
Requirements Verification
Legal Challenges in Compliance Testing

Jean-Pierre Corriveau and Vojislav Radonjic

School of Computer Science

Carleton University

Ottawa, Canada

jeanpier@scs.carleton.ca

Wei Shi

Faculty of Business and I.T.

University of Ontario, Institute of Technology

Oshawa, Canada

Wei.Shi@uoit.ca

Abstract—Compliance is generally understood as the

documenting and auditing of evidence deemed sufficient to

demonstrate conformance to a rule, a specification, a policy or a

law. In this paper, we consider, in the specific context of software

development, what are the legal and technical challenges raised

by such an understanding of compliance. More specifically, we

ask a) what is the nature of this evidence; b) how can sufficiency

be defined, and c) how precisely defined is the task of auditing

this evidence.

Keywords—compliance; traceability; compliance testing; test

specifications; executable tests

I. INTRODUCTION

Zave [1] offers the following definition for Requirements
Engineering (hereafter RE):

“Requirements engineering is the branch of software
engineering concerned with the real-world goals for, functions
of, and constraints on software systems. It is also concerned
with the relationship of these factors to precise specifications
of software behavior, and to their evolution over time and
across software families.”

In commenting on this definition, Nuseibeh and
Easterbrook [2] remark:

“This definition is attractive for a number of reasons. First,
it highlights the importance of “real-world goals” that
motivate the development of a software system. These
represent the ‘why’ as well as the ‘what’ of a system. Second,
it refers to “precise specifications”. These provide the basis
for analyzing requirements, validating that they are indeed
what stakeholders want, defining what designers have to build,
and verifying that they have done so correctly upon delivery.”

It is this last task, namely the verification that an actual
implementation complies with the requirements of
stakeholders that is the focus on this paper.

Lin and Yu [3] observe that both goal-driven and scenario-
based approaches have proven useful in the context of RE: the
former for the capturing "why” the data and functions are
there, and whether they are sufficient for achieving the high-
level objectives whereas scenarios present possible ways to
use a system to accomplish some desired functions or implicit

purposes. The User Requirements Notation [4] indeed offers
an international standard combining a goal-oriented
requirements language and a scenario-based notation (namely
use case maps [5]). An overview of this conceptual and
methodological framework is provided in [6].

As is, the URN offers limited test case generation [4, 7],
and the executability of such test cases is generally not
addressed. In fact, this is typical of most model-based
approaches to testing [8, 9, 10]. Let us briefly elaborate. While
many tools claim they generate executable tests, they
generally require that complex adapters be written in order to
‘connect’ the generated tests to the system under test (e.g., [11]
with respect to TTCN-3 executability). This manual task is not
only complex [Ibid.] and time-consuming but potentially
error-prone. Also, this so-called “glue code” is
implementation-specific and thus, both its reusability across
systems under test and its maintainability are problematic.

Unfortunately, we believe that from a legal standpoint,
these two limitations (namely: limited test generation and
serious issues with respect to the executability of the generated
tests) point to several serious challenges for requirements
verification. It is this contention that we elaborate upon in the
rest of this paper. More specifically, compliance is generally
understood as the documenting and auditing of evidence
deemed sufficient to demonstrate conformance to a rule, a
specification, a policy or a law. From a legal viewpoint, such a
definition raises three important questions: a) what is the
nature of this evidence; b) how can sufficiency be defined, and
c) how precisely defined is the task of auditing this evidence?
Those are the questions that we consider below in the specific
context of requirements engineering for the development of a
software system.

II. AUTOMATED REQUIREMENTS VERIFICATION

A. Software Compliance Testing

Regardless of which model-centric or code-centric
development process is adopted, industrial software
production ultimately and necessarily requires the delivery of
an executable implementation. Furthermore, it is generally
agreed that the quality of this implementation is of the utmost
importance, as reflected by the recent CISQ initiative [12].

978-1-4799-2030-3 /14/$31.00 ©2014 IEEE

451

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:36:34 UTC from IEEE Xplore. Restrictions apply.

Consequently, the requirements of stakeholder(s) must be
verified against the actual behavior of the implementation
under test (IUT), a task that is typically called "conformance"
or equivalently "compliance" testing.

For example, in the context of software development
outsourcing [13, 14, 15], a contract is required in order to
define a) what services are requested from the contracted
entity and b) how these services are to be delivered to the
satisfaction of the contractor. Because outsourcing is often
motivated by cost reduction considerations, potential legal
battles are obviously to be avoided. This is particularly
important in the context of offshore outsourcing where
internationalization can quickly and dramatically complicate
such battles. Consequently, a software offshore outsourcing
contract will clearly gain in including, among its quality
assurance facets, the specification of a systematic objective
approach to the conformance testing of the functional and non-
functional requirements of the system to be delivered
(hereafter STBD).

The key postulate of this paper is that the above
observation is in fact relevant to any software development
endeavor. That is:

1) We postulate that compliance testing is a critical aspect
of any software development endeavor: without it there is no
quality control, which is an untenable position from both a
business and a legal viewpoint.

2) We also postulate that a legal perspective regarding
compliance testing demands a systematic and objective
approach for this task. That is, in a legal dispute on whether or
not a software system satisfies the requirements of its
stakeholder(s): a) a contract will be required and b) this
contract will have to facilitate and optimize the objective
assessment of its completion to the satisfaction of the
stakeholder(s). Without a contract, there is no case, and
without a systematic and objective method for the evaluation
of this contract, establishing facts (as opposed to opinions) is
greatly jeopardized.

It is in light of these two postulates that we now return to
the three questions raised at the end of the previous section.
Each of these is addressed separately in the next three
subsections.

B. Evidence of Compliance

What constitutes evidence of compliance in the context of
software development? As previously mentioned,
requirements engineering generally relies on goal-driven and
scenario-based models (separately or in combination [3]). It is
important to acknowledge that such models are necessary as
they are meant to act (implicitly or explicitly) as oracles [16],
that is, because they should define what is expected of the
STBD. But they do not provide evidence per se. Proceeding
from the very definition of compliance testing [8, 16],
evidence of compliance of a software system to its
requirements must consist in comparing actual functional and
non-functional behavior to expected functional and non-
functional behavior. This entails: a) the specification of
expected behavior, b) the specification of the set of actual tests

executed on the IUT, c) the execution of these tests and their
comparison to the corresponding expected behavior. In turn,
these three tasks lead to three challenges namely: a) testability,
b) traceability and c) executability.

First, the testability of a model is defined as its ability to
have tests generated in a systematic (read algorithmic) way
from it [16]. Goal models not only address what tasks need to
be accomplished by STBD but also the causal relationships
that must exist between the goals of the
stakeholders/customers and such tasks. While such models are
useful, especially with respect to elicitation and analysis of
non-functional requirements, they are not testable per se.
Consequently, a legal demonstration of compliance with
respect to non-functional requirements is quite problematic.
Conversely, scenario models correspond to more precise
functional specifications of the STBD and thus generally lend
themselves to some form of test generation (in the form of
path traversal, as explained in [Ibid.]). However, it is
important to understand that such generated tests are not
readily executable against an IUT. Instead, they act as
specifications for what needs to be tested: it is left to a
programmer to code the corresponding test cases, execute
them and compare them to expected behavior and report the
outcome of such comparisons. Alternatively, as previously
mentioned, a programmer may have to develop complex
adapters (e.g., for TTCN-3 [11] or tools such as Spec Explorer
[17]) that enable the generated tests to be ‘executed’ against
the STBD. We use quotes around the word ‘executed’ to
emphasize ‘execution’ here is typically tool-specific and
limited. For example, TTCN-3 tools require the use of ‘ports’
for the specification and the implementation to ‘communicate’.
Similarly, Spec Explorer ‘reduces’ testing to the matching of
parameter and return values of public procedure calls.

Legally, such an approach opens the door to questioning
the correspondence (or traceability) that should exist between
the requirements of the stakeholders, the tests generated from
scenario models, and the actual tests run against an IUT.
Moreover, whereas testability is an issue of feasibility (i.e.,
there is a tool that generates tests or there is not), traceability
is possibly significantly more complex to establish (especially
in the presence of notation specific concepts such as TTCN-3
ports and tool-specific adapters). The reason for this
observation is simple: there is no one-to-one relationship
between requirements and tests (be they generated or actual).
In fact, each requirement typically is associated (manually or
through some requirement tracking tool) with several paths
across several scenarios. And, through the technique of path
sensitization [16], each such path can be associated with
several generated tests. To further complicate matters, in
practice, the use of boundary value analysis [Ibid.] will lead a
programmer to code up several actual tests for each generated
tests. Thus, in summary, (ideally automated) support for this
two-tiered model of traceability is necessary if one is to argue
that the actual tests used for compliance testing do correspond
to the requirements of the stakeholder(s) (via links to
generated tests). But it must be emphasized that even with
such support for traceability, there is still room for litigation:
the existence of links between requirements, generated tests
and actual tests by no means guarantees that these links are

452

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:36:34 UTC from IEEE Xplore. Restrictions apply.

semantically correct. This is especially an issue when actual
tests are not obtained in an automated way from the tests
generated from the scenario models: a traceability link
between a generated test and an actual test does not
semantically guarantee that the actual test addresses the
generated one. The link merely captures the belief of the
programmer (who coded the actual tests) that the actual test
does address the generated test to which it is linked.

Finally, with respect to the meaning of 'executability', it is
important to remark that several model-based tools claim to
offer test generation and test execution. But in fact such 'test
execution' often consists in symbolic execution, that is, is
carried out using a (typically state-based) model of the IUT,
not the actual IUT [17]. From a legal standpoint, the relevance
of such simulations to litigation on compliance is quite
dubious (for both functional and non-functional requirements).
Indeed, the software industry has a long history of projects
(e.g., in telephony, in reservation systems, in e-health, etc.)
whose catastrophic actual performance at the very start of their
usage led to their quick shutdown despite favorable
simulations using highly sophisticated mathematical models
(such as layered queue networks). In other words, simulations,
regardless of their pervasiveness in the literature, are just that,
simulations. They may provide indicators of what to expect of
an actual system. But they cannot guarantee that they will
correspond to actual executions; they do not provide evidence
of compliance, for the object of litigation at hand is the
compliance of an IUT (that is, of an actual running system)
against the requirements of the stakeholders.

C. Sufficient Compliance

Beyond the challenges stemming from testability,
traceability and executability, unavoidably the issue of
sufficiency will be at the heart of software compliance testing.
The question is simple: how much should the IUT be tested in
order to demonstrate that it complies to its requirements? The
difficulty is that it is widely accepted that, except for trivial
systems, software testing is generally incomplete [16]. Put
another way, for most industrial software systems, there is
typically an intractable number of situations (e.g.,
combinations of paths through scenario models) to test.
(Additional technical problems such as the combinatorial
explosion of tests required for the testing of complex Boolean
expressions [16, chapter 6], in fact compound this problem.)
Consequently, it is unrealistic to demand that all possible
paths from all scenarios be selected, instantiated, tested and
matched. Instead, the contractor and contracted must agree
and document in the compliance contract how much coverage
will be required. Let us elaborate.

Coverage will have to address how extensive the suite of
actual tests is to be. This requires the contractor and the
contracted to agree on a) a set of scenarios, b) a set of paths
through these scenarios, and c) for each path, a set of path
instantiations and corresponding actual test cases to run.
Several challenges stem from such a task: The two parties
must agree on a scenario model notation that both can use to
discuss the behavior of the STBD. Then they must agree on
how complete the set of scenarios is to be, which assumes
tracing back scenarios to requirements in order to ensure each

requirement is addressed. Then tests (in the form of paths
through scenarios) must be generated. Ideally this should be
automated, otherwise traceability is in jeopardy and such an
unsystematic approach may lead to critical omissions. That is,
a tool that generates a set of paths to test from a scenario
model has the advantage of being systematic and reusable. In
this case, the two parties must agree that the generation
algorithm of the tool does generate adequate coverage of the
requirements. This can be somewhat legally problematic
inasmuch as it requires a (typically non-technical) stakeholder
to agree to the use of a test generation tool whose algorithm is
unlikely to be fully understood by this stakeholder. Similarly,
once paths have been selected for testing, specific path
instantiations must be chosen. Again a stakeholder is asked to
agree to a specific set of tests without necessarily
understanding the techniques (such as equivalence partitioning
and boundary value analysis [16]) that led to the generation of
this set. In other words, while the use of algorithms and tools
to automate the generation/selection of a suite of actual tests
brings systematicity to agreeing on sufficiency, it also 'forces'
the contractor in relying on technical issues s/he may not fully
master. The idea of 'sneak paths' illustrates this point. Binder
[Ibid.] explains that, beyond test generation techniques, a test
suite should always include additional ("sneak") paths
corresponding to 'tricky' situations envisioned by the tester but
missed by the generation tool. A contractor versed in the
systematic way of thinking required by scenario testing may
come up with such 'sneak paths' (which should naturally be
added to the test suite agreed upon). But, in practice, it is
likely to be the tester of an IUT who may have such intuitions
and suggest such additions. And thus, ultimately, the
contractor who provides initial (typically fairly abstract)
requirements is asked to agree to a detailed test suite that he
must believe to be sufficient with respect to these
requirements. This dilemma is further complicated if
compliance is not restricted to a static interpretation but,
instead is seen as diachronic. In fact, the difficulties resulting
from having compliance possibly evolve over time are such
that, legally, this must simply be ruled out.

D. Compliance Testing

Beyond the challenges stemming from testability,
traceability, executability and coverage, we identify two other
sources for possible legal disputes with respect to software
compliance testing.

First, we must consider the process of compliance testing
per se, that is, how tests are run and evaluated. Without going
into technical details (see [14, 15, 18]), we remark that
monitoring the execution of path in an IUT is not a trivial
exercise. Nor is deciding whether this execution matches or
not the expected behavior. Any ad hoc approach to these tasks
is error-prone and thus should be avoided. Instead, the
compliance contract should require that tests be automatically
instrumented, monitored and evaluated [18] in order to
guarantee systematicity and objectivity. The alternative is
legally unacceptable: the IUT tester would be in fact judge and
party since this tester would specify the tests, run them, and
evaluate them.

453

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:36:34 UTC from IEEE Xplore. Restrictions apply.

Second, we observe that in many industrial software
development projects, compliance is not defined in terms of a
test suite but rather in terms of a percentage of successful tests
over a certain percentage of this test suite! For example, a
release will occur when 90% of the test suite has been
exercised with a success rate of 98% (where 'success' means
the actual behavior matches the expected one). As this is
quantitative information, it does not represent a legal
challenge to verify. It is therefore left to the two parties to
decide whether or not to refer to such percentages. In our
experience, such considerations are business-driven and
ideally left out of a compliance contract because: a) such
percentages are meaningless without prioritization: some tests
are critical and must work and b) introducing a prioritization
scheme over tests entails creating another source of potential
dispute between the two parties.

III. CONCLUSION

In this paper we have identified several facets of software
compliance testing that 'open the door' to litigation. To do so,
we have assumed requirements would be captured in state-of-
the-art goal-driven and scenario-based models. In fact, when
considering the paucity (with respect to testability, traceability
and executability) of the models still used for defining the
detailed requirements of multi-million systems (e.g., [19]), we
must conclude that the current situation is much worse than
what we have described.

ACKNOWLEDGMENTS

Support from the Natural Sciences and Engineering
Council of Canada is gratefully acknowledged.

REFERENCES
[1] P. Zave, “Classification of research efforts in requirements engineering,”

ACM Computing Surveys, 29(4), pp.315-321, 1997.

[2] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” Proceedings of the Conference on the Future of Software
Engineering, Limerick, Ireland, pp.35-46, June 2000.

[3] L. Liu and E. Yu, “From requirements to architectural design - using
goals and scenarios,” ICSE-2001 Workshop: From Software
Requirements to Architectures (STRAW 2001), Toronto, Canada. pp.22-
30, May 2001.

[4] D. Amyot and G. Mussbacher, “User requirements notation: the first ten
years, the next ten years,” Journal of Software, Vol. 6(5), pp.747-768,
May 2011.

[5] R. Buhr and R. Casselman, Use Case Maps for Object Oriented Systems,
Prentice-Hall, USA, 1995.

[6] D. Amyot, “Introduction to the user requirements notation: learning by
example,” Computer Networks: The International Journal of Computer
and Telecommunications Networking, Elsevier Inc., New York, vol.
42(3), pp.285-301, June 2003.

[7] D. Amyot, M. Weiss and L. Logrippo, “Generation of test purposes from
Use Case Maps,” Journal of Computer Networks, vol. 49(5), pp.643-660,
2005.

[8] A. Bertolino, “Software testing research: achievements, challenges and
dreams,” Future of Software Engineering (FOSE '07), IEEE Press,
Minneapolis, pp.85-103, May 2007.

[9] J.-P. Corriveau, and W. Shi, “Traceability in acceptance testing,” Journal
of Software Engineering and Applications, Vol. 6(10A), pp.36-46, 2013.

[10] M. Shafique and Y. Labiche, “A systematic review of model based
testing tool support,” Technical Report SCE-10-04, Carleton University,
2010.

[11] B. Stepien and L. Peyton, “A comparison between TTCN3 and Python,”
TTCN-3 User Conference, Madrid, Spain, June 2008.

http://www.site.uottawa.ca/~bernard/A%20comparison%20between%20
ttcn-3%20and%20python%20v%2012.pdf

[12] M. Surhone, M. Tennoe and S. Henssonow, CISQ, Betascript Publishing,
2010.

[13] B. Meyer, “The unspoken revolution in software engineering,” IEEE
Computer, 39(1), pp.121–124, 2006.

[14] J.-P. Corriveau, “Testable requirements for offshore outsourcing,”
Software Enginnering Approaches for Offshore and Outscourced
Development (SEAFOOD), Zurich, Switzerland, February 2007 (LNCS
4716, pp.34-43).

[15] D. Arnold, J.-P. Corriveau and W. Shi, “Reconciling offshore
outsourcing with model-based testing,” Software Engineering
Approaches for Offshore and Outscourced Development (SEAFOOD
2010), Peterhorf (Saint Petersburg), Russia, pp.6-22, June 2010.

[16] R. Binder, Object-Oriented Testing, Addison-Wesley, New York, 2000.

[17] “Spec Explorer Visual Studio Power Tool,”
http://visualstudiogallery.msdn.microsoft.com/271d0904-f178-4ce9-
956b-d9bfa4902745

[18] J.-P. Corriveau and W. Shi, “Generating verifiable contracts,” Software
Engineering Research and Practice, Las Vegas, pp.315-321, July 2011.

[19] Software Communication Architecture draft spec.,

http://www.public.navy.mil/jpeojtrs/sca/Pages/default.aspx

454

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:36:34 UTC from IEEE Xplore. Restrictions apply.

