
On Preventing Sequence Breaking in Video Games
Matthew Shelley

Carleton
1125 Colonel By Drive

Ottawa, ON, Canada K1S 5B6
MatthewShelley@carleton.ca

Wei Shi
UOIT

2000 Simcoe North
Oshawa, CANADA, L1H 7K4

Wei.Shi@uoit.ca

J.-Pierre Corriveau
Carleton

1125 Colonel By Drive
Ottawa, ON, Canada K1S 5B6

jeanpier@scs.carleton.ca

ABSTRACT
Sequence Breaking exists in video games where the player
gains access to a portion of a game that should be
inaccessible. In such instances, a game’s storyline is
disrupted. That is, the predefined set of valid event
sequences—events being uninterruptable units of
functionality that further the game’s story—is not honored.
We postulate that sequence breaking most often arises
through bypassing geographic barriers, cheating, and
misunderstanding on the player’s behalf. Here, we
summarize an approach to preventing sequence breaking at
run-time with the help of Use Case Maps.

Keywords
Sequence Breaking, Narrative, Games, Use Case Maps

1. OVERVIEW
Sequence breaking exists in the domain of game narrative
when a predefined storyline is not followed as per the game
designers’ intentions. It can be viewed as a form of
cheating: When a ‘narrative’ feature, hereafter referred to
as an event, is called outside of the game’s set of predefined
narrative sequences, there exists unwanted interference
with the storyline as its integrity has not been honored.
When the player starts an invalid sequence of events, they
are breaking the predefined narrative sequence.

Video games have been subject to sequence breaking since
their inception. For example, in 2011, Nintendo’s The
Legend of Zelda: Skyward Sword became impossible to
finish if players completed tasks in a certain order [1].
Several other examples are described in [2]. In summary,
sequence breaking conflicts have existed for decades and
continue to exist to this day.

Such conflicts are detrimental to players in two ways. First,
as skilled players are often the ones to perform sequence
breaking, for the sake of cheating or their own enjoyment,
other players may fall victim to such unfair advantages.

Second and worse, when sequence breaking occurs without
the player’s knowledge, the game’s story may make no
sense, leading to confusion, or the game may become
unwinnable. Because the player’s experience is reduced,
sequence breaking poses a significant problem for an
industry that relies on creating ‘fun’ in order to sell its
products.

Some solutions to sequence breaking have been attempted.
For example, Eladhari [3] proposes the creation of causal
relationships between events, as well as “Object Oriented
Story Construction”. The latter requires that all entities of a
game be given knowledge of the game’s story in order to
“make them more intelligent with respect to the overall
narrative goals”. The main disadvantage with existing
research in narratives however remains that it is essentially
theoretical: existing proposals are not implemented in an
actual game. Consequently, unfortunately, the verification
of a computational version of such proposals is generally
not addressed.

We can think of narrative elements as the ‘who,’ ‘what,’
and ‘where’ of a game, while the ‘when,’ ‘why,’ and ‘how’
of the game’s story are either told or shown to the player.
For instance, within the game’s fictive world, the player
(who) may battle enemies (who) or interact with other
characters (who); the player may collect objects (what);
and, the player may explore geography (where). The time
of the story (when), motivations of characters (why), and
actions that occur (how) can be denoted using events.

From reviewing the literature and studying five popular
games, we compiled a list of narrative elements that appear
to be necessary and sufficient to represent many storylines.
We then observed that a subset of Use Case Maps (UCMs)
[4] could readily capture these narrative elements and
represent the valid sequences of a narrative (in order to
compare a player’s progress against the designer’s set of
valid storylines).

Based on these initial observations, we propose a ‘narrative
manager’ and traversal algorithm in order to prevent
sequence breaking within a game environment at run-time.
We represent a set of valid narrative sequences using
UCMs; keep track of the player’s progress along such a
representation; and then, check if attempted event calls are
legal using this combined knowledge. The narrative

978-1-4799-2961-0/13/$31.00 ©2013 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 00:03:10 UTC from IEEE Xplore. Restrictions apply.

manager stores the narrative representation, player’s
progress, and set of legal events. This manager can
determine if attempted event calls are legal by checking
against the current legal set of events. The traversal
algorithm accepts an event identifier for a legal event, and
then updates both the player’s progress and the set of next
legal events. We can prevent sequence breaking by
rejecting any attempted calls to illegal events. In our work
[5], we have implemented a narrative manager and a UCM
traversal algorithm in order to monitor the player’s progress
and prevent sequence breaking. We then developed an
extensive set of test cases that address all the UCM
elements we use, as well as cover all the branches of our
algorithm. Finally, we developed a game to illustrate the
feasibility and performance of our solution. Most
importantly, this game demonstrates that our run-time
approach to sequence breaking works within the limitations
of a game’s environment without hindering the player’s
experience (as we discuss at length in [5]). Let us briefly
elaborate.

It is important to note that since the nature of sequence
breaking involves the unintended sequential ordering of
events, it cannot be assumed that any arbitrary event can be
guaranteed to not be called. Instead, we have to assume that
any event can attempt to be called regardless of the player’s
progress. Therefore, it seems to be necessary to validate at
least O(n2) sequences, where n is the number of events,
prior to the game’s execution (e.g. at design-time or during
play-testing), but such validation is intractable. It is
unreasonable to expect designers or play-testers to consider
an exponential number of sequences as such an approach
simply does not scale. Thus, it is necessary in our opinion
to offer a run-time solution. Indeed, instead of testing and
resolving (not only pair-wise but) all sequences of events to
ensure only valid sequences are allowed, it is preferable to
create a means of checking if a requested event is legal
based on the player’s progress within the storyline at a
given point in the game. When an attempted event call is
deemed to be legal, it may proceed as expected; otherwise,
the event call is rejected (and an appropriate warning can
be given to the player). In this approach, designers need
only consider valid sequences, while game testers verify
that this preventative procedure works.

We believe sequence breaking to be preventable at run-time
when, in a time undetectable by the player and within a
game environment, we can perform the following
algorithm, given an event identifier, narrative
representation, and the player’s progress:

1. Determine if the event associated with the given event
identifier is legal to call at this point of the narrative.

2. If ‘yes’, return a ‘success’ value, call the associated
event, update the player’s progress, and then:

a. Update the game’s world to allow the player to call
events that are now considered legal; and,

b. Update the game’s world to prevent now-illegal
events from being called, effectively preventing the
player from accessing illegal events.

3. If ‘no’:

a. Ignore the attempted event call; and,

b. Return a ‘failure’ value, so an optional developer-
defined function can be triggered to handle the
detected sequence breaking, possibly by using the
current set of legal events.

One derived benefit of our solution is that, having access to
the current legal set of events, a designer may draw on this
knowledge to have the game offer better context-sensitive
behavior (such as improved dialogues, better behavior for
non-player characters, etc.). In particular, we explain
elsewhere [5] how, beyond preventing sequence breaking
by ignoring attempted calls to illegal events, we try to
reduce such calls by altering the game world to exclude
related triggers or entities.

There is however presently a drawback in our approach:
Because the player’s progress is currently only updated
when a legal event is called, it is possible for events that
depend on conditions to not be 'moved' to the legal set
before another event has been triggered. Similarly, an event
that has become illegal based on a precondition may remain
in the legal set of events. A solution would require
rethinking the current handling of narrative-related
variables. At this point in time, it is not clear whether such
rethinking should occur only in the limited scope of single-
player adventure-type games that we have chosen, or
consider the complexities that will be unavoidably
introduced if we tackle massively multiplayer online
games.

2. REFERENCES
[1] Kotaku: Brian Ashcraft, "Game-Breaking Skyward

Sword Bug Confirmed. Here’s How to Avoid It."
December 7 2011:
http://kotaku.com/5865426/game+breaking-skyward-
sword-bug-confirmed-heres-how-to-avoid-it [Accessed
August 29 2013].

[2] tvtropes.org, "Sequence Breaking" May 9 2012:
http://tvtropes.org/pmwiki/pmwiki.php/Main/Sequence
Breaking [Accessed August 29, 2013].

[3] M. Eladhari, Object Oriented Story Construction in
Story Driven Computer Games, Master's Thesis,
Stockholm University, Stockholm, Sweden, 2002.

[4] M. Shelley, On the Feasibility of using Use Case Maps
for the Prevention of Sequence Breaking in Video
Games, Master's thesis, Carleton University, Ottawa,
2013.

[5] D. Amyot and G. Mussbacher, "User Requirements
Notation: The First Ten Years, The Next Ten Years",
Journal of Software, vol. 6, no. 5, pp. 747-768, 2011.

978-1-4799-2961-0/13/$31.00 ©2013 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 00:03:10 UTC from IEEE Xplore. Restrictions apply.

