
Use Case Map Traversal against Sequence Breaking

Matthew Shelley and Jean-Pierre Corriveau

School of Computer Science

Carleton

Ottawa, Canada

jeanpier@scs.carleton.ca

Wei Shi

Faculty of Business and I.T.

University of Ontario, Institute of Technology

Oshawa, Canada

Wei.Shi@uoit.ca

Abstract—Sequence Breaking is a type of feature interaction

conflict that exists in video games where the player gains access

to a portion of a game that should be inaccessible. In such

instances, a game’s subsuming feature—its storyline—is

disrupted, as the predefined set of valid event sequences—events

being uninterruptable units of functionality that further the

game’s story—is not honored, as per the designers’ intentions.

We postulate that sequence breaking most often arises through

bypassing geographic barriers, cheating, and misunderstanding

on the player’s behalf. In this paper, we present an approach to

preventing sequence breaking at run-time with the help of Use

Case Maps. We create a narrative manager and traversal

algorithm to monitor the player’s narrative progress and check

the legality of attempted event calls. We verify our solution

through test cases and a testing tool, and then show its feasibility

through a game we created, concluding that our solution is both

sufficient and feasible.

Keywords—use case maps; sequence breaking; narrative; video

games; traversal

I. INTRODUCTION

Sequence Breaking is a subset of Feature Interaction,
which is a well-known problem in the field of Computer
Science [1, 2, 3]. In short, a feature conflict is said to have
occurred when there is “unwanted interference [among] two [or
more] features,” [1] where a feature is a unit of specific,
verifiable functionality that provides value to the end-user of an
application [4]. In the realm of video games, such conflicts
arise when two or more features lead to ‘undesirable behavior’
including unwinnable situations, visual anomalies, and
‘inaccurate’ storylines (e.g. earning rewards earlier than
intended).

Sequence breaking exists in the domain of game narrative
when a predefined storyline is not followed as per the game
designers’ intentions. When a ‘narrative’ feature, hereafter
referred to as an event, is called outside of the game’s set of
predefined narrative sequences, there exists unwanted
interference with the storyline—the game’s subsuming
‘narrative’ feature—as its integrity has not been honoured.
When the player starts an invalid sequence of events, they are
breaking the predefined narrative sequence.

Video games have been subject to sequence breaking since
their inception. In 1986, Enix’s Dragon Quest expected the
player to rescue a princess to acquire an item, but the item

could be found early in the game effectively skipping the
rescue entirely [5]. In 1994, Sega’s Sonic 3 & Knuckles
inadvertently allowed the player to fly over some mid-boss
areas, to skip such battles; doing so would later cause glitches
[5]. In 2011, Nintendo’s The Legend of Zelda: Skyward Sword
became impossible to finish if players completed tasks in a
certain order [6]. In summary, sequence breaking conflicts
have existed for decades and continue to exist to this day.

Such conflicts are detrimental to players in two ways. First,
as skilled players are often the ones to perform sequence
breaking, for the sake of cheating or their own enjoyment,
other players may fall victim to such unfair advantages. For
example, in Pokémon Red Version and Blue Version, the player
could follow an unusual sequence to battle a glitch Pokémon,
which caused items to be duplicated [7]. Second and worse,
when sequence breaking occurs without the player’s
knowledge, the game’s story may make no sense, leading to
confusion, or the game may become unwinnable. Because the
player’s experience is reduced, sequence breaking poses a
significant problem for an industry that relies on creating ‘fun’
in order to sell its products.

In this paper, we provide a solution to preventing sequence
breaking, verify its behaviour, and then explore its feasibility.
In section 2, we first begin with a short example to further
clarify what is meant by sequence breaking. Second, we define
terms that will be used throughout this paper. We then briefly
discuss how we choose to represent the elements of a narrative.
In section 3, we overview our solution to preventing sequence
breaking and present the details of our algorithm in the next
section. Then, in section 5, we discuss verification and
feasibility of our solution before concluding in section 6.

II. BACKGROUND

A. A Short Example

First, suppose a player is required to explore a dungeon and
defeat a boss in order to acquire a key item, which is necessary
to unlock the next dungeon. Suppose further that the first
dungeon becomes destroyed once the player leaves it.

This setup expects the sequence:

a) Enter Dungeon

978-1-4799-2030-3 /14/$31.00 ©2014 IEEE

359

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

b) Fight Boss to Receive Key Item

c) Exit Dungeon, Unable to Return

d) Enter Next Dungeon with Key Item

Clearly, if the player somehow managed to bypass the boss
fight, then they would not receive the key item necessary to
enter the next dungeon, resulting in an unwinnable situation as
the player cannot return to acquire the missed key item.

This outcome gives the actual sequence:

a) Enter Dungeon

b) Exit Dungeon, Unable to Return

c) Unable to Enter Next Dungeon

The player cannot proceed in any way, thus preventing the
intended experience: sequence breaking has made the game
unplayable.

B. Definitions

Table 1 defines common terms that will be used in this paper.

TABLE I. LIST OF TERMS WITH DEFINITIONS

Term Definition

Command a ‘function’ used within an event, such as

for displaying text to the screen,

prompting the player to make a choice,

delaying the next command temporarily,

moving entities, etc.

Entity an in-game object or non-playable

character, which may or may not move

autonomously and, which may or may not

call a script or an event.

Event an uninterruptable script that serves the

purpose of furthering the story when

called and requires additional legality

checking to ensure that it is performed in

correct sequence (as specified by the

designer).

Event

Identifier

an integer or string that uniquely

identifies an event.

Geography a medium (such as the game world

containing towns, dungeons, and paths) in

which entities reside, and where the

player moves characters to further the

game’s narrative.

Illegal Event an event that should not be called next

based on the player’s progress within the

narrative representation.

Legal Event an event that can be called next based on

the player’s progress within the narrative

representation.

Narrative a set of pre-determined events and of

event sequences, where an event

sequence ‘moves’ the player through a

game’s story arc or intended means of

progression.

Narrative

Representation

a knowledge representation, which

describes valid event sequences in a

narrative, such as a diagram or graph.

Progress a set of ‘positions’ (i.e., indicators

assigned to ‘nodes’ within a narrative

representation) that serves to record

events that have recently occurred in

addition to determining the events that

can be called next.

Script a string, or sequence of individual lines of

code, that can be interpreted to provide

functionality such as:

 calling commands; and/or,

 reading and modifying variables

—in addition to providing structural

aspects such as labels with go-to (for

jumping between lines), conditional

branching, and comments.

Sequence of

Events

a sequence (e1, ..., en) where each ei is an

event called at time step ti such that t1 < ...

< tn.

Trigger a geographical region, which, when

entered by the player, calls an event or

arbitrary function.

Clearly, if the player somehow managed to bypass the boss

fight, then they would not receive the key item necessary to

enter the next dungeon, resulting in an unwinnable situation as

the player cannot return to acquire

C. On Narrative Elements

A narrative element of a game “communicates aspects of
[the] story to the player” [8]. We can think of narrative
elements as the ‘who,’ ‘what,’ and ‘where’ of a game, while
the ‘when,’ ‘why,’ and ‘how’ of the game’s story are either told
or shown to the player. For instance, within the game’s fictive
world, the player (who) may battle enemies (who) or interact
with other characters (who); the player may collect objects
(what); and, the player may explore geography (where). The
time of the story (when), motivations of characters (why), and
actions that occur (how) can be denoted using events.

Two forms of narrative can be present in any game:
Embedded narrative is “pre-generated narrative content that
exists prior to a player’s interaction with the game,” such as
cut-scenes and back story, which “are often used to provide the
fictional background for the game, motivation for actions in the
game, and development of [the] story arc” [Ibid]. Emergent
narrative, alternatively, is the player’s experience with the
game that can “[vary] from session to session, depending on
[the] user’s actions” [Ibid]. While a good “game design
involves employing and balancing the use of these two
elements,” [Ibid] the focus of our work is purely on embedded
narratives. In fact, we further restrict our scope here to single-
player adventure-type games since such games center on
narratives but allow only for a simple form of sequence
breaking (in contrast to massively-multiplayer online games).
Majewski [9] discusses different approaches for creating

360

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

embedded game narratives. In all these, a design specifies valid
sequences of events in order to build a story.

Some solutions to sequence breaking have been attempted.
For example, Eladhari [10] proposes the creation of causal
relationships between events, as well as “Object Oriented Story
Construction”. The latter requires that all entities of a game be
given knowledge of the game’s story in order to “make them
more intelligent with respect to the overall narrative goals”.
The main disadvantage with existing research in narratives
however remains that it is essentially theoretical: existing
proposals are not implemented in an actual game.
Consequently, unfortunately, the verification of a
computational version of such proposals is generally not
addressed.

In [11], we review at length work on game narrative,
feature interaction, game development, and game testing. We
also discuss five notable game titles

1
 from between 1992 and

2011 in order to understand their means of handling narrative
progression. We identify the following mechanisms to control
the traversal of a narrative:

a) Geographic barriers: which refer to obstacles placed

within the geography to ‘physically’ prevent the

player’s character from progressing. Such barriers

may be removed either through gaining a new skill or

item, or by the game itself after an event.

b) Narrative barriers, on the other hand, require some

condition to be true before they can be overcome.

c) Central hubs may be common geography the player

visits in order to access different areas of the game. A

world map is an example.
Narrative barriers are significantly more difficult to break

than geographical barriers, while central hubs are ‘transitions’
between events. In general, video games make use of event
sequences to represent narrative progression along with
geographic and narrative barriers to enforce the intended
progression. Our proposal caters to this approach by allowing
constraints (such as preconditions) on events and by handling
both entities and triggers within geography.

Our study of these five games also suggests that, typically,
the narrative structure of single-player adventure-type game
can be captured through a small set of 'scenario elements' found
in many scenario notations such as Petri Nets [12] and Use
Case Maps [13] (hereafter UCMs). Given our familiarity with
the latter, we support this claim by creating a UCM
representation of the narrative of each of these five games (to
be used, among others, as test cases for our approach to
sequence breaking). As an example, we show the UCM for the
top level and one sublevel of Super Mario 64 in Figure 1.

The claim that representing the narrative of single-player
game only requires a small set of 'scenario elements' is further
supported by the work of Martineau [14] who develops a high
level computer narrative language, the Programmable
Narrative Flow Graph (PNFG), built atop Narrative Flow

1
 namely: The Legend of Zelda: A Link to the Past, Super Mario 64,

Pokémon: SoulSilver Version and HeartGold Version, Grand Theft

Auto 4 and Bastion

Graphs (NFG), which are simple Petri Nets. (His work is
however limited to only purely textual games.)

a) top level

b) 3+ star subdiagram

Figure 1. Partial UCMs for Super Mario 64

361

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

The small set of scenario elements we use is given in
Figure 2. (in order to enable the straightforward interpretation
of Figure 1.). It is further discussed in section 4 where we
discuss the details of our proposal.

Figure 2. UCM Elements used for Narrative Representation

Let us first overview the latter.

III. OVERVIEW OF OUR SOLUTION

In this paper, we propose a ‘narrative manager’ and
traversal algorithm in order to prevent sequence breaking
within a game environment at run-time. We represent a set of
valid narrative sequences using UCMs; keep track of the
player’s progress along such a representation; and then, check
if attempted event calls are legal using this combined
knowledge. The narrative manager stores the narrative
representation, player’s progress, and set of legal events. This
manager can determine if attempted event calls are legal by
checking against the legal set of events. The traversal algorithm
accepts an event identifier for a legal event, and then updates
both the player’s progress and the set of next legal events. We
can prevent sequence breaking by rejecting any attempted calls
to illegal events.

It is important to note that since the nature of sequence
breaking involves the unintended sequential ordering of events,
it cannot be assumed that any arbitrary event can be guaranteed
to not be called. Instead, we have to assume that any event can
attempt to be called regardless of the player’s progress.
Therefore, it seems to be necessary to validate at least O(n

2
)

sequences, where n is the number of events, prior to the game’s

execution (e.g. at design-time or during play-testing), but such
validation is intractable. It is unreasonable to expect designers
or play-testers to consider an exponential number of sequences
as such an approach simply does not scale. Thus, it is necessary
in our opinion to offer a run-time solution. Indeed, instead of
testing and resolving (not only pairwise but) all sequences of
events to ensure only valid sequences are allowed, it is
preferable to create a means of checking if a requested event is
legal based on the player’s progress within the storyline at a
given point in the game. When an attempted event call is
deemed to be legal, it may proceed as expected; otherwise, the
event call is rejected (and an appropriate warning can be given
to the player). In this approach, designers need only consider
valid sequences, while game testers verify that this preventative
procedure works.

We believe sequence breaking to be preventable at run-time
when, in a time undetectable by the player and within a game
environment, we can perform the following routine, given an
event identifier, narrative representation, and the player’s
progress:

a) Determine if the event associated with the given event
identifier is legal to call at this point of the narrative.

b) If ‘yes’, return a ‘success’ value, call the associated
event, update the player’s progress, and then:

 Update the game’s world to allow the player to call
events that are now considered legal; and,

 Update the game’s world to prevent now-illegal
events from being called, effectively preventing the
player from accessing illegal events.

c) If ‘no’:

 Ignore the attempted event call; and,

 Return a ‘failure’ value, so an optional developer-
defined function can be triggered to handle the
detected sequence breaking, possibly by using the
current set of legal events.

Furthermore, our run-time approach to sequence breaking
must work within the limitations of a game’s environment
without hindering the player’s experience, as we discuss in
section 5.

IV. DETAILS

The major contribution of our work is a narrative manager
that stores a narrative representation, updates progress,
determines the set of currently legal events, and checks the
legality of attempted event calls, with the goal of preventing
sequence breaking. We also propose a traversal method for a
UCM-based narrative, the Royal Pegasi Algorithm, to
determine the current set of legal events based the player’s
progress and a given identifier for a legal event. Let us
elaborate

A. Narrative Manager

The narrative manager offers three public methods, which
are used for initialization and attempting to call events. The

362

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

init() method loads a Use Case Map file, stores narrative
variables with their designer-defined default values, and
optionally reads a file containing scripts for events. The
tryToCallEventById() and tryToCallEventByName() methods,
which respectively take in an event index and event name,
check if the associated event is legal to call, by checking if it
exists in the set of legal events, and then call the event if it is
deemed legal. Using these methods, it becomes possible for a
designer to store a sequence representation and check the
legality of attempted event calls at run-time.

Adding to this ability, when an event is called, we preload
events that have become legal and unload any events that have
become illegal. To preload an event means that we add
elements (entities or triggers) to the geography in order for the
event to be callable by the player. For instance, the player may
need to interact with a non-playable character to call an event,
and thus this character will be placed in the world. To unload
an event means that we remove elements from the geography
in an effort to prevent calls to it. In order for our approach to
run, developers provide code for preloading and unloading
events. With this code, we not only try to prevent calls to
illegal events, but inherently update the game’s world to better
serve developers from a narrative perspective.

B. Royal Pegasi Algorithm

1) An Example

The Royal Pegasi Algorithm serves the purposes of
traversing a UCM to determine the current set of legal events.
When the narrative manager is initialized, the first set of legal
events is determined by following the start point(s) specified by
designers. Subsequently, the legal event set is updated
whenever an event is called by moving forward along the
diagram, based on ‘markers’ referred to as Royal Guards and
Pegasi, hence the chosen name. Royal Guards only traverse a
UCM as far as can be certain, by relying on connections that
are guaranteed to be crossable (i.e., traversable). For instance,
Or-Forks (see Figure 2) may have multiple valid outgoing
connections, but there is no certainty as to which ones will be
crossed. Pegasi instead serve as speculative markers, which
belong to either a Royal Guard or a Pegasus, in that they are
created to explore paths that could potentially be crossed. In
essence, a Royal Guard serves as a root node to a tree of Pegasi.
Intuitively, our Royal Pegasi Algorithm can be conceptualized
as a modified version of the traversal method proposed by
Amyot [15] for UCMs. Details of the implementation of this
algorithm can be found in [11]. Let us now instead illustrate it
with an example. More precisely, in order to illustrate some of
the complexity our Narrative Manager and its Royal Pegasi
Algorithm we will walk through the intended outcomes of
numerous event calls on a small, but difficult example given in
Figure 3. Within this scenario, we will see an And-Fork, an Or-
Fork with multiple legal paths, a loop, and an And-Join. For
each legal event call, our goal is to correctly determine the new
set of legal events, given the player’s current progress and the
identifier of the called event..

Figure 3. A small example

Suppose we begin traversal at the single Start Point. At
initialization, we preload the first and only legal event: “Before
And-Fork”. If the player attempts to call any event other than
“Before And-Fork” such calls should be rejected. Only once
the player calls the event “Before And-Fork,” should it be
unloaded, and should traversal proceed to find the next set of
legal events, preloading them.

At Initialization, Legal Event Set = {Before And-Fork}

Call Event: Before And-Fork

Legal Event Set = {Loop 1, Concurrent Event 1}

Due to the And-Fork, we can now follow two narrative
paths in parallel, granting access to “Loop 1” and “Concurrent
Event 1”. Though the Or-Fork connecting to “Loop 1” allows
for both of its connections to be crossed, as there are no
restrictions, we cannot access the event after the And-Join yet
as not all of its incoming paths can be completed.

If we call event “Loop 1,” then the event “Loop 2” will
become legal instead. Calling “Loop 2” after “Loop 1” will
return us to the above legal set of events, as follows:

Call Event: Loop 1

Legal Event Set = {Concurrent Event 1, Loop 2}

Call Event: Loop 2

Legal Event Set = {Concurrent Event 1, Loop 1}

Suppose at this point in time, the player chooses to call
“Concurrent Event 1,” lest the loop repeat indefinitely:

Call Event: Concurrent Event 1

Legal Event Set = {Loop 1, Concurrent Event 2}

We now reach an interesting scenario with a few cases to
consider. First, the player could repeat the entire loop
indefinitely, again returning to the current legal event set.
Second, the player could start the loop again, but call
“Concurrent Event 2” right after “Loop 1,” resulting in the
following outcomes:

Call Event: Loop 1

Legal Event Set = {Concurrent Event 2, Loop 2}

Call Event: Concurrent Event 2

Legal Event Set = {Loop 2}

363

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

Continuing with this case, the player can only call event
“Loop 2”, giving:

Call Event: Loop 2

Legal Event Set = {Loop 1, After And-Join}

This end result is similar to our last case. Third, calling
“Concurrent Event 2” instead of “Loop 1” gives the following
outcome:

Call Event: Concurrent Event 2

Legal Event Set = {Loop 1, After And-Join}

At this point, the player has the choice of repeating the loop
indefinitely, with the form:

Call Event: Loop 1

Legal Event Set = {Loop 2}

Call Event: Loop 2

Legal Event Set = {Loop 1, After And-Join}

Since the player chooses to continue the loop, they cannot
break out of it, proceeding to event “After And-Join” until they
return to the Or-Fork. While this behavior is expected for an
Or-Fork and a loop, it should be noted that the event “After
And-Join” is, as the name suggests, located after an And-Join,
which has a strict requirement that all paths before it be
possible to complete.

Finally, once the player chooses to leave the loop and pass
the And-Join by calling the event “After And-Join,” they will
gain access to the last event: “The End.”

Call Event: After And-Join

Legal Event Set = {The End}

Call Event: The End

Legal Event Set = {}

At this point, traversal of the UCM has ended and no more
legal events remain. Presumably, the game has come to an end
as there is no more narrative to manage.

2) Traversing a UCM

The narrative representation stored within a specification
diagram of a UCM can be considered a list of nodes and a list
of connections between them. Unlike a graph, however, each
node can be of a different type, which alters the traversal of the
diagram from that point forward. For instance, an And-Fork
splits the representation into multiple ‘concurrent’ narrative
paths. In this section, we describe our approach to handling
‘generic’ nodes, specific types of nodes, and connections.

Using an object-oriented approach, we begin with a generic
(or base) Node class, from which all other node classes are
derived. This generic node class contains a constructor, a set of
incoming connection references, a set of outgoing connection
references, and a function to get the next set of legal of
connection references leaving the node object. (For our
purposes, a ‘connection reference’ is a means of referring to a
connection stored within a specification diagram.) The function

evaluates each outgoing connection’s condition expression, and
then returns all of the outgoing connections that can be crossed.
An empty array of connections may also be returned, if no
edges can be crossed or there are no outgoing connections.
This generic node class is sufficient for representing Empty
Points, Direction Arrows, Start Points, Or-Joins, and Waiting
Places; however, Or-Forks, which also follow very similar
behavior, require distinction, by performing a check using
instanceof, within the traversal algorithm as they are treated as
a special case.

Beyond the generic node class, several node types have
their own derivations.

Responsibility Reference nodes actually refer to events
through an index, but the name is taken from the UCM file
format, which uses the term ‘responsibility’ instead. When
traversal reaches such a node, the associated event is preloaded;
when traversal leaves such a node, the associated event is
unloaded (see next subsection) Traversal can only pass a
Responsibility Reference node when the associated event has
marked itself as passable: a temporary occurrence that happens
upon the completion of the event’s script.

Stub nodes additionally contain in- and out-bindings, a
function to get a start point within a specification diagram
given an incoming connection reference, and a function to get
an out-binding given a valid index. Stub nodes serve the
purpose of joining one specification diagram to another, by
using in-bindings to connect an incoming connection reference
to a start point node of another specification diagram and out-
bindings to connect an end point node to an outgoing
connection reference of another specification diagram.

End Point nodes additionally store references to out-
bindings of zero or more stub nodes and contain a function to
get a connection reference, leaving a stub node, given a stub
node reference. This extra information and extended behavior
allows the traversal algorithm to either terminate (i.e., marking
the Royal Guard or Pegasus for deletion) or move past an end
point, by crossing a connection leaving a stub node.

And-Fork nodes require a class simply to perform an
instanceof check, as their behavior requires that the traversal
algorithm allow all outgoing paths to be followed in parallel.

And-Join nodes serve the purpose of reducing a layer of
concurrency, by merging completed concurrent paths into a
single path once all incoming connections have been crossed.
To handle this behavior, we extend the generic Node class to
include an associative array of attendees (i.e., Royal Guards or
Pegasi located at the node); an associative array of connections
to cover, with a count of unique attendees who have crossed; a
counter of satisfied connections; a counter of satisfied
connections with Royal Guards; two functions to add and
remove unique attendees, while updating necessary variables;
two functions to destroy attendees; a function to check if all
incoming connections are covered by Royal Guards; and,
finally a check before returning the single outgoing connection.
Recording attendees who arrive at or depart from the And-Join
allows us to check if all incoming connections have been
satisfied. The additional counters are added as an optimization
to offer O(1) time complexity in adding or removing unique

364

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

attendees and verifying if the passing condition has been met.
As a primary feature of the And-Join is to reduce several paths
into one it is necessary to destroy attendees so only one
‘survivor’ may proceed along the outgoing connection. The
first such method, destroyAllWaitingRoyalGuards(), is used
when Royal Guards cover all incoming connections and a
Royal Guard wishes to pass the And-Join. In this case, we
destroy all Royal Guards after one ‘survivor’ has already left.
The second such method, destroyAbsolutelyAllWaiting(), is
used when a Royal Guard follows a Pegasus past the And-Join.
In this case it is necessary to destroy all Royal Guards either
attending the And-Join directly or who have at least one sub-
Pegasus attending the And-Join, effectively destroying their
entire Pegasi trees as well. Again, it is assumed that the
‘survivor’ has already left. As the ability to pass an And-Join
depends on its current attendees and if a Royal Guard or
Pegasus wishes to pass, such nodes require significant
extension to handle these requirements.

With the behavior of all node types created, it is then
necessary to join nodes together through Connection objects.
Connections have source and target node references, which
refer to a node within a specification diagram, along with an
optional condition, which must be true before the connection
can be crossed. Combining nodes with connections, in a similar
manner to a graph, completes the structure of our narrative
representation.

3) About Events

Events serve the purpose of furthering the story within a
game through uninterruptable scripts when called. They are
preloaded to set up the game world so they may be called; and,
are unloaded to remove elements of the game world to prevent
them from being called. In addition, events store a list of
attendees, similar to And-Join nodes, in order to determine if
they are legal to call, and a flag to indicate if the event can be
passed during traversal. Responsibilities from UCMs directly
refer to events and are used to create them, with the
responsibility label becoming the event name. Upon calling an
event, exactly one or exactly all of its attendees are moved
forward, based on a setting provided to the Narrative Manager
at its initialization, with all Royal Guards traversing
immediately after.

Using the preloadMaybe() method, which takes in an
attendee (i.e., Royal Guard or Pegasus), on an event, the
attendee is stored within the event’s list of unique attendees,
and the game world is modified so that the event may be called
– if no other attendees were previously available. Note that the
actual preloading is handled by game programmers: our
solution merely calls such a programmer-supplied function by
passing along the name of the event to preload. When an event
has at least one attendee, it is considered legal.

Using the unloadMaybe() method, which also takes in an
attendee, on an event, the attendee is removed from the event’s
list of unique attendees, and the game world is modified so the
event may not be called – on the condition that no more
attendees remain. Note again that the actual unloading is
handled externally, in a similar means as preloading. When an
event has no attendees, it is considered illegal.

For our purposes, we ignore expressions assigned to
responsibilities in favor of scripts written for our own scripting
language. The reason for this change is that our scripting
language performs actions, which would be better suited for
progressing a game’s narrative, that are beyond the ability of
UCM’s responsibility expressions as supported by the
jUCMNav tool[16]. For instance, the designer may display
messages to the screen. Scripts are instead read from an XML
file, and then assigned to events.

Ultimately, the major work of the Narrative manager occurs
when an event is called through its call() method, as the set of
legal events needs to be updated. This method begins by
running the associated script, which may be empty, through the
Script Manager. Upon completion, a callback function fires
that first selects attendees to move, as specified within the
‘onEventCall’ setting assigned to the Narrative Manager (i.e.,
MOVE_FIRST, MOVE_LAST, MOVE_RANDOM,
MOVE_ALL); makes the event briefly passable; moves the
selected attendee(s) past the event by invoking their
onEventCall() method; makes the event no longer passable;
and then, moves every Royal Guard by invoking its trot()
method. After all Royal Guards have moved, including those at
the event or associated with a Pegasus at the event, any Royal
Guards that have been flagged for deletion during their
traversal are immediately destroyed. Thus, when an event is
called, the Narrative Manager is able to update accordingly.

Finally, we remark that in creating a UCM to represent
game narrative, it is important to understand the legal sets of
events that will be possible for every legal situation. The
Narrative Manager and its traversal algorithm can only
generate its legal sets based on the representation scheme given
to it, along with the player’s current progress and a legal event
identifier. We cannot be expected to produce results to match
the designer’s intentions, if these intentions are not properly
captured. As a result, the designer of a UCM for a narrative
must verify their expected legal sets of events for sequences
against the actual legal sets of events for sequences that our
solution generates. Since the number of legal sequences may be
intractable, we can only verify test cases that provide coverage
of our solution along with random paths taken in specific
narrative representations

V. VERIFICATION AND RESULTS

In this section, we address the procedures used to both
verify our solution and check its feasibility, and then discuss
the results of these methods. With respect to verification, we
challenged our solution against a set of test cases that cover the
UCM subset that we support, our narrative manager, and our
Royal Pegasi Algorithm. With respect to feasibility, we created
a simple game where the player proceeds through a sequence
of events that must be followed in an intended order, while
being permitted to cheat in attempt to break the sequence. We
start by describing our test procedures in greater depth, and
then discuss our results.

A. Descriptions of Experiments

Our experimental procedures apply to both the verification
of our solution and its feasibility for preventing sequence

365

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

breaking at run-time. For the former, we created a webpage
where numerous test cases (i.e., UCMs) can be traversed to
verify our expected behavior. For the latter, we created a game
to show that our solution runs in a time undetectable by the
player with the proper environment. We detail these procedures
to better provide an understanding of our experiments.

Verification of our solution is handled through a testing
tool

2
 (here a web page) shown in figure 4, which allows for a

traversal of one of a set of test cases that cover the UCM
semantics that are supported by our solution. Upon selecting an
example, the tester can view the associated UCM (and its sub-
diagrams, if any), try to call arbitrary events, view the current
legal set of events, and call an event from the current legal set.
As the tester proceeds through a test case, by calling a legal
event (either by clicking an event identifier or entering one in
the specified textbox), the legal set of events updates, allowing
other events to be called until no more remain. Any scripts
associated with events are also run (e.g., to increment
variables). When an illegal event is attempted, through the
textbox, a notification of sequence breaking will be shown.
One can verify the legal set of events generated by following a
sequence of events against the expected behaviour, by
examining the provided diagrams. We have created enough test
cases to cover the supported UCM semantics and the specifics
of our narrative manager and its Royal Pegasi Algorithm.

Figure 4. Verifying our solution through test cases

Feasibility of our solution is demonstrated through a game
we created called Dungeon Explorer

3
 (see figure 5). In this

game, the player navigates a dungeon with limited light to
collect coins, which will unlock the exit when all have been
found. Torches may also be picked up to increase the visible
area around the character.

As the player progresses they will activate switches to
unlock more areas of the dungeon, granting access to more

2 The testing tool may be viewed at:

http://www.scriptedpixels.com/content/mcs-thesis/ucm-testing-

tool.htm
3 Dungeon Explorer may be played at:

http://www.scriptedpixels.com/content/mcs-thesis/dungeon-

explorer.htm

coins and switches. We created a UCM to represent the valid
sequences of events (e.g., switch presses) that can be followed
by the player. Cheats are provided to optionally allow for:
walking through barriers, attempting to activate disabled
switches, and viewing the entire map. If the player tries to
sequence break, by stepping on a switch out of order or exiting
the dungeon before collecting all coins, the game will detect
the conflict and then move the player’s character to resolve it.

Figure 5. Screenshot of Dungeon Explorer

This game demonstrates that our solution can prevent
sequence breaking at run-time without hindering a player's
experience. Together, the testing tool we have created and
Dungeon Explorer serve to verify the expected behavior of our
solution and demonstrate its feasibility, respectively.

B. Verification of Solution

In order to verify our solution, we took several steps. First,
we compiled a list of requirements to satisfy, by referring to the
intricacies of our solution and the UCM semantics that we
support. Second, we created UCMs as test cases to support
these requirements. Third, we iteratively verified the actual
behavior of each test case against its expected behavior. When
a problem was detected with a test case, we resolved the
problem, and then started testing all over from the first test case.
We continued this process until all test cases passed. In all, we
created UCMs for 19 specific examples, and 3 structures from
commercial games for added credibility, as well as our
Dungeon Explorer game.

For the sake of brevity, we will not detail each requirement
we aimed to satisfy or provide an example of each requirement
being satisfied, as such information is available in [11].

C. Feasibility of Solution

Beyond verifying the behavior of our solution, it is
important to illustrate its ability to prevent sequence breaking
within a game environment at run-time. For this reason, we
created Dungeon Explorer, which included a UCM that
covered all of our supported features, and then instrumented a
timer into each update caused by a call to a legal event [11],
which includes preload and unload callbacks. (As we are able

366

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

to detect sequence breaking in O(1) time, by checking if a key
exists within an array, it is not necessary to count the time for
illegal calls as the legality check is negligible.) Over several
playthroughs, we recorded the average update time, adjusted
average update time (where updates less than 1 ms are rounded
up), maximum update time, and minimum update time. Our
feasibility results are recorded in Table 3:

TABLE II. PERFORMANCE OF ALGORITHM IN DUNGEON EXPLORER

Iteration /
Statistic

It. 1 It. 2 It. 3 It. 4

Average 1.39 ms 1.5 ms 1.44 ms 1.28 ms

Adjusted
Average

1.56 ms 1.56 ms 1.5 ms 1.39 ms

Maximum 3 ms 6 ms 4 ms 3 ms

Minimum <1 ms <1 ms <1 ms <1 ms

From these results, it is apparent that our average update
time is small, while the maximum update time was at most 6
ms. Even if our solution were to run at 6 ms for every update
call, such a time would still not be detectable by a human being
– as evidenced by the fact that computer monitors have refresh
rates between 60 and 120 Hz (or 8 ms to 16 ms per frame). To
add to this point, our algorithm runs in a separate thread and
only when a legal event is called: a relatively uncommon
occurrence in comparison to the number of frames where a
legal event is not called. Thus, it is reasonable to suggest that
our solution is sufficiently efficient as the time to preload
events, call a legal event, unload events, and determine the new
set of legal events is not significant enough to disrupt the
player’s experience.

VI. CONCLUSIONS

In this paper, we presented an approach for managing a
game's narrative for the purpose of preventing sequence
breaking at run-time. From reviewing the literature and
studying five popular games, we compiled a list of narrative
elements that appear to be necessary and sufficient to represent
storylines. We then observed that a subset of Use Case Maps
(UCMs) could readily capture these narrative elements and
represent the valid sequences of a narrative (in order to
compare a player’s progress against the designer’s set of valid
storylines). We created a narrative manager and a UCM
traversal algorithm in order to monitor the player’s progress
and prevent sequence breaking. We then developed an
extensive set of test cases that address all the UCM elements
we use as well as cover all the branches of our algorithm.
Finally, we developed a game to demonstrate the feasibility of
our proposal.

One derived benefit of our solution is that, having access to
the current legal set of events, a designer may draw on this
knowledge to have the game offer better context-sensitive
behavior (such as improved dialogues, better behavior for non-
player characters, etc.). In particular, we explain elsewhere [11]

how, beyond preventing sequence breaking by ignoring
attempted calls to illegal events, we try to reduce such calls by
altering the game world to exclude related triggers or entities.

There is however presently a drawback in our approach:
Because the player’s progress is currently only updated when a
legal event is called, it is possible for events that depend on
conditions to not be 'moved' to the legal set before another
event has been triggered. Similarly, an event that has become
illegal based on a precondition may remain in the legal set of
events. A solution would require rethinking the current
handling of narrative-related variables. At this point in time, it
is not clear whether such rethinking should occur only in the
limited scope of single-player adventure-type games that we
have chosen, or consider the complexities that will be
unavoidably introduced if we tackle massively-multiplayer
online games.

REFERENCES

[1] S. Tsang and E. H. Magill, “Detecting feature interactions in the
intelligent network,” in L. G. Bouma and H. Velthuijsen (editors),
Feature Interactions in Telecommunications Systems. IOS Press,
Amsterdam, pp. 236–248, 1994.

[2] Y. Jia and J. M. Atlee, “Run-time management of feature interaction,”
ICSE Workshop on Component-Based Software Engineering (CBSE6),
Porland (Oregon), May 2003.

[3] ICFI 2012, “About ICFI,” 29 July 2011. [Online]. Available:
http://www27.cs.kobe-u.ac.jp/wiki/icfi2012/index.php?AboutICFI
[Accessed 21 May 2014].

[4] K. Czarnecki and U. Eisenecker, Generative Programming, Addison-
Wesley, New York, 2000.

[5] tvtropes.org, “Sequence breaking,” 9 May 2012. [Online]. Available:
http://tvtropes.org/pmwiki/pmwiki.php/Main/SequenceBreaking
[Accessed 21 April 2014].

[6] Kotaku, “Game-breaking skyward sword bug confirmed. Here’s how to
avoid it.,” 7 December 2011. [Online]. Available:
http://kotaku.com/5865426/game+breaking-skyward-sword-bug-
confirmed-heres-how-to-avoid-it. [Accessed 21 April 2014].

[7] IGN, “Pokemon report: OMG hacks,” 24 November 2008. [Online].
Available: http://ds.ign.com/articles/933/933126p1.html [Accessed 21
April 2014].

[8] J. Whitehead, February 26 2007. [Online]. Available:
http://classes.soe.ucsc.edu/cmps080k/Winter07/lectures/narrative.pdf
[Accessed 21 April 2014].

[9] J. Majewski, Theorising Video Game Narrative, Master’s thesis, Centre
for Film, Television & Interactive Media, School of Humanities &
Social Sciences, Bond University, 2003.

[10] M. Eladhari, Object Oriented Story Construction in Story Driven
Computer Games, Master’s Thesis, Department of History of Literature
and History of Ideas Stockholm, Sweden: Stockholm University, 2002.

[11] M. Shelley, On the Feasibility of using Use Case Maps for the
Prevention of Sequence Breaking in Video Games, Master's thesis,
School of Computer Science, Ottawa: Carleton University, 2013.

[12] C. Brom and A. Abonyi, “Petrinets for game plot,” in Proceedings of
artificial intelligence and simulation behaviour convention (AISB),
Bristol, April 2006.

[13] D. Amyot and G. Mussbacher, “User requirements notation: the first ten
years, the next ten years,” Journal of Software, vol. 6(5), pp. 747-768,
2011.

[14] F. Martineau, PNFG: A Framework for Computer Game Narrative
Analysis, Master's thesis, School of Computer Science, Montreal:
McGill University, 2006.

[15] J. Kealey and D.Amyot, “Enhanced use case map traversal semantics”,
SDL Forum, pp.133-149, Paris, September 2007.

367

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:33:28 UTC from IEEE Xplore. Restrictions apply.

