
Sensor Deployment by a Robot in an Unknown
Orthogonal Region: Achieving Full Coverage

Eduard Mesa-Barrameda †, Nicola Santoro †, Wei Shi §, Najmeh Taleb †

†School of Computer Science
Carleton University, Canada

§Faculty of Business and Information Technology
University of Ontario Institute of Technology, Canada

E-mail: emesabarrameda@gmail.com, santoro@scs.carleton.ca, wei.shi@uoit.ca, najmehtaleb@hotmail.com

Abstract—When deploying a wireless sensor network in an
unknown environment, commonly referred to as Region of
Interest (ROI), the main goal is for the entire region to be
covered by the sensing ranges of the deployed sensors. While
this goal of full coverage is easily achieved in presence of human
intervention, it becomes problematic if the region is dangerous or
inaccessible to human. An approach recently proposed to solve
the problem is to use a robot to deploy the sensors; the main
advantages respect to the alternative of employing mobile sensors
are the reduced costs (due to manufacture and maintenance
cost of common static sensors vs. mobile ones) and the reduced
complexity of the coordination and control algorithms. Indeed
several solution algorithms to achieve deployment of sensors by a
robot in an unknown region have been proposed in the literature.
Unfortunately, even when restricted to orthogonal regions (e.g.,
city maps, building plans, etc), all the existing algorithms fail
to achieve full coverage of the ROI. Specifically, following the
existing protocols, the robot would leave uncovered areas near
either the boundaries or critical areas (e.g. areas that are linked
to the rest of the region by a narrow corridor).

In this paper we present an algorithm that overcomes these
problems and guarantees that the deployment of the sensors
by the robot achieves full coverage in any simply connected
orthogonal ROI, whose topology is unknown to the robot.

The proposed algorithm has minimal requirements: it does
not need GPS but only local orientation by the robot; the
communication range of a deployed sensor is limited to its
deployed neighbours, and the robot has a similar range; the total
number of sensors used is minimal. Also minimal are the robot’s
memory requirements, the total amount of robots movements
and of communication between robot and sensors.

I. INTRODUCTION

A. Framework and Problem

When deploying a wireless sensor network (WSN) in a
region of interest (ROI), one of the most important goals is to
ensure that the sensors are able to cover the region. However,
in environments that are possibly hazardous or inaccessible
to humans, deployment typically is performed by random
scattering of static sensors over the region (e.g., from the
air); coverage can only be achieved probabilistically and by
employing a massive amount of sensors, way larger than
what really needed in a precision deployment. In spite of the
large cost in terms of number of sensors, with this approach,
coverage of the ROI cannot be guaranteed.

To overcome this problem, there are two basic approaches.
The first is to endow the sensors with locomotion capabilities

so that they can scatter in the region autonomously so to
achieve a desired degree of coverage. Indeed, the study of
self-deployment of mobile sensors is a promising research
area (e.g., see [1]–[10]). However, mobile sensors are clearly
more expensive than static ones, and their mobility is in any
case rather limited and energy-consuming. Furthermore, their
coordination to cover an unknown environment efficiently is
a complex task, and a very costly one in terms of number of
mobile sensors, the amount of time used to finish the task, and
the number of messages being exchanged between the mobile
sensors, etc (e.g., see [11]).

The other approach to solve this problem is to use mobile
robots to deploy standard sensors: a robot capable of accessing
areas of the ROI inaccessible to humans, can carefully and
precisely deploy the sensors in the region so to (ideally)
achieve maximum coverage with minimal number of sensors
[11]–[19]. In this paper we are interested in solving the
coverage problem using this approach with a single robot.

There are few algorithms in the literature that provide sensor
deployment by a mobile robot [20]. They operate by super-
imposing a (triangular or hexagon or square) grid on the
ROI, typically assumed to be an orthogonal region; the robot
deploys the sensors on the vertices of the grid.

However, the existing protocols do not fully solve the
problem. First of all, in some of them, the robot is only capable
of deploying sensors in elementary regions: rectangles, squares
or circles (e.g., [21], [22]. In less elementary orthogonal
regions, the existing algorithms may allow the sensors to cover
a possibly large part of the region, but they fail to achieve full
coverage: after the sensors’ deployment by the mobile robot,
some areas of the ROI will remain not covered by any sensor.
This is due to two primary problems during the deployment.
In some cases the robot gets stuck in a dead end due to pre-
deployed sensors or boundaries, ending the deployment while
some parts of the environment are still uncovered (e.g., [11],
[13], [14], [19]). In other cases, the robot fails to leave sensors
to cover some areas near the boundaries, especially at the
corners (e.g. [14], [18]).

In addition to the above problems, all the existing algo-
rithms fail to cover a region that contains critical areas, that
is an area linked by a narrow corridor (see Figure 3). In fact,
any such area will render the grid graph employed by the

978-1-4799-7615-7/14/$31.00 ©2014 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An arbitrary Othogonal Region of Interest with Problematic Areas.

algorithm disconnected for some initial locations of the robot;
thus, (possibly large) part of the region will not covered.

The research goal is to develop a protocol that overcomes
all these problems and guarantees that the deployment of the
sensors by the robot achieves full coverage in any orthogonal
ROI, whose topology is unknown to the robot.

B. Main Contributions

In this paper we present an algorithm that allows a robot to
deploy sensors so to ensure full coverage of a arbitrary sim-
ply connected (i.e., without holes) orthogonal region, whose
topology is a priori unknown.

The protocol FullCoverageDeployment allows the robot
to detect not only all possible problems with boundaries
and corners, but also (and more importantly) all the critical
areas, and to handle all these problematic regions correctly
and efficiently. In fact, the deployed sensor network not only
achieves full coverage of the region, but it does so with a
minimal number of sensors. In fact, the removal of any sensor
deployed by the robot would create a sensing hole in the
region.

The requirements for our solution are minimal.
The robot has neither a map of the environment nor a

GPS. It is solely capable of local orientation; that is it can
distinguish the four directions North, West, South, East (e.g.,
as provided by a compass). It has a limited sensing range
within which it can detect the region’s boundaries and the
already deployed sensors. The memory requirements of the
robot are very limited; in fact during its operation it does not
construct a map of the region, and it does not remember the
details of the previous deployment. Indeed it can operate with
only O(log n) bits of memory, where n is the total number of
deployed sensors.

The communication range of a deployed sensor is limited
to its deployed neighbours, and the robot has a similar range.
The total amount of communication between the robot and the
sensors is O(n) messages.

The total amount of robot’s movements (each covering the
distance between two neighbouring sensors) and thus of energy

spent in movement is O(n), which is optimal.

C. Related Work

Few works have studied sensor deployment in Wireless
Sensors and Robot Networks (WSRN). LRV (Least Recently
Visited) is a deployment and coverage maintenance algorithm
[23], [24]. In this algorithm the robot communicates with
sensors, and they give a direction to the robot for sensor’s
placement. LRV algorithm requires many unnecessary move-
ments to deploy sensors in order to achieve full coverage.
Moreover, these extra movements lead to an extremely large
number of messages sent from the robots [17], [18]. Algorithm
OFRD (Obstacle-Free Robot Deployment) in [13] and ORRD
(Obstacle-Resistant Robot Deployment) in [11] introduce an
SLD (Snake-Like Deployment) approach to solve the problem.
In these algorithms with a serpentine movement, the robot
deploys sensors in the environment. However, SLD algorithms
do not guarantee full coverage because the robot gets stuck in
dead ends due to obstacles or early deployed sensors [17],
[25]. Moreover, it is not clear under what conditions the
algorithms terminate [25]. OFPE (Obstacle-Free and Power-
Efficient deployment) algorithm presented in [14] uses a single
robot to explore the environment in a spiral parttern while
deploying sensors. This algorithm does not guarantee full
coverage due to previously described dead end problem [17],
[18]. More over, the sensing hole problem near the boundaries
of ROI is not addressed in this algorithm either. Shiu et.al.
[19] introduce an algorithm using a single robot to deploy
sensors in a concave region. The algorithm presented in [17]
addresses the FOCUSED coverage (F-coverage) problem. In
F-coverage, sensors surround a Point Of Interest (POI) and
maximize coverage radius. In this algorithm, a robot deploys
sensors on a hexagon grid layer by layer. In [15], [16] a
flying robot (helicopter) deploys sensors on a desired network
topology like star, grid or any random topology. BTD (Back-
Tracking Deployment) algorithm introduced in [18] presents
a dead end recovery policy to provide a back tracking method
for situations that the robot is stuck due to early deployed
sensors or obstacles. In this algorithm, a number of robots
which are equipped with GPS are scattered randomly in
an unknown bounded Region Of Interest (ROI). They are
preloaded with static sensors and are able to detect obstacles
and boundaries. This algorithm cannot achieve full coverage
near the boundaries nor in any critical area. In the next section,
we describe the model, its related assumptions and define the
critical areas in an arbitrary orthogonal region and the grid
that will be used to deploy sensors by a robot starting from
an arbitrary point in this ROI.

II. MODEL AND DEFINITIONS

A. Robot and Sensors

LetR be a simply connected orthogonal region (i.e., without
holes), and let P be the orthogonal polygon of its boundaries
The problem we consider and solve is that of a robot r, with
no knowiege R, deploying static sensors in R so that the

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

entire region is covered by the sensing ranges of the deployed
sensors.

The robot r is a computational entity capable of moving
in R and endowed with limited sensing capabilities, called
visibility, communication capabilities.

The visibility radius ρ(r) of the robot is at least twice
the sensing radius ρ(s) of the sensors ; i.e., ρ(r) ≥ 2ρ(s).
Within its radius, r can see deployed sensors as well as
boundaries of the ROI, but it might not be able to see across the
region’s boundary. Its communication radius C(r) is at least
as powerful as the communication radius C(s) of a sensor;
i.e., C(r) ≥ C(s). The robot can communicate only with
the sensors deployed within its communication range, and
this communication is not impeded by boundaries. The robot
has available a local coordinate system, providing a consistent
notion of the four directions North, South, East, West (e.g., as
provided by a compass); it does not need a global localization
mechanism (e.g., as provided by GPS). The robot r enters the
region R from an arbitrary point, called entry point. The robot
carries the static sensors that it can deploy at any point within
R; as in [18], it is assumed that the number of sensors carried
by R is unbounded, i.e. sufficient to cover the entire region.

Each sensor s has limited sensing and communication
capabilities. Let ρ(s) denote the sensing range of a sensor;
once deployed in R, the sensing ability of the sensor may be
compromised by any boundary in this sensing range. In other
words, a sensor might not be able to sense the region behind
the boundary of R. Let C(s) denote its communication range;
we assume C(s) ≥ 2ρ(s); within this range, communication is
not impeded by boundaries. In addition to communication with
the robot, when required by the algorithm, deployed sensors
periodically send a Hello message to neighbouring sensors.

The local memory of both the robot and the sensors are
limited. In our protocol O(logn) bits suffice.

B. Grid and Problematic Areas

Given a simply connected orthogonal region S and a point
u ∈ S, let G(S, u) be an orthogonal grid, composed of square
cells of length

√
2ρ(s), logically superimposed on S according

to the local coordinate system of the robot r, with u being
location (0, 0). Let G(S, u) be the sub-grid composed only
of the vertices and edges of G(S, v) that are inside S. In the
following, unless otherwise specified, with the term grid we
will refer to G.

For grid vertex (x, y), we denote by (x, y+ 1), (x+ 1, y+
1), (x, y − 1), (x − 1, y − 1) its neighbouring vertices (if
they exist) in the directions North, East, South and West,
respectively, as perceived by the robot.

With respect to the grid G(S, v), there are three types of
areas that present problems for a complete coverage of S:
boundary holes, corner holes, and critical areas; they indeed
cause the existing protocols to fail and are formally defined
as follows.

Definition 2.1: Boundary Hole.
Let d be the distance from a vertex v on the grid
G(S, v) to the boundary of S in direction dir ∈

Fig. 2. Polygon P2 contains critical area since line segment zv is located
outside of its boundaries.

{North, South,East,West}; if
√

2/2ρ(s) < d′ <
√

2ρ(s),
we say that there exists a boundary hole in the area between
v′ and the boundary of S in direction dir.

Definition 2.2: Corner Hole.
Let d′ be the distance from a vertex v on the grid
G(S, v) to the boundary of S in direction dir′ ∈
{NorthEast, SouthEast,NorthWest, SouthWest}.
If ρ(s) < d′ < 2ρ(s), we say that there exists a corner hole
in the area between v′ and the boundary of S in direction
dir′.

Definition 2.3: Critical Area.
Let P denote the polygon that represents the boundary of
S. Let v be a vertex of the grid G(S, v) and Ci be one of
the four quadrants of circle C centered at v. Consider two
points x and y on P determining a segment xy visible from
v and entirely contained inside of P and Ci. This segment
defines two polygons P xy

1 and P xy
2 . The first one starts from

x and includes every vertex of P between x and y in counter-
clockwise order, while the second one is obtained in the same
way but starting from y. We say that polygon P xy

j , j ∈ {1, 2},
is a critical area if and only if there is a vertex z on P xy

j that
satisfies any of the following conditions:

1) Segment zv is not totally inside P (provided that zv does
not intersect P).

2) The length of zv is greater than 2ρ(s).
Notice that all the above definitions are constructive, in the

sense that each provides an algorithmic detection mechanism.

III. DEPLOYMENT ALGORITHM

A. Strategy and Structure

The naive strategy employed in the other algorithms, is to
have the robot r traversing the edges of the grid (e.g., in a
depth-first fashion), and deploying a sensor on any still empty
vertex of the grid. Notice that, since the robot does not know
R nor the grid, this strategy is naive but not necessarily trivial
to implement; the dead end problem can however be easily
avoided [18]. In any case, as mentioned in the introduction,

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

such a naive strategy fails to achieve full coverage in presence
boundary holes, corner holes, and critical areas.

The proposed protocol, called Full Coverage Deployment
(FCD), is built on top of the naive strategy with necessary
rule modifications that, as we will show later, are sufficient to
guarantee full coverage as well as minimality of the solution.

The robot will start exploring the ROI by traversing the grid,
occasionally moving out of it to deal with boundary and corner
holes. What is unique in this algorithm is the fact that it will
also detect and handle the presence of critical areas. To deal
with these areas, the algorithm uses not a single grid but rather
a multiplicity of them, as explained later; however, at any time
it is only using one. Moving on an edge of the current grid
will be called a regular movement. During the deployment,
the robot determines the presence of any problematic area.
The action taken by the robot will depend on the nature of
the found problems (critical area, boundary hole or corner
hole); notice that more than one problem can be determined
at the same time. Each of these situations is dealt by the robot
sequentially and usually requires backtracking.

In general, information has to be stored by the robot to
be processed later (e.g., which detected problem has to be
dealt next, the path to be followed to backtrack, the location
to move next, etc). In our algorithm, some of the needed
information is distributed among the deployed sensors A
deployed sensor keeps (up to) seven pieces of information:
coordinates, sequence number, state, colour, back pointer,
status, and ID of supportive sensor. The information given
by the robot when deploying a sensor are the coordinates of
the sensor with respect to the grid, as well as the number of
already deployed sensors, called sequence number; notice that
both coordinates and sequence number are unique, so can be
used as the sensors ID. The robot also assigns to the sensor
a state: regular, boundary, or entrance: a regular sensor (or
R-sensor) is deployed on a grid vertex, a boundary sensor
(or B-sensor) is deployed to overcome a boundary hole or a
corner hole, and an entrance sensor (or E-sensor) is deployed
at the entrance of a critical area. Additionally, a E-sensor has
a colour and a back pointer; the colour is white if the sensor
has an empty neighbouring grid location, black otherwise; the
back pointer points to the location of the last white deployed
sensor; both pieces of information are initially provided by the
robot, and updated by the sensors. Moreover, each E-sensor
has a status, covered or uncovered; it is covered if the critical
area at whose entrance it is located has been fully deployed,
and uncovered otherwise; it also keeps the ID of the sensor,
called supportive sensor, from where its critical area has been
detected; both pieces of information are provided (and updated
in the case of status) by the robot.

Each sensor periodically sends a Hello message communi-
cating its information to the sensors within its communication
range; in this way sensors update their informations (in par-
ticular, back pointer and status). As a rule, E-sensors only
consider the messages sent from their supportive sensor, to
update their back pointer.

Before proceeding with the description of the the algorithm,

let us describe an important thing on how critical areas are
dealt with. Once a critical area is detected by the robot from
a location u, an E-sensor will be deployed at the (center of
the) corridor entrance, say u′; u′ will act as a “virtual edge”,
called entrance edge, logically separating from R the region
R′ composed of the corridor and the region on the other side
of it. The sub-region R′ will be dealt with as if dealing with
a separate ROI with u′ as the starting point.

The protocol starts with the robot at the starting point cal-
culating the grid and deploying a R-sensor. At the appropriate
location u (initially, the starting point; subsequently always
the location of R-sensor or E-sensor), the sensor performs
the following steps in order.

Step 1- Detect critical areas and deploy E-sensors
In this step, the robot partitions the local area to detect

any critical areas in its visibility radius and it computes the
locations where E-sensors must be deployed (see Section III-C
for details), creating a E-sensors deployment list. Using this
list, the robot goes around and deploys E-sensors; for all these
E-sensors, the sensor at u is their supportive one. After being
deployed, an E-sensor sends a Hello message containing its
information to its supportive and neighbouring sensors. At the
end of this step, the robot returns to u and informs the sensor
of the number of the (uncovered) critical areas around it.

Step 2- Detect boundary problems and deploy B-sensors
The robot creates a coverage map of its visibility area. To

create this virtual map, the robots removes from consideration
all the detected critical areas and considers their entrance edges
as part of the boundaries. It puts on the map all the sensors
already deployed in the visibility area, including the E-sensors
it deployed in Step 1, as well as the R-sensor at u. Using the
coverage map, the robot detects boundary and corner holes
and computes the location of where B sensors should be
deployed (as explained in Section III-B), creating a B-sensor
deployment list. It then puts on the map a B-sensor on each of
the computed locations. When the map is completed, the robot
removes from the map (and the list) any redundant B-sensor.
Using the list, the robot goes around to actually deploys B-
sensors. At the end of this step, r goes back to u and discards
map and lists from its memory.

Step 3- Cover critical areas
If critical areas were determined in Step 1, the robot deals

with each of them sequentially. To deal with a critical area, the
robot moves from (the supporting sensor at) u to the location
u′ of the E-sensor deployed (in Step 1) at the entrance of the
corridor. The robot will enter the critical area and execute the
algorithm to coverR′ using u′ as the starting point. Notice that
the grid G(R′, u′) that the robot computes and uses for this
area is different from the grid used before entering the corridor
(see Figure 3). Once it has finished with its deployment in R′,
the robot will return to u, and act as if R′ did not exist and
the entrance to the corridor is closed by a boundary.

Step 4- Progress and Backtrack
If there are no (more) critical areas to be dealt with in

the visibility area, the robot proceeds with its exploration
of the uncovered area. It checks if there are neighbouring

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Multiple grids.

grid locations still uncovered. If so, it chooses one (breaking
symmetry using the order West, East, North and South on the
directions), moves there, and starts the execution of these steps.
Otherwise, it backtracks. For this purpose, it uses the back
pointer of the sensor at u as the destination; it sends a message
to all adjacent sensors asking for their back pointers. Then, it
moves to the neighbouring sensor with the lowest ID whose
back pointer location is the same as the robot’s destination;
this is the short cut method for back tracking developed in
[18].

In the following two subsections we explain in more details
how boundary and corner holes and critical area are detected
and handled.

B. Boundary Handling Rules

To compute the coverage map efficiently, instead of the
circle defined by the sensing range, we use the effective
coverage square of a sensor [11], i.e., the square with length√

2ρ(s); notice that there are neither gaps nor overlaps be-
tween effective coverage areas of the sensors. Any redundancy
created when calculating deployment locations of B-sensors
using this approach will be detected on the map, and removed
before the actual deployment takes place.

The procedure is rather simple:
1) For each of the main directions (East, West, North, and

South) detect if a boundary hole exists, using Definition
II-B:

√
2/2ρ(s) < d <

√
2ρ(s) where d is the distance

of u from the boundary (if any in the visibility range) in
the given direction.

2) For each of the corner directions (Northeast, Southeast,
Southwest, or Northwest) detect if a corner hole exists,
using Definition II-B: ρ(s) < d < 2ρ(s) where d is the
distance of u from the boundary (if any in the visibility
range) in the given direction.

3) Whenever a boundary or corner hole is detected, add its
location to the B-sensors deployment list.

It is possible that the B-sensors list created by the corner
holes is redundant, i.e., a corner hole would be actually

Algorithm FullCoverageDeployment(FCD)
Main-Direction (North, East, South, West)
Corner-Direction (Northeast, Southeast, Southwest,
Northwest)
Wake up
Locate first R-sensor
while there are uncovered areas do

Decomposition ()
if critical area(s) detected then

Compute and store the location of all E-sensors
within the visibility circle in the E-sensors list.
Deploy E-sensors in the middle of detected
entrance edges and mark the E-sensor as
uncovered.
Create-Coverage-Map ()

end
else

Boundary-Handling-Rule ()
end
if there is uncovered critical area then

Cover-critical-area()
end
if Dead-End then

Back-Track (). if there is uncovered critical area
then

Cover-critical-area()
end
else

Do Regular Movement.
end

end
Regular Movement.

end

covered by a combination of already deployed sensors and
some B-sensor locations in the list. This is not a problem
because, once the B-sensors are virtually deployed on the map,
any redundancy will be detected by the robot and removed
from the map before the actual deployment takes place.

C. Detecting and Handling Critical Areas

It is possible that within the visibility radius of the robot
there are several critical areas. To properly detect and identify
each of them, in addition to the detection mechanism provided
by Definition 2.3 we employ a set of partitioning rules to
segment the area.

The overall procedure is as follows. Consider the visibility
circle of robot r shown in Figure 4(a) as the highlighted circle.

1) Divide the visibility circle of robot r into four quadrants.
2) Create, for each quadrant, a visibility polygon V ; in our

case, this is a simple polygon containing all points of
the quadrant visible from r’s position. Figure 4(b) shows
the visibility polygon (p0p1p2...p11) for quadrant 1 which
contains multiple critical areas.

3) Decompose the visibility polygon V , using the idea

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. (a) Visibility circle of the robot and dividing it to four quadrants 1, 2, 3, and 4. (b) Created visibility polygon (p0p1p2...p11) for quadrant 1 which
contains multiple critical areas. (c) The polygon (p0p1p2p4p5p7p8p10p11) denotes the main polygon and line segments p2p4, p5p7, and p8p10 are Entrance
edges.

presented in [26] adapted to our particular problem.
Specifically,

a) Triangulate V by connecting any vertex pi of V to
the robot position (vertex p0) unless there is a vertex
pj laying on the segment p0pi. If there are still some
pieces of V with more than 3 vertices, keep triangu-
lating them. Figure 4(b) also shows the triangulation
process of the visibility polygon.

b) Merge all the triangles adjacent to p0 forming a poly-
gon V̂ (called main polygon), which divides V in
several disjoint polygons.

4) Report any edge of V̂ that is not an edge of V and where
both its extremes are laying on the boundary of the ROI
as critical areas. These reported edges are called entrance
edges. Figure 4(c) illustrates the main polygon and the
entrance edges of the detected critical areas.

5) Compute the middle of each entrance edge and add it as
the location of an E-sensor in the E-sensor list.

IV. CORRECTNESS OF ALGORITHM FULL COVERAGE
DEPLOYMENT (FCD)

As illustrated in the previous section, algorithm
FullCoverageDeployment partitions the ROI into disjoint
pieces; and defines a new grid for each sub-ROI to deploy
sensors applying the same algorithm. In the following section
first we prove that algorithm FullCoverageDeployment
totally covers a sub-ROI. Then we will show that algorithm
FullCoverageDeployment covers the entire ROI by showing
that all the other sub-ROIs are covered as well.

First of all let see in more details partitioning rules, since
it will help us to proof the correctness of the algorithm.
Partitioning rules in detail: Let v = p0,p1,...,pk the vertices
in Pv ordered in counterclockwise where Pv is the visibility
polygon created at current vertex v (note that Pv is the created
visibility polygon for one of the quadrants of the visibility
circle). For any point pj , if the segment vpj is a diagonal in
Pv then the segment is added to the triangulation. If there is
a point pi such that the segment vpi is not a diagonal in Pv ,
then since every vertex in Pv is visible from v, either pipi+1 or

pi−1pi is collinear with v. If no such cases happen, the polygon
is completely triangulated and every triangle contains v, so that
no edge is reported as entrance to a critical area. Before we
continue the triangulation process, note that as a rule it is not
possible for two consecutive edges in Pv to be collinear with
v. This is because, if that case happens, the common vertex
would be removed from Pv . Furthermore, if we consider three
alternate edges (their extremes are consecutive vertices of Pv),
since the ROI is orthogonal, it is not possible that all of them
become collinear with v. Thus let us consider what happens
if two alternate edges pi−1pi and pi+1pi+2 are collinear with
v.

Let P̂ be a set such that for any pi ∈ P̂ , pi ∈ P and the
segment vpi is not a diagonal of Pv (either pi−1pi or pipi+1

is an edge in Pv collinear with v (Figure 5(a))). Since the
ROI is orthogonal the only possible case is that pi, pi+1 ∈ P̂
and pi−1, pi+2 /∈ P̂ . In this case, the convex quadrilateral
pi−1pipi+1pi+2 is cut from the rest by the edge pi−1pi+2,
and this edge is reported as an entrance to a critical area.
If there is an isolated collinear edge (none of the two prior
and next edges are collinear (Figure 5(b))), then we take it’s
extreme pi belonging to P̂ . The edge pi−1pi+1 separates the
triangle ∆pi−1pipi+1 from the rest, so this edge is reported as
an entrance to the critical area providing that both pi−1 and
pi+1 belong to the boundary of the ROI P .

Lemma 4.1: Partitioning rules only detect critical areas.
Proof: According to the partitioning rules, any reported

edge xy is completely visible from v and totaly contained in
P , where v is the current vertex from where the critical area is
being reported, and P denotes orthogonal polygon determined
by the boundary of the ROI. Furthermore, both x and y lie on
P . To prove the lemma we need to show that polygon P xy

j

separated by xy which does not contain v is a critical area.
According to the definition of critical area, P xy

j is a critical
area if we can find a vertex z such that the segment zv is
not totally contained inside P , or z is at distance greater than
2ρ(s). However, if an edge xy is reported by decomposition-
procedure then, at least one of the points x or y (let say x) is
the extreme of an edge xx′ in the visibility polygon Pv which

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

vi

pj−1

pj

pj+1

pj+2

vi

pj−1

pj pj+1

v

x y

x′

zz′

v

x

x′ yz

Fig. 5. (a) The quadrilateral pi−1pipi+1pi+2 is cut from ROI, and edge pi−1pi+2 is reported as an entrance edge. (b) The triangle ∆pi−1pipi+1 is cut
from ROI, and edge pi−1pi+1 is reported as an entrance edge. (c) Line segment xx′ collinear with v, and x′ does not belong to P . (d) Line segment xx′
collinear with v, and x′ belongs to P .

is collinear with v (Figure 5(c)). Since the ROI is orthogonal,
xx′ cannot belong to P . Moreover, as it was mentioned x
belongs to P . Hence, only two cases could happen. Either x′

belong to P or not.
First let us assume x′ does not belong to P , then it is at

distance 2ρ(s) (Figure 5(c)). In this case we could extend the
ray starting from v and passing trough x′ until it touches P
at a point z′ in P xy

j farther than 2ρ(s). If z′ is one of the
vertex of P xy

j then z′ would be z. But if z′ is not a vertex of
P xy
j , we take the furthest vertex among the extremes of the

edge in P xy
j containing z′. So, we found a vertex (z) in P xy

j

at distance greater than 2ρ(s) which means P xy
j is a critical

area so that the reported edge xy is an entrance edge.
Now, let us assume that x′ belongs to P (Figure 5(d)). In

this case, since xx′ does not belong to P , we can say that
segment xx′ defines a partition of the polygon P xy

j . We show
this partition by P xx′

j which does not contain neither the point
y nor v. Note that in this polygon (P xx′

j), only the vertices
x and x′ are visible from v. Thus, if we take a vertex z in
P xx′

j distinct from x and x′ the segment vz will not be totaly
contained in P . Hence, since P xx′

j is a partition of P xy
j , P xy

j

is a critical area so that the reported edge xy is an entrance
edge in this case as well.

Lemma 4.2: Algorithm FullCoverageDeployment detects
every critical area.

Proof: In order to prove the lemma, let us assume by
contradiction that, after termination, there is a critical area
P xy
j from the point of view of a vertex v that is not detected.

Let us assume without lost of generality that P xy
j is minimum

(there are no other segment x′y′, visible from v, defining a
critical area P x′y′

j , such that P x′y′

j is contained in P xy
j). Note

that, in this case, detecting a minimum critical area means
detecting the entrance edge of it, or visiting it completely from
one vertex of the grid. Since P xy

j is minimum, two cases can
happen wether xy is collinear with v or not.

First we consider the case when xy is not collinear with v.
In this case according to the partitioning rules xy is reported as
entrance edge which is a contradiction. This fact is illustrated
in Figures 6 (a) and (b).

Now we consider the case that the line segment xy is
collinear with v. Since P xy

j is minimum, just the edge xy ∈
P xy
j is visible from v, and no other point inside P xy

j could be
seen from v. So, the line segment xy which is collinear with
v is part of an edge in the visibility polygon Pv . Consider the
edge XY of Pv containing xy, such that X is between v and
Y . Note that X could be equal to x and Y to y (Figure 6
(c)). According to the partitioning rules, there is a vertex O
in Pv such that the edge XO is reported as entrance edge to
P xy
j provided that O belongs to P . Thus, if O belong to P

the edge would be reported and we have a contradiction.
Thus, let us assume that O does not belong to P . In this

case there is a grid vertex v′ between v and y such that the
segment xy is also completely visible from v′. Otherwise,
X would be connected with O on P . In this case P xy

j

might be completely visible from v′ which is a contradiction
(Figure 7(a)). So, let us consider the case that P xy

j is not
completely visible from v′ (Figure 7(b)). If the segment xy
does not define minimal critical area from v′, then there is a
segment x′y′ such that from the point of view of v′ the critical
area P x′y′

j defined by this segment is minimal (Figure 7(c)).
According to the partitioning rules an entrance edge will be
reported for P x′y′

j . Note that in this case some part of P xy
j

is completely visible from v′, and for the other part which is
not visible (P x′y′

j) an entrance edge (x′y) is reported which
is a contradiction. Hence, every critical area is reported by
algorithm FullCoverageDeployment .

Lemma 4.3: After removing all the detected critical areas
from a sub-ROI, algorithm FullCoverageDeployment fully
covers the remaining area.

Proof: Algorithm FullCoverageDeployment applies par-
titioning rules (Decomposition-Procedure) to detect critical
areas. After detecting each entrance edge it will drop an E-
sensor in the middle of it, enters the critical area and performs
recursively the same algorithm to deploy sensors inside it.
Let P ′ be the polygon obtained after removing every reported
critical area from P . Note that we consider the entrance edges
as edges of P ′. Let G′ be the same grid as G extended over the
entire sub-ROI such that every square in G′ contains at least

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

x

y

v

x

y

v

x

y

O

X

Y

v

Fig. 6. (a) and (b) Line segment xy, which is not collinear with v, is reported as the entrance edge of the critical area Pxy
j . (c) XO is reported as an

entrance edge of Pxy
j .

x

y

v

v′

x

y

v

v′

x

y

x′

y′

v′

v

Fig. 7. (a) Pxy
j is completely visible from v′. (b) Pxy

j is the minimum critical area from v. (c) x′y is reported as an entrance edge of Px′y′

j

one vertex of G. We first assume that the cell S is intersected
by P . By contradiction, we assume that there is a point q that
is still uncovered after termination of the algorithm. In this
case q is located in one of the squares Si where vi is not
accessible. By not accessible we mean that no R-sensor will
be deployed on vi because of the boundary, or vi contains a
R-sensor but Si is disconnected by the boundary such that q
and vi are located in two disconnected areas. Note that, if this
is not the case, q would be covered by the sensor located on
vi. Thus, we can assume that the region of Si containing vi is
disconnected from the region of Si containing q. Furthermore,
since we only need to consider the region containing q, we can
assume that there are only two disconnected regions of Si.

We know then that Si is disconnected in two different
pieces; thus, the boundary must to intersect its border at
least two times, otherwise it will remain connected. In this
case the area containing q intersects at least one of the line
segments joining vi to the other three vertices of S, let say
vivj . However, since this intersection occurs inside Si, the
robot will see the boundary along this segment at distance
between

√
2
2 ρ(s) and

√
2ρ(s) if vi and vj are adjacent or

between distances ρ(s) and 2ρ(s) if they are opposed. But,
according to the boundary handing rules, it will consider to
place a B-sensor on the segment vivj next to the boundary

(coverage map). So, there will be either a B-sensor or an E-
sensor inside the region of Si containing q covering it which
is a contradiction.

Theorem 4.4: Algorithm FullCoverageDeployment com-
pletely covers any complex ROI.

Proof: In order to prove the theorem let us first define a
logically sub-division of the ROI forming a tree as it follows.
The root of this tree will be the entire ROI containing the
starting point. From this point the robot defines a grid, and
according to lemma 4.2 it will detect all the critical areas
for this grid. Critical areas are introduced by the entrance
edges which divide the ROI into disconnected sub-ROIs. These
sub-ROIs will be the children of the root. The starting point
of each sub-ROI will be the middle point of the entrance
edge. Applying the same idea for each sub-ROI we define
the new nodes until we reach the leaves which are the sub-
ROIs containing no critical areas from the grid defined at their
starting point. Now we need to show that following the rules
of the algorithm the robot traverses the entire tree and covers
the entire ROI.

According to the algorithm, upon entering the ROI
(T [Root]) and will move on the grid to cover the ROI. We
know by lemma 4.2 that all the critical areas (the root’s
children) will be detected, and according to the algorithm each

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

Sub-Procedures of Algorithm FCD
Decomposition ()

Triangulate the visibility polygon.
Merge created triangles

Create-Coverage-Map ()
Remove all the detected critical areas and consider

their entrance edges
as part of the boundary.
Drop all main and corner neighboring R-sensors,

and E-sensors.
Considering the coverage square of all deployed

sensors,
Check-Boundary-Handling-Rule ().

Cover-critical-area()
Ask the current sensor the location of next

uncovered E-sensor.
Move to the location of E-sensor and inform it to

change its status to
covered.
Applies algorithm B for the region inside the

detected critical area.

Check Boundary-Handling-Rule ()
for 8 cardinal Directions starting from North do

if in Main-Direction
√

2/2ρ(s) < d <
√

2ρ(s) then
push the location of B-sensor in B-sensors List.

end
if in Corner-Direction ρ(s) < d < 2ρ(s) and no one
of associate sensors drop a B-sensor in associate
square then

push the location of B-sensor in B-sensors List
(if the robot cannot see the associate sensors, it
assumes they do not drop a B-sensor in associate
square).

end
end
while B-sensors List is not empty do

Drop a B-sensor.
end
Return to last deployed R-sensor.

Back-Track ()
if back-pointer of the current sensor is NULL then

Terminate algorithm.
end
else

Back track to the back-pointer of the current sensor.
end

time a critical area is found the robot gets into it. When the
robot enters into a child critical area X , it moves to its start
point and places an E-sensor. The back pointer of this sensor
will not be Null if and only if the tree T [Root−X] (the sub
tree containing the root but not X) is not totally covered. At
this moment the robot is at the starting point of a disconnected
sub-ROI. So, we have a smaller instance of the same problem
in which the ROI is defined by the sub-Tree rooted at X .
According to the algorithm, the robot does the same until
it reaches a leaf of the tree (T [Root]). Since the leaf does
not have any critical area, according to lemma 4.3 it will be
eventually totally covered. At that moment the robot follows
the back pointers to the starting point which directs the robot
to the leaf’s parent Y . Then the robot will continue moving
along the grid defined by the starting point of Y until it finds
a new critical area which means there is an unvisited child
of Y , or the entire sub-ROI is covered. If there is still an
unvisited child, the robot will move into it, otherwise it will
back track to Y ’s parent. Therefore the robot will never leave
a node until all its children and itself are covered. It implies
the robot traverses the tree like a Depth-first search (DFS).

Now let us assume that the robot is at the moment in which
it is getting into the last unvisited node which is a leaf. Note
that, at that moment, any node which is not on the path from
the Root to this leaf is totally covered. According to lemma
4.3 the robot will eventually completely cover the leaf and
back tracks if the back pointer of the starting point is not
Null. Then it will continue acting the same way (covering
the node and back tracking) until it gets a node which after
completely covering it the back pointer of its starting point is
Null. At this moment two cases are possible either the node
is the Root or not. Whatever the case every single node will
be covered which means that the entire ROI is covered.

A. Complexity Analysis

Theorem 4.5: Algorithm FCD guarantees to achieve full
coverage of an arbitrary orthogonal ROI using a single robot
deploying minimal number of static sensors with O(n) moves
and messages and O(log n) memory.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an algorithm, Full Coverage
Deployment, for sensor deployment by a robot in an arbitrary
simply connected orthogonal region, unknown to the robot.
This algorithm is the first to achieve full coverage. It does so
by identifying and characterizing the condition which makes
the previous protocol fail: the presence of what we call critical
areas. We provide a detection mechanism, and integrate it into
a robot guidance protocol that allows it to achieve the desired
task without any sensing hole. The protocol is very efficient.
The number of deployed sensors is minimal. The robot re-
quires minimal orientation capabilities, limited communication
and sensing range (similar to those of a sensor), and very
limited memory: O(log n) bits, where n is the number of
deployed sensor. Furthermore, the total number of moves it

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

performs is optimal, and the total amount of communication
by the robot is O(n) messages.

There are several important direction for future research.
Following are some:
• Immediate is the extension to have more than one robot;

indeed, using a team of robots may speed up deploying
process, though communication and synchronization of
the team could be complex. [23], [27]

• In our algorithm, the number of robots is minimal, but
not necessarily minimum. An interesting quest is to find
a correct protocol that achieves full coverage with fewer
sensors. One possible avenue could be to use a triangular
or hexagonal grid instead of the square one used here.

• In this algorithm the robot and sensors use the same
amount of memory: O(log n). The number of transmitted
messages and robot’s movement is linear in the number
of deployed sensors. The number of sensors deployed in
order to achieve the full coverage remains linear.

• Our protocol correctly covers an orthogonal ROI which
is simply connected, i.e. it does not contains holes. It is
clearly important to achieve coverage also in orthogonal
regions that are connected but not simply. This particular
problem is very challenging because the sensing holes
created by obstacles may confuse the robot when detect-
ing critical areas.

ACKNOWLEDGMENTS

This research is sponsored in part by the National Science
and Engineering Research Concil (NSERC) of Canada under
Grant No. 371977-2009 RGPIN.

REFERENCES

[1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[2] M. Garetto, M. Gribaudo, C. Chiasserini, and E. Leonardi, “A distributed
sensor relocation scheme for environmental control,” Proc. 4th IEEE Int.
Conf. on Mobile Ad-hoc and Sensor Systems (MASS), pp. 1–10, 2007.

[3] A. Howard, M. Mataric, and G. Sukhatme, “An incremental self-
deployment algorithm for mobile sensor networks,” Autonomous Robots,
vol. 13, no. 2, pp. 113–126, 2002.

[4] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Focused coverage by
mobile sensor networks,” Proc. 6th IEEE Int. Conf. on Mobile Ad-hoc
and Sensor Systems (MASS), pp. 466–475, 2009.

[5] ——, “Strictly localized sensor self-deployment for optimal focused
coverage,” IEEE Trans. on Mobile Computing,, vol. 10, no. 11, pp. 1520
– 1533, 2011.

[6] H. Mousavi, A. Nayyeri, N. Yazdani, and C. Lucas, “Energy conserv-
ing movement-assisted deployment of ad hoc sensor networks,” IEEE
Communications Letters, vol. 10, no. 4, pp. 269–271, 2006.

[7] S. Poduri, S. Pattern, B. Krishnamachari, and G. Sukhatme, “Using
local geometry for tunable topology control in sensor networks,” IEEE
Transactions on Mobile Computing, vol. 8, no. 2, pp. 218–230, 2009.

[8] R. Ramadan, H. El-Rewini, and K. Abdelghany, “Optimal and approx-
imate approaches for deployment of heterogeneous sensing devices,”
EURASIP Journal on Wireless Communications and Networking, vol.
2007, no. 1, 2007, 14 pages.

[9] G. Wang, G. Cao, and T. L. Porta, “Movement assisted sensor de-
ployment,” Proc. 23rd Annual Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM), pp. 2469–2479, 2004.

[10] S. Yang, M. Li, and J. Wu, “Scan-based movement-assisted sensor
deployment methods in wireless sensor networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 8, pp. 1108–1121,
2007.

[11] C. Chang, C. Chang, Y. Chen, and H. Chang, “Obstacle-resistant
deployment algorithms for wireless sensor networks,” IEEE Tran. On
Vehicular Technology, vol. 58, no. 6, pp. 2925–2941, 2009.

[12] M. Batalin and G. S. Sukhatme, “The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor network
deployment,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 661–
675, 2007.

[13] C. Chang, H. Chang, C. Hsieh, and C. Chang, “OFRD: Obstacle-free
robot deployment algorithms for wireless sensor networks,” Proc. IEEE
Wireless Communications and Networking Conf. (WCNC), pp. 4371–
4376, 2007.

[14] C. Chang, J. Sheu, Y. Chen, and S. Chang, “An obstacle-free and power-
efficient deployment algorithm for wireless sensor networks,” IEEE
Tran. On Systems, Man, and Cybernetics-Part A: Systems and Humans,
vol. 39, no. 4, pp. 795–806, 2009.

[15] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme,
“Deployment and connectivity repair of a sensor network with a flying
robot,” Springer Tracts in Advanced Robotics, vol. 21, no. 2006, pp.
333–343, 2006.

[16] P. Corke, S. Hrabar, R. Petersony, D. Rus, S. Saripalli, and G. Sukhatme,
“Autonomous deployment and repair of a sensor network using an
unmanned aerial vehicle,” Proc. IEEE Int. Conf. on Robotics and
Automation, pp. 3602 – 3608, 2004.

[17] R. Falcon, X. Li, and A. Nayak, “Carrier-based coverage augmentation
in wireless sensor and robot network,” Proc. 7th IEEE Int. Workshop on
Wireless Ad hoc and Sensor Networks (WWASN), 2010.

[18] G. Fletcher, X. Li, A. Nayak, and I. Stojmenovic, “Back-tracking based
sensor deployment by a robot team,” Proc. 7th IEEE Communications
Society Conf. on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), pp. 1–9, 2010.

[19] L. Shiu, “The robot deployment scheme for wireless sensor networks in
the concave region,” Proc. IEEE Int. Conf. on Networking, Sensing and
Control (ICNCS), pp. 581–586, 2009.

[20] M. Batalin and G. S. Sukhatme, “Coverage, exploration and
deployment by a mobile robot and communication network,”
Telecommunication Systems Journal, Special Issue on Wireless Sensor
Networks, vol. 26, no. 2, pp. 181–196, 2004. [Online]. Available:
http://robotics.usc.edu/publications/369/

[21] J. Chen, S. Li, and Y. Sun, “Novel deployment schemes for mobile
sensor networks,” Sensors, vol. 7, no. 11, pp. 2907–2919, 2007.

[22] T. T. Lai, W. Chen, P. H. K. Li, and H. Chu, “Triopusnet: automating
wireless sensor network deployment and replacement in pipeline moni-
toring,” Proc. 11th international conference on Information Processing
in Sensor Networks, pp. 61–72, 2012.

[23] M. Batalin and G. S. Sukhatme, “Sensor coverage using mobile robots
and stationary nodes,” Proc. Int. Society for Optics and Photonics
Engineering (SPIE), vol. 4868, pp. 269–276, 2002.

[24] ——, “Multi-robot dynamic coverage of a planar bounded environment,”
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002.

[25] X. Li, A. Nayak, D. Simplot-Ryl, and I. Stojmenovic, “Sensor placement
in sensor and actuator networks,” in Handbook of Wireless Sensor and
Actuator Networks: Algorithms and Protocols for Scalable Coordination
and Data Communication. John Wiley, 2010.

[26] D. Avis and G. Toussaint, “An efficient algorithm for decomposing a
polygon into star-shaped polygons,” Pattern Recognition, vol. 13, no. 6,
pp. 395–398, 1981.

[27] X. Li, G. Fletcher, A. Nayak, and I. Stojmenovic, “Placing sensors for
area coverage in a complex environment by a team of robots,” in ACM
Transactions on Sensor Networks, 2014, p. To appear.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:28:26 UTC from IEEE Xplore. Restrictions apply.

