
Storage and Rack Sensitive Replica Placement
Algorithm for Distributed Platform with Data as

Files
Vinay Venkataramanachary

Systems & Computer Engineering
Carleton University

vinay.venkataramanach@carleton.ca

Enrique Reveron
Systems & Computer Engineering

Carleton University
enrique.reveron@carleton.ca

Wei Shi
School of Information Technology

Carleton University
wei.shi@carleton.ca

Abstract—Distributed File System (DFS) is a key component in
cloud and data center networking. Frequent hardware failure and
network bottlenecks in the underlying infrastructure degrade the
performance significantly. Replica technique provides enhanced
fault tolerance by storing multiple replicas of a single data block.
In the Hadoop platform, the Hadoop Distributed File System
(HDFS) handles data storage and provides replica placement
services. The Default HDFS replica engine adopts a simple rack
aware policy and is designed to improve fault tolerance by storing
data blocks in multiple racks. However, the HDFS replica engine
does not consider key performance indicators of data center
resources such as rack utilization and node storage utilization.
Furthermore, in HDFS data is stored as uniformly divided small-
sized blocks, which increases traffic flow during the entire file
access, therefore degrading the response time. In this research,
we propose a Storage and Rack Sensitive (SRS) replica placement
algorithm that aims at improving the rack and storage utilization
of data center resources. The proposed algorithm also attempts to
optimize traffic flow during file access by storing data as original
files instead of small uniform blocks. Experimental results of
the proposed SRS algorithm are compared against the default
HDFS replica distribution and significant improvement on rack-
utilization and storage-utilization were observed. Furthermore,
latest literature confirms that the ”Data as a File” approach
indeed decreases the amount of data flow caused by file access
traffic.

Index Terms—Hadoop distributed file system (HDFS), Replica
Engine (RE), Replica Factor (RF), Data Node, Name Node, Data
Locality.

I. INTRODUCTION

Hadoop is an open-source software utility platform which
enables distributed computing, Hadoop Distributed File Sys-
tem (HDFS) stores and manages the data objects and offers
enhanced fault tolerance via replica engine. HDFS divides a
file into multiple chunks known to be as data blocks of equal
sizes for replica storage [1]. HDFS uses a simple rack aware
policy and random replica placement strategy. For replica
factor three, the replication engine places the first data block
on one data node of a random rack and the second data block
on a remote rack and the third data block on the same remote
rack [2]. Table 1 shows replica distribution obtained for three
racks environment for replica factor three and thirty five data
blocks. [3]. From Table I, it is observable that HDFS replica
placement is non-uniform and rack utilization percentage is

erratic resulting in under-utilized nodes and due to multiple
data blocks for a file, it increases traffic flow when a file is
accessed [4]. Challenges associated with default HDFS replica
distribution can be summarized as 1) Non-uniform replica data
block distribution leading to under-utilization of racks, 2) Un-
accounted storage utilization of nodes and racks, 3) High data
block movements increase response time during the file access.

In this research, we propose a weighted function based
Storage and Rack sensitive replica placement algorithm (SRS)
to address the issues in default HDFS replica distribution
and three critical performance parameters are introduced for
performance evaluation purpose, followed by an experimental
evaluation of the proposed algorithm using a simulated data
center rack environment workload. Results obtained for replica
distribution is analyzed and compared with the default HDFS
replica distribution scheme, further analysis of performance
parameter shows significant improvements in the proposed
algorithm in addition to the benefits of data as a file approach.
This paper is organized to present related work in section II,
followed by SRS Algorithm in section III, algorithm imple-
mentation and results are presented in section IV, research
conclusions and future work are discussed in section V.

II. RELATED WORK

Kumar P J et. al. in [5] presents a multi attribute QoS aware
replica distribution algorithm for HDFS platform, proposed
algorithm considers various input attributes such as incoming
request metrics, available space, replica factor to generate a
balanced replica distribution while satisfying the QoS needs
specified by user and aims at minimal or zero QoS violation.
However, this algorithm does not focus on storage utilization
which is an essential cost component for data center opera-
tions.

Ibrahim et al. in [3] propose an intelligent data placement
algorithm IDPM, a heuristic rack aware policy which uses
the number of free nodes in a rack with least load iterations
to distribute the replica blocks achieving uniform distribution
with a high data node utilization. Results observed show
balanced replica distribution of data blocks across all the
nodes of the racks across the cluster. However, IDPM does not
consider storage utilization performance parameter and traffic
flow issues during file access.

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

978-1-7281-3187-0/20/$31.00 ©2020 IEEE 535Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Default HDFS Replica placement for three rack environment with Replica Factor =3 [3]

Wei Dai et al. in [6] propose a partition replica placement
policy where all available nodes are divided into three sections.
Section 1 will have about two-thirds of nodes and the first two
replicas will be placed in this section and the remaining one-
third of the nodes will form the second section where the third
replica will be distributed to achieve even distribution of data
blocks. High rack utilization is observed. However, since data
is considered as blocks, traffic flow issue due to file access
still exists.

III. STORAGE AND RACK SENSITIVE REPLICA
PLACEMENT ALGORITHM

General description: Proposed Storage and Rack Sensitive
(SRS) replica placement algorithm is a combination of rack
aware policy and storage sensitive policy. The fundamental
strategy of the proposed heuristic algorithm is to consider the
data as a file itself to reduce traffic flow during file access and
since files will be of different sizes, the algorithm employs
storage sensitivity to achieve uniform storage utilization. Rack
sensitivity is achieved by computing the free data node and
free racks in real-time. Storage sensitivity is achieved by
computing overall storage for each rack and all the nodes in
real-time. A weighted function is introduced to combine rack
sensitivity and storage sensitivity for replica placements.

Weighted function: A mathematical model to perform
uniform distribution with weighted control inputs based on
cluster information and allows influencing a specific input
to achieve an even replica distribution in an uneven storage
rack environment for uneven file size. In the proposed SRS
algorithm, racks of uneven storage capacity, free nodes and
node storage capacity are the control inputs, end-user will be
able to key in and modify the weighted function according
to the local environment setup. Eq 1. describes the weighted
function for simulated rack environment workload described
in section IV where n is the number of files, f is replica factor,
a is free rack storage utilization defined in eq 2, b is free node

available in racks defined in eq 3, and c is free node storage
utilization defined in eq 4.

SRS =

nf−1∑
n=0

a ∗ 2b ∗ c

4
(1)

(a) free rack storage utilization:

a = (
(free rack capacity − file size)

free rack capacity
) ∗ 100 (2)

(b) free nodes:

b = (
(free rack nodes − 1)

free rack nodes
) ∗ 100 (3)

(c) free node storage utilization:

c = (
(free node capacity − file size)

free node capacity
) ∗ 100 (4)

Rack & node selection criteria: A rack is avoided and is
not considered for a third replica placement if the first and
the second replica was placed in the same rack, a rack is
avoided if any of the nodes in a rack do not have enough
storage individually to store the file, A rack and data node
is selected if it returns maximum value for the weighted
function. Replicas are assigned to nodes from left to right
with the lowest node number, first, free node available with
storage greater than the file size is chosen.

Algorithm: Rack and node Selection function

1) for each rack [0 . . . number of racks - 1]
2) calculate free rack and node storage capacity
3) calculate weighted function, end for
4) best rack is rack with maximum weighted function
5) current node = returned by node selection criteria
6) update cluster
7) return best rack and current node

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

536Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

IV. ALGORITHM IMPLEMENTATION & RESULTS

Simulation workload data: Test workload considered for
evaluation is as follows, 1) Three rack environments: R0, R1,
R2 with 5, 3 and 7 internal nodes respectively for each rack,
2) Total rack storage: R0: 5 TB, R1: 1.8 TB, R2: 3.5 TB, 3)
Internal node storage: R0: 1.0 TB per node, R1: 0.6 TB per
node, R2: 0.5 TB per node, 4) Input files: total files:35, varying

file sizes generated by a random generator, 5) Replica factor is
3. Results obtained for the said workload is presented below.
Table II represents SRS replica distribution, Table III presents
analysis of per rack storage and overall rack utilization of
proposed SRS v/s default HDFS replica distribution, Table IV
represents per node storage utilization comparison of SRS v/s
default HDFS, and Fig 1 presents analysis of per node storage
utilization for SRS v/s default HDFS replica distribution.

TABLE II: Storage and Rack sensitive replica distribution results for data as files of different size

TABLE III: Analysis of per rack storage and overall rack utilization of proposed SRS v/s default HDFS replica distribution

TABLE IV: Per node storage utilization for proposed SRS v/s default HDFS replica distribution

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

537Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Analysis of per node storage utilization of proposed
SRS v/s default HDFS replica placement algorithm.

Evaluation Parameters: To evaluate the results obtained,
three performance parameters are introduced and defined
which directly relates to resource costs and issues identified
in HDFS. Per Node storage utilization (NSu)

NSu = (
Total storage used on a node
Storage capacity of the node

) ∗ 100 (5)

Per Rack storage utilization (RSu)

RSu = (
Total storage used on a rack

Total storage capacity of Rack
) ∗ 100 (6)

Overall Rack utilization (ORu)

ORu = (
Total node − Non-Utilized node

Total node cells
) ∗ 100 (7)

Result analysis: Table II shows replica distribution results
obtained from the proposed SRS replica placement algorithm
which shows significant improvement in the reduction of non-
utilized data nodes as compared to HDFS replica distribution
in Table I. In default HDFS replica placement, rack 0 has four
un-utilized rack nodes (0,2,3,4) and least utilized rack node has
only three files but can accommodate maximum of eleven files,
also rack 0 has eight un-utilized data nodes(4,5,6,7,8,9,10,11)
where data nodes 8,9,10,11 are least utilized with just one file
but can store maximum of five files, rack 1 and rack 2 has
a total of thirty-five un-utilized data nodes. However, results
obtained in the proposed SRS replica placement algorithm
shows that rack 0 has full utilization and two un-utilized data
node in rack 1 and rack 2 respectively, projecting significant
improvement in proposed SRS algorithm.

From the results obtained for evaluation parameters and
analysis on the same in Table IV and Fig 1, it is evident to
notice that the proposed SRS algorithm has near to uniform
distribution and uniform storage utilization within the rack and
across the data center indicating optimal system resource uti-
lization. Rack storage utilization of greater than 100 percent in
default HDFS distribution indicates that for a given workload,
HDFS requires additional rack and node capacity to store the

replicas as compared to the storage infrastructure required by
proposed SRS replica distribution to store the same replicas.

Analysis of Data as a file approach: Since all data is con-
sidered as files (not divided into multiple blocks), data locality
for a given file will be maximum [7] due to decreased access
overheads which primarily address the challenges in default
HDFS algorithm. Improved data locality factor accounts to
decrease of traffic flow across cluster nodes and also increases
the data access response time by avoiding index overhead
delays at name node. Ciritoglu et. al. in [8] and [9] proposes
a heterogeneity-aware replica deletion scheme which attempts
to optimize resources by resizing replica factor. Data as a file
approach in such a setting would be effective in computing
data popularity related metrics.

V. CONCLUSION & FUTURE WORK

In this research, we proposed a Storage and Rack sen-
sitive smart replica placement algorithm which addresses
three main challenges of the default HDFS replica placement
techniques, 1) Non-uniform replica data block distribution, 2)
Non-uniform utilization of storage resources and 3) Increased
file access traffic. Three performance evaluation parameters
were introduced to quantify and compare the results with
default HDFS replica placement algorithm and analysis shows
significant improvement in utilization of per node storage, per
rack storage and overall rack. Analysis and optimization of
compute overheads for SRS are considered for future work.

ACKNOWLEDGEMENT

The authors gratefully acknowledge financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Grant No. RGPIN-2015-05390.

REFERENCES

[1] D. Borthakur et al., “Hdfs architecture guide,” Hadoop Apache Project,
vol. 53, no. 1-13, p. 2, 2008.

[2] A. K. Karun and K. Chitharanjan, “A review on hadoop—hdfs in-
frastructure extensions,” in 2013 IEEE conference on information &
communication technologies. IEEE, 2013, pp. 132–137.

[3] I. A. Ibrahim, W. Dai, and M. Bassiouni, “Intelligent data placement
mechanism for replicas distribution in cloud storage systems,” in 2016
IEEE International Conference on Smart Cloud (SmartCloud). IEEE,
2016, pp. 134–139.

[4] R. K. Grace and R. Manimegalai, “Dynamic replica placement and
selection strategies in data grids—a comprehensive survey,” Journal of
Parallel and Distributed Computing, vol. 74, no. 2, pp. 2099–2108, 2014.

[5] P. Kumar and P. Ilango, “Bmaqr: balanced multi attribute qos aware
replication in hdfs,” International Journal of Internet Technology and
Secured Transactions, vol. 8, no. 2, pp. 195–208, 2018.

[6] W. Dai, I. Ibrahim, and M. Bassiouni, “A new replica placement policy
for hadoop distributed file system,” in 2016 IEEE 2nd International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing
(HPSC), and IEEE International Conference on Intelligent Data and
Security (IDS). IEEE, 2016, pp. 262–267.

[7] N. Mansouri and M. M. Javidi, “A hybrid data replication strategy with
fuzzy-based deletion for heterogeneous cloud data centers,” The Journal
of Supercomputing, vol. 74, no. 10, pp. 5349–5372, 2018.

[8] H. E. Ciritoglu, J. Murphy, and C. Thorpe, “Hard: a heterogeneity-aware
replica deletion for hdfs,” Journal of big data, vol. 6, no. 1, p. 94, 2019.

[9] H. E. Ciritoglu, T. Saber, T. S. Buda, J. Murphy, and C. Thorpe, “Towards
a better replica management for hadoop distributed file system,” in 2018
IEEE International Congress on Big Data (BigData Congress). IEEE,
2018, pp. 104–111.

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

538Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

