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Abstract—In this paper, we study the problem of dynamically
migrating a service in Clouds to satisfy a sequence of mobile
batch-request demands in a cost effective way. The service may
have a single or multiple replicas, each running on a virtual
machine. As the origins of the mobile accesses are frequently
changed over time, this problem is particularly important to
those time-bounded services to achieve enhanced QoS and cost
effectiveness. Moving services closer to client locations not only
reduces the service access latency but also minimizes the network
cost for service providers. However, these benefits do not come
without compromise. The migration comes at cost of bulk-
data transfer and service disruption, as a result, increasing the
overall service costs. To gain the benefits of service migration
while minimizing the increased monetary costs, we propose a
search-based dynamic migration algorithm that can effectively
migrate a single or multiple servers to adapt to the changes of
access patterns with minimum service costs. The algorithm is
characterized by effective uses of historical access information
to conduct virtual moves of a set of servers as a whole under
a certain condition so as to overcome the limitations of local
search in cost reduction. Our simulation results show that the
proposed algorithm can effectively achieve the goal by satisfying
service request sequences. Moreover, with moderate migration
cost, using a single server is more cost-effective to satisfy the
requests in Clouds than deploying multiple servers.

I. INTRODUCTION

Cloud computing for mobile world is becoming a well-
accepted technique that enables a new generation of services
for mobile users. These services are in general hard to achieve
using the traditional technologies due to the intrinsic charac-
teristics of mobile accesses such as the very large scales, time-
space variation idiosyncrasies, and high sensitivities to service
latency. To cope with these characteristics, it is essential to mi-
grate the service to some vantage locations in the networks that
are close to the users in order to minimize the access latency as
well as reduce the network cost for service providers. A typical
example to illustrate the migration benefits is the multiplayer
mobile games, where the game servers may migrate from Asia
to Europe and finally to North America depending on the
changing locations of dominant access loads at different time
frames. Traditionally, achieving such benefits usually employs
process migration [1], [2] over wide-area network, which is
very hard if not impossible. Fortunately, by virtue of the vir-
tualization technologies in clouds, encapsulating the requested

service in a virtual machine and migrating it on-demand in the
same or across different data centers is becoming a promising
way to deploy such services with the afore-mentioned benefits.

Despite the high cost of bulk-data transfer (e.g., server
memory image and associated data files) and service disrup-
tion, several researchers have demonstrated that it is feasible
to migrate virtual machines in a wide-area network [3]–[5].
Furthermore, regarding the service migration, some prelim-
inary results on single server migration have already been
achieved with respect to virtual networks [6], [7] and au-
tonomic networks [8], [9]. However, the trade-off between
the benefits and the costs (from the monetary cost point
of view) of migrating multiple servers as a whole has not
been thoroughly studied. In this paper, we investigate this
problem and propose a dynamic migration algorithm based
on local search techniques to migrate a set of virtual servers.
Local search is a meta-heuristic method which is usually used
to solve computationally hard optimization problems. In this
paper, we exploit these techniques to find efficiently migration
targets at runtime as well as use a virtual move strategy to
adapt to the dynamic changes of mobile access patterns in
order to achieve a total service cost reduction.

More specifically, unlike some previous studies [6], [7],
[10] on single server migration in distributed approaches, we
are particularly interested in an efficient centralized algorithm
for migrating a set of κ servers as a whole when κ is upper
bounded by O( logn

log(1+Δmax)
), where Δmax is the maximum

node degree of a n-node network. This constraint is practical
as the number of the deployed service replicas (i.e., virtual
servers) is usually not necessary to be proportional to the
number of network nodes [11]. With the given central control,
we can gain several benefits from the service migration. First,
we can reduce the total service cost of the request demands.
Second, we can achieve a global load balancing among the
servers in an efficient way, which is usually difficult for dis-
tributed algorithms. Last, with the foregoing benefits, we can
overcome the configuration complexity (i.e., the combination
of the server locations) to further ensure that the κ servers will
be eventually migrated to a set of suboptimal service nodes and
remain there as long as the request pattern is not significantly
changed. All these benefits are particularly in favor of a set of
cooperative servers to move around in the network to service
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the user requests.

Due to the space limitations, in this paper, we focus
squarely on the first aspect of the benefits and show its
optimality in a tree-structured network. Other related results
can be found in [11]. We validate our findings by conducting
extensive simulation studies, in which the numerical results
show that the proposed algorithm can well adapt to the changes
of mobile access patterns and efficiently satisfy the service
requests in a cost effective way.

The remainder of this paper is organized as follows. In Sec-
tion II, we formulate the service migration problem with the as-
sumptions we make. Section III presents then analyzes our dy-
namic service migration algorithm given κ ≤ O( log n

log(1+Δmax)
).

We present our empirical studies via intensive simulation in
Section IV and then review some related work in Section V.
We finally conclude the paper in the last section.

II. DYNAMIC SERVICE MIGRATION

We consider an arbitrary n-node network G(V,E) as a
service infrastructure to provide a mobile service. The service
has κ ≥ 1 replicas (also called servers), each running on a
virtual machine (VM). The set of hosting (physical) machines
has a configuration, denoted by H, which is the specifications
of this set of physical machines that are running the VMs. This
set of machines are accessed by a sequence of batch requests
σ = σ1σ2...σm issued from a set of external machines (i.e.,
mobile terminals). The requests arrive in an online fashion and
are satisfied by triggering the migration of the servers in H. As
a result, a subset of the server locations would be frequently
changed over time. We denote the configuration of this subset
at time ti as Hi.

A request is routed to the service over a wireless link first
to connect the network via a connect point and then based on
some algorithms or metrics to reach the service. We denote
the connection cost (monetary) as μ and the transmission
cost (monetary) between any pair of nodes u and v as Cuv .
According to the charge models of the most current cloud
infrastructure services, it is reasonable to assume that both
these two types of costs are available from the infrastructure
service providers (ISPs) priory to the overlying cloud service
providers (CSPs). Therefore, a batch request σi at time ti can
be represented by a set σi = ∪j{(aij , σij)}, here aij and σij

is a sub-request of σi sent to the network via connect point aij .
In other words, ∪jσij represents the entire set of requests of
σi. Fig. 1 is an example of this model where batch request σi

contains four request subset σi = {(ai1, Ri1), ..., (ai4, Ri4)}.
There are two server replicas located at w and u, and one of
them moves from u to v during ti−1 and ti to satisfy σi for
total cost reduction, that is Hi−1 = {w, u} and Hi = {w, v}.

Clearly, in order to satisfy σi, each request r ∈ σi will be
eventually routed to certain h ∈ Hi via the closest ar ∈ V .
This is typically achieved by the underlying routing function
determined by ISPs. As a result, the total monetary cost of
access (hereafter access cost) of batch request σi can be simply
calculated as the total connection costs plus transmission costs
of all the requests in σi along the routing path, which can be
expressed as Costacc(H, σi) = |σi|μ+

∑
r∈σi

Carφ(r), φ(r) ∈
H, where ar is request r’s nearest connect point and φ(r) is
r’s service node determined by the routing function φ(.). Note
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Fig. 1: An example of service accesses and migration model.

that in this equation we implicitly assume that the sizes of
requests are so small that the network bandwidth is never the
bottleneck for their transmissions, rather, the link latency is the
issue. Clearly, this cost is affected by the level of the network
latency.

In contrast to the requests, which are rather light-weight,
the traffic volume of migrating services is usually not negli-
gible due to the large size of service states. Unlike the access
cost which is dominated by the access latency, the migration
cost (monetary) Costmig of the service depends greatly on
the service size and available bandwidth on the migration
path. Therefore, we assign node v with a migration cost set
βv = {βvu|u ∈ N (v)} (clearly, βvv = 0) to reflect the server
migration costs from v to the corresponding target u, u ∈ N (v)
where N (v) represents the neighbor set of v. Particularly, for
any u and v in G we denote β = max(u,v)∈E{βuv} and
β′ = min(u,v)∈E{βuv} for later discussion. Again, βv is also
given by the ISPs in advance for each node v in the network.

To minimize the access cost, we need to identify a matching
function π that can figure out the migration target server
in Hi for each server in Hi−1. To this end, we denote
Hi−1 = {u1, u2, ..., uκ} and Hi = {v1, v2, ..., vκ} and have
Costmig(Hi−1,Hi) = min

π
{
∑

βujvπ(j)
} where π is the

permutation of {1, 2, ..., κ}. Costmig(Hi−1,Hi) represents the
minimum cost to migrate from Hi−1 to Hi.

Therefore, for a sequence of batch requests σ = σ1σ2...σm,
the goal of the service migration is to determineH1,H2, ...,Ht

(t is to be determined) to minimize the total service cost
defined as Cost(Hi) = Cost(Hi−1) + Costacc(Hi−1, σi) +
Costmig(Hi−1,Hi), given Cost(H0) = 0. This recurrence
indicates that the total cost to satisfy σi is equal to the total
cost of satisfying the first i−1 requests plus the access cost in
configuration Hi−1 and then the migration cost from Hi−1

to Hi. Clearly, this model is more amenable to the inter-
datacenter migration rather than the intra-datacenter migration
in reality as the intra-datacenter network latency is low and
the bandwidth is usually high. However, it does not mean
that the model is not allowed to apply to the intra-datacenter
migration. Note that if the κ servers are not allowed to move,
this optimization problem is reduced to the classic κ-median
problem [12], [13], which is a typical NP-complete problem.

III. MIGRATION ALGORITHM

In this section, we present our dynamic migration algorithm
which services the incoming batch requests in a time sequence

196196196

Authorized licensed use limited to: Carleton University. Downloaded on June 01,2020 at 00:12:48 UTC from IEEE Xplore.  Restrictions apply. 



Ri+1

mig mig

acc acc acc

Ri+2

acc

RiRi−1

Phase1
Epoch

no m
ig

ti−1ti−2 ti ti+1

Phase2 Phase3

Fig. 2: The relationships between epochs, phases and time
stages in our algorithms.

order without needing any a prior knowledge of complete
access pattern. We first overview the algorithm and then
describe it in depth.

A. Algorithm Overview

1) Definition: To ease the understanding of the algorithm,
we first define some concepts and data structures that are used
throughout this paper:

Local Space: Given a batch-request σt and a configuration
Hi at time t, we first define a neighborhood of Hi (i.e.,
local space), denoted by N (Hi) = {H0

i , H
1
i , ..., H

j
i , ..., }

Each Hj
i (formally defined in Section III-B) signifies a distinct

neighbor’s configuration of Hi. The algorithms is to conduct
local search in N (Hi) to identify certain Hj

i with total cost
reduction and migrate all the corresponding elements in Hi to
their targets in Hj

i after serving σt by Hi.

Epoch & Phase: The algorithm operates on per-epoch basis
along the time-line which is further divided into a sequence of
phases. Each phase defines a period of time during which no
migration is incurred to satisfy a sub-sequence of requests (i.e.,
at most κ servers can be migrated between any two adjacent
phases), and is hence signified by a server configuration called
pivot configuration (i.e.,Hi in the following discussion), which
is created at the beginning of the phase. An epoch which is
composed of one or multiple phases is delimited by some time
instance when a certain property is held by the neighborhood
of the pivot configuration (discuss later). An example of the
relationships between epochs, phases and time stages is shown
in Fig. 2 where an epoch consists of three phases, Phase1
spans across time stages [ti−2, ti−1] and [ti−1, ti] as there is
no migration in [ti−1, ti] whereas in Phase2 and Phase3 only
one time stage is covered.

Data Structures: The algorithm maintains two data struc-
tures for each configuration in N (Hi) on per-epoch basis.
One is an Access Counter (AC) that is used to monitor and
accumulate the access costs in an epoch. The other is an
History Recorder (HR) used to record the history of the
corresponding access requests in the same epoch. During the
service, the algorithm progressively accumulates and records
for the pivot configuration Hi the access costs and requests in
the pivot counter AC and pivot recorder HR respectively.

2) Basic Idea: The essence of the algorithm is to leverage
the rent-or-buy paradigm to determine the service migration
and take advantage of a short historical access information to
prune the local space for efficient finding the migration target
with reduced service cost. The movement cost (i.e., the buy
cost) is defined as the maximum service migration cost from the
source pivot configuration Hi to a target neighbor in N (Hi)
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Fig. 3: A working example of the algorithm. For each con-
figuration, its AC and HR are also marked. The algorithm
makes three virtual migrations, and the last one is turned into
a physical migration because of phase termination.

whereas the historical access information is gathered by the
current phase during the service and used in the subsequent
one or more phases to facilitate the server migrations with the
total service cost reduction as the goal.

In each epoch the algorithm is composed of multiple
iterations, each corresponding a phase. In the beginning of
each iteration, the algorithm first leverages the rent-or-buy
paradigm to determine the migration by comparing the access
cost in the pivot counter and the computed movement cost.
If the value of the pivot counter is less than the movement
cost, the pivot configuration will be fixed at Hi to continually
services the incoming requests until the value is greater than
the movement cost. Otherwise, the pivot algorithm broadcasts
its HR (received from the last pivot) to all its neighbor nodes in
N (Hi). Each neighbor node then overwrites its own HR, and
mimics the service to the requests in the HR by accumulating
the cost in its AC. After that, each neighbor node sends
back its AC to configuration Hi, and the pivot algorithm
compares the value of each neighbor’s AC with that of the
pivot counter. Depending on the comparison outcomes, two
cases are distinguished to migrate the servers either virtually
or physically,

• Virtual Moves: If there is at least one neighbor with
the AC value less than that of the pivot AC, the
algorithm at pivot randomly selects a migration target
from those with the minimum AC as the new pivot
configuration for the next phase, and relay the pivot
HR to the new phase. We call such migration a virtual
migration since in this case we can repeat the same
algorithm at the new target to pick the next most
preferable location, and make the new target to be only
a temporary stop (i.e., virtual configuration) without
requiring the servers to migrate physically.

• Physical Migration: Otherwise, if all the neighbors of
the virtual configuration have the AC values greater
than the virtual counter, the algorithm marks the end
of the current epoch. In this case, the servers are
directly moved to the nodes in the virtual configuration
which is then promoted to a pivot configuration. In
this situation, all the data structures will be reset for a
new epoch, and the algorithm restarts from scratch as
well. On the other hand, when the value of the virtual
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Algorithm 1 service migration algorithm
1: procedure MIGRATIONDECISION(Hi, σt) � Det. mig. at Hi

when accepting σt

2: while i ≥ 0 do
3: if i = 0 then N � Init. new epoch
4: for C ∈ N (Hi) do
5: wi(C)← 0
6: di(C)← ∅

7: end for
8: end if
9: Serve(σt,Hi) � serves σt with Hi first

10: � determine migration
11: (H, case)← VirtualMigration(Hi)
12: if case = PhaseTerm then
13: if H �= Hi then
14: H ⇐ Hi � Physical move to H
15: i← i+ 1
16: end if
17: else
18: H ⇐ Hi � Epoch ends: Phy. mov. Hi to H
19: i← 0
20: end if
21: Hi ��� H � Virtual move, take H as the new Hi

22: end while
23: end procedure

counter is less than the movement cost, it also signifies
the completion of a sequence of virtual phases. At this
time, the algorithm opens up a new physical phase by
informing the original pivot to physically migrate the
servers to the new virtual configuration in a direct and
minimum-cost way. Note that in this case, the virtual
configuration is also promoted to a pivot configuration,
but its data structures are not reset in favor of the
migrations.

Example: An working example of this algorithm is shown
in Fig. 3 where the current phase is marked by the pivot config-
uration Hi. The algorithm serves σt and then makes migration
decision by exploiting the historical access information in its
pivot recorder based on each of its neighbors. In the example,
the algorithm finds the value of the pivot counter (138 after
serving a, b and c) is greater than the movement cost (100)
and in the meantime H2

i has the minimum service cost (120)
to the historical requests (abc) which is less than the pivot
counter (138). Then a virtual migration is made from Hi to
H2

i , a new virtual phase starts marked by Hi+1 (i.e., H2
i ). As

the virtual pivot recorder of Hi has been copied to Hi+1 (i.e.,
abc), the same virtual migration process can be repeated at
Hi (as 120 > 110) to reach the next virtual target Hi+2 with
the minimum cost (100) from which to the final virtual target
Hi+3 where this virtual migration process cannot be continued
anymore due to the conditions of either the phase termination
or the epoch termination (in our case, it’s phase termination
as 50 < 66). In this situation, the algorithm turns the virtual
phase into an actual one by directly migrating servers in Hi to
Hi+1, thereby serving the next request d (HR=abcd). From
this example, one can see that our algorithm can adapt to the
request pattern in a cost-effective way by allowing the servers
to be quickly moved to the vantage configuration.

B. Formal Descriptions

Our algorithms divide the time-line into epochs, and in
each epochs the same procedures are iterated in the different
phases. Therefore, we can only describe the algorithms on per
epoch basis. We consider the scenario when the local space of
the pivot configuration Hi for phase Pi can be exhaustively
searched when κ ≤ O( logn

log(1+Δmax)
).

Given a pivot configuration Hi for phase Pi, the elements
in N (Hi) are defined based on each X(l) ⊆ Hi, and its one-
hop neighbor set Z(l) = N1(X(l)) for all 0 ≤ l ≤ κ. For each
l, there are

(
κ
l

)
X(l)s, each corresponding at most Δl

max Z(l)s,
and each Z(l) has l nodes, and each node has at most Δmax

degrees. Thus when κ ≤ O( log n
log(1+Δmax)

), the size of N (Hi)

is upper bounded by
∑κ

l=0

(
κ
l

)
Δl

max = (1+Δmax)
κ = O(n)

(i.e., |N (Hi)| ≤ O(n)).

We use wi(H
lpq
i ) to represent the access counter of H lpq

i to
accumulate the total service cost in the epoch for an incoming
request sequence until σt, and similarly, use di(H

lpq
i ) to

denote the corresponding history recorder of H
lpq
i to gather

the access requests where l ∈ [0, ..., κ], p ∈ [1, ...,
(
κ
l

)
] and

q ∈ [1, ...,Δl
max]. Let X − Y = X \ Y and X + Y = X ∪ Y ,

we have H
lpq
i = Hi−Xp(l)+Zq(l) representing the migration

of exactly l servers from Xp(l) ⊆ Hi to Zq(l) and reach of
H

lpq
i while minimizing the overall service cost up to σt. Then

N (Hi) can be written as:

N (Hi) = {H
lpq
i |H

lpq
i = Hi −Xp(l) + Zq(l)} (1)

Note that the subscript p of Xp(l) specifies a particular
configuration of the selected migrated servers in Hi whereas
the target locations are specified in the subscript q of Zq(l).
Furthermore, the movement cost for Hi is defined by:

Costmov(Hi) = max
H∈N (Hi)

{Costmig(Hi, H)} (2)

Suppose that κ servers are initially co-located at H0, which
signifies phase P0, we have w0(H

lpq
0 ) = 0 and d0(H

lpq
0 ) = ∅

for l ≥ 0, p, q ≥ 1. If at time t the algorithm starts the iteration
for phase Pi (Hi), and the incoming batch request is σt, we
make the migration decision according to the algorithm shown
in Algorithm1. 1 and Algorithm2. 2. In the following, we make
some remarks on this algorithm and discuss our choices in the
design.

1) Initialization:We initialize the data structures of each
configuration on per-epoch basis in favor of migra-
tions by resetting wi(H

lpq
i ) = 0 and di(H

lpq
i ) = ∅

for all elements in N (Hi) within O(n) time as the
pivot counter would be increased quickly to exceed
the movement cost. Of course, another alternative
strategy is to reset the algorithm on per-phase basis.
However this choice bias towards stationary server
configurations.

2) Serve(σt,Hi) and V irtualServe(di(C), C), C ∈
N (Hi): The algorithm increases the pivot counter
in Serve(σt,Hi) by accumulating the cost for
servicing σt according to wi(Hi) = wi(Hi) +
Costacc(Hi, σt, φ). Similarly, by following the same
equation, V irtualServe(di(C), C) can compute the
total (virtual) cost of the request sequence in di(C)
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Algorithm 2 virtual migration algorithm
1: procedure VIRTUALMIGRATION(Hi) � recursive func. to find

a target config.
2: if wi(Hi) ≥ Costmov(Hi) then
3: for C ∈ N (Hi) do � this loop can run in parallel
4: di(C)← d(Hi) � copy di(Hi) to N (Hi)
5: � mimic service reqs in di(Hi)
6: wi(C)← VirtualServe(di(C), C)
7: end for
8: H∗ ← argmin

C∈N (Hi)

{wi(C)}

9: � get the next mig. target, ties are broken at random
10: if H∗ = Hi then
11: return (Hi, EpochTerm) � Epoch terminates
12: else
13: return VirtualMigration(H∗) � Go to next level
14: end if
15: else
16: return (Hi, PhaseTerm) � Phase terminates at Hi

17: end if
18: end procedure

via mimicking the service provided by C. Since the
computation of V irtualServe(di(C), C) for each C
in N (Hi) is completely independent, they can be
computed in parallel.

3) Costmov(Hi): Although the semantics of this func-
tion is straightforward, the algorithm to realize it
is tricky as this function is heavily relied upon
Costmig(Hi, H

lpq
i ), H lpq

i ∈ N (Hi), which requires
us not only to generate all the n neighbors in N (Hi)
but also cope with the situations when two or more
servers in Xp(l) share the same neighbor target in
Zq(l). In our design, the access loads are equally
shared between the virtual machines if they are co-
located in the same host machine.

4) Find New Phase/Epoch: We obtain the minimal con-
figuration by local search,

H
∗ = argmin

C∈N (Hi)

{wi(C)} (3)

The analysis on the existence of such a new pivot
configuration that H∗ �= Hi can be found in [7].

Time Complexity: The complexity of the algorithm comes
from several aspects. First, we have the following lemma to
bound the complexity of Costmov(Hi),

Lemma 3.1: The time complexity of Costmov(Hi) is
upper-bounded by O(κn).

Proof: Given l ∈ [0, ..., κ], there are at most
(
κ
l

)
Δl

max

neighbors in N (Hi). For each such a neighbor, there are
at most l migrated servers whose migrating scheme can be
computed in O(l). Thus due to κ ≤ O( logn

log(1+Δmax)
), we have∑κ

l=0 l
(
κ
l

)
Δl

max < O(κn).

To compute the overall time complexity, we bound the
values of the variables in the remaining aspects with the
following lemmas,

Lemma 3.2: Given a static network with a connection rate

of μ and migration costs βuv to move a server between u and
v, we have |di(C)| ≤ O(κ) for ∀C ∈ N (Hi) given a pivot Hi.

Proof: Since there are at most κ servers, each with at most
cost of β to migrate between two points u and v, the maximum
movement cost is thus κβ. On the other hand, given a pivot
Hi, for any C ∈ N (Hi), we have |wi(C)| ≤ κβ because
otherwise according to our algorithm, we either leave C for
the next smaller neighbor configuration via a virtual migration
or stuck at C if there is no such configuration. In either case,
di(C) is not increased by serving new requests. Therefore, we
have |di(C)|μ ≤ wi(C) ≤ κβ, then |di(C)| ≤ κβ

μ . As both
the μ and β are in general determined by ISPs in advance as
fixed rates, we have |di(C)| ≤ O(κ) and the conclusion.

Consequently, the complexities of Serve(Hi)
and V irtualServe(di(C), C) are O(κ|σt|) and
O(κ

∑|di(C)|
j=1 |σj |) ≈ O(κ2|σt|) 1 respectively since for

each request in σt we need to find the nearest server from κ
choices.

By following the same arguments in Lemma 3.2, we have
a similar result for the length of the virtual migration path:

Lemma 3.3: Given a static network with fixed rate of βuv

to migrate a server between u and v, the length of the virtual
migration path of any givenHi is also upper-bounded by O(κ).

Proof: Since the access counter is at most κβ, and it
is monotonically decreased at least λ = minu,v∈V {Cuv} at
each phase along the virtual migration path until to a value
of at least κ · max{β′, μ}, we then have length ≤ κ(β −
max{β′, μ})/λ = O(κ).

Theorem 3.4: Given κ ≤ O( log n
log(1+Δmax)

) and all pairs of
transmission costs in advance, Algorithm 1 triggered by σt

can make a migration decision within the time complexity of
O(κ2(n+ κ|σt|)).

Proof: Since for a given Hi at time t the complexity of
V irtualMigration(Hi) denoted by f(i) can be recursively
written as f(i) = O(κn+(κ+κ2)|σt|)+f(i−1), we then have
the overall complexity of the algorithm as O(κ2(n + κ|σt|))
according to Lemma 3.3.

Theorem 3.5: Given κ ≤ O( logn
log(1+Δmax)

) under a tree-
structured static network, the algorithm will eventually migrate
the κ servers to the optimal locations and remain there as long
as the request patterns are not changed significantly.

Proof: Given a tree-structured network with κ ≤
O( log n

log(1+Δmax)
), the algorithm not only ensures that the total

service cost is monotonically decreased along the unique
shortest path toward the optimal locations but also exhaustively
searches all the elements in N (Hi), implying that it never
gets stuck when creating new epochs unless there is no further
minimal configurations. Therefore, the algorithm will migrate
the κ servers to the optimal locations and remain there as long
as the request patterns are not changed significantly.

Remarks: Although the algorithm with the restricted κ will
eventually reach this optimality, it does not necessarily means
that migration paths of this algorithm is optimal.

1It is reasonable to assume that each request in the history recorder has the
same order of the size with σt.
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Fig. 4: Comparisons between cost ratio and cumulative distribution of virtual path lengths on different networks (100 nodes)
with respects to the number of servers, length=0 means the servers are fixed without migrations (Cuv = 2 · sp(u, v), u, v ∈ V
and μ = 5, βuv, v ∈ N (u) is uniformly distributed in [1,2000]).

IV. PERFORMANCE EVALUATION

We evaluate the proposed algorithm through extensive
simulation-based studies. To this end, we developed a simula-
tor in Java to create network topologies, generate the access
patterns and execute the migration algorithm to move the
servers to satisfy each generated batch requests according to
a certain distribution in a timely order. Each request is served
by its closest server in terms of the shortest path distance.
Ties-are-broken arbitrarily.

A. Experimental Setup

We choose networks with four typical topologies: tree,
grid, Erodös-Rényi (ER) random graph [14] and Barabási-
Albert (BA) graph [15], each of which consists 100 nodes
and exhibiting different structural properties to represent a
spectrum of communication networks in previous studies [7],
[10], [16]–[18].

Both tree and grid network topologies have typical topolog-
ical characteristics that allow us to observe the behaviours of
the algorithms under some extreme yet predictable conditions.
In particular, the tree structure, characterized by average node
degree, is always the intensively studied structure in different
contexts including Clouds [16]–[19]. The grid structure, char-
acterized by its width and height, represents planar networks
that have been observed in a surprising number of graphs in the
Internet topology zoo [20]. In contrast, ER and BA graphs are
random graphs without enforcing any regular structure. Both
graphs are considered here as a complement to model general
inter-networks that could be used in inter-cloud connections.

Access pattern is characterized by a sequence of online
batch requests distributed across the network along the time
axis. Each batch request is specified by its arrival time instance,
batch size as well as distribution of the connect points together
with the associated weights. In our experiments, in order to
reflect the skewness among nodes, we assume a uniform batch
size on [1, p] (i.e., the number of requesting nodes) and a

TABLE I: Average inter-node distances and node degrees of
different networks with 100 nodes used in the experiments

Prof. BA Grid ER Tree
Dist 2.6 6.67 2.25 6.29
Deg 5.44 3.6 9.74 1.98

Zipf-like distribution, characterized by a parameter α ≥ 1, to
capture the amount of access weight skew of each requesting
node.

The major performance metric is defined as the ratio of the
total service cost achieved by the proposed algorithm over the
one achieved by a sub-optimal off-line algorithm, an effective
sampling-based approximation which is on average within
1.06% of the optimal dynamic programming (DP) results for
the Zipf access pattern (α = 1.0, p = 10) made on the
examined networks with a small scale (20 nodes) based on our
empirical studies in [11]. We chose this metric as it can not
only demonstrate the performance gap in presence and absence
of the virtual moves but also measure the relative performance
to the potential optimal results.

B. Results

In this section, we show how our algorithm, in various
cases, behaves and outperforms the local search algorithm
without virtual moves. In the experiments, each data point in
the graphs is averaged over five runs by changing the random
number seed in the simulator. To measure the distribution of
the values for each data point, we also compute the standard
deviation of each data point. The average inter-node distances
and node degrees of the four above-mentioned of network
topologies are listed in Table I.

Compared to the local search algorithm (without virtual
moves), Fig. 4 (a) shows how our algorithm with virtual
moves reduces the cost ratio with respect to the number of
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Fig. 5: Cost ratio of our algorithm over the sub-optimal off-
line algorithm with respect to different number of servers (Zipf
access pattern on 100-node networks).

servers. The algorithm has relatively low performance gains
on BA networks because the servers are preferably located at
or nearby the hub nodes in such networks to minimize the
access cost, and as a result, being highly biased against the
migration. This is different from the situation in grid networks
where much room is left for migration to adapt to the access
patterns since the nodes other than those on the edges are
equally important to host the service. On the other hand, the
relative large (average) node degree and inter-node distance
(Table I) allow the algorithm to have more opportunities for
grid networks to benefit from the virtual moves for cost
reduction. These conclusions proceed from Fig. 4 (b) where the
cumulative distributions of the virtual path lengths are depicted
with respect to the number of servers. From the figure, the
servers are moved much less in the BA than in the grid.

Furthermore, with the number of servers are inversely
proportional to the lengths of virtual moves for all the studied
networks. This is clear that when the number of servers
increases, the load share on each server is reduced accordingly
and as a result, the migration opportunities are also minimized,
so is the performance gain of the algorithm.

The performance of the algorithm on ER and tree sits
between that of BA and grid, and is consistent with our
expectations given the structural feature of the networks.
All these results not only prominently demonstrate that the
proposed algorithm is cost effective in the service migration
but also indirectly evidence that with the virtual moves, the
algorithm has a fast convergence speed. A more extensive
simulation results can be found in [11] where the performance
of the algorithm with respect to different network sizes, access
patterns, and other migration parameters is also studied. All
results demonstrate the effectiveness of the proposed service
migration algorithm in minimizing the total service costs.

We conduct the last set of experiments to examine the
algorithm’s behavior on a single server migration as this is a
frequently studied case in the literature before the researchers
explore more general cases. In these experiments, we show
that in the context of service migration with moderate costs,
a single server can satisfy the sequence of requests in a more
cost-effective way than multiple servers. We can conclude
this by observing the Zipf pattern results in Fig. 5 where
the cost ratio of our algorithm is slowly increased with the

number of servers changing from 2 to 5, and the multi-server
cases are only slightly better than the single-server case. More
specifically, the cost ratios of the single server case < 1.3x
those of the multi-server cases, except for the grid network.

We can attribute these results either to some features of the
networks that could offset the benefits of deploying multiple
servers or to the virtual moves which could minimize the
migration cost even if the source and target are far away,
equivalently, reducing the multi-server benefits. For example,
both BA and ER networks have relatively large average node
degrees and short average inter-node distances (see Table I).
The algorithm can easily find a server for a request in its 2/3-
hop neighborhood even if only a single server is deployed. We
can validate this by observing the performance behavior of the
algorithm on the grid network. The cost ratio of the algorithm,
though higher than those on other networks, is only slowly
increased, and exhibits a relatively good result (i.e., < 2) when
five servers are available (see Figure 5).

V. RELATED WORK

Service migration in different forms has been studied in
a number of related areas, each with similar or different
goals [6], [7], [21]–[23]. In the replica placement problem,
the requests made by users are pre-defined in terms of their
frequencies and locations in the network while the locations
of the servers with certain constraints to satisfy the sequence
of requests with minimum total read and write costs are left
to be determined as a goal [17], [21], [24]. The off-line and
static nature of this problem, though related, is distinguished
itself from our problem.

One typical related problem is the κ-server problem that
allows κ mobile servers at some nodes of a graph to move on-
site to satisfy the request sequence in an online fashion so that
the total moving distance of these servers is minimized [22],
[25]. Our problem can be viewed as an extension of the κ-
server problem in the sense that the mobile servers can not
only get accessed remotely but also be moved simultaneously
to satisfy a batch request in a cost effective way.

The problem is formulated for the cloud services based
on the model introduced in [6] where the service migration is
conducted in the context of virtual networks (VNet) [26], [27]
to minimize the service access latency. To this end, Bienkowski
et al. [6] presented a randomized online algorithm to migrate
a single server in an n-node network. They advocated the
competitive analysis on the worst case of the algorithm instead
of its general performance, which is our pragmatic concern.

Like in the VNet, service migration is also studied in
autonomic network environments [8], [9] as a self-managing
mechanism to overcome the rapidly growing complexity of the
networks. Oikomomou et al. [7] proposed a scalable algorithm
to service migration in autonomic networks by observing the
differential demand traffics on each link between the node
hosting the service and its opposite neighbor. Although this
algorithm has certain merits in service migrations, it suffers
from the slow convergence due to its inefficient one-hop
migration. Pantazopoulos et al. [10] overcome this downside in
their most recent centrality-driven migration algorithm, named
cDSMA. However, this algorithm only targets at a single
server, and moreover, lacks notion of the migration cost.
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Unlike the aforementioned studies which are not directly
conducted in the context of clouds, Phan et al. [28] proposed
a framework, called Green Monster, to leverage the dynamic
service migrations across the Internet data centers (IDCs) for
the energy efficiency issue in cloud computing. The service
migration is determined by a developed evolutionary multiob-
jective optimization algorithm which is able to strike a balance
between conflicting optimization objectives. In contrast, our
problem has a single objective to minimize the total monetary
cost with the service migrations. Although both problems are
orthogonal at the first sight, they could be connected inherently
as the monetary cost could also be used to model the energy
consumption as well. However, this extension is still an open
problem to our algorithm.

VI. CONCLUSIONS

In this paper, we formulated and studied the service
migration problem in cloud platforms for mobile accesses
with minimum costs. To this end, we developed an efficient
multi-server migration algorithm by leveraging local search
techniques. The algorithm is distinct from those existing ones
in its effective use of the historical access information to
conduct virtual moves of a set of κ servers as a whole
when κ ≤ O( logn

log(1+Δmax)
) in the service migration. We first

described the algorithm in depth and then analyzed its time
and space complexity as well as its optimality in migrating
servers in tree structured networks. Finally, we studied the
algorithm via extensive simulations. The results revealed that
with virtual moves, the proposed algorithm can effectively
adapt to access patterns to reduce the overall service costs.
In particular, with moderate migration costs, using a single
server is more cost-effective to satisfy the sequence of requests
in Clouds than deploying multiple servers. These results are
particularly promising to those time-bounded services that are
deployed on cloud platforms to achieve enhanced QoS and
cost effectiveness.
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