background information and com-
position attacks as well as the awkwardness in the requirement for a gallery of
input images. To improve upon this, we have proposed the use of differential pri-
vacy in the context of obfuscation applied to generative models for images. We
have developed a framework which provides a meaningful privacy guarantee for
such models and we have derived the configuration of Laplace mechanism which
can achieve this privacy guarantee. Our approach preserves the privacy guarantee
in the presence of attackers with background information, provides resistance to
composition attacks and removes the requirement for a gallery of input images.
We have implemented both our proposed framework as well as k-same obfus-
cation in order to run experimental comparisons. Through our comparisons, we
have shown that this application of differential privacy can achieve comparable
utility to k-same obfuscation. We conclude that the key improvements in the
privacy guarantee combined with comparable levels of utility make differential
privacy a much more appropriate choice for the obfuscation of facial images.
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