
On Service Migration in the Cloud to Facilitate

Mobile Accesses

Yang Wang b and Wei Shi ij

blBM Center for Advanced Studies (CAS Atlantic)

University of New Brunswick, FredericlOn, Canada E3B SA3

� Faculty of Business and Information Technology

University of Ontario Institute of Technology, Ontario, Canada

E-mail: yangwang@ca.ibm.com.wei.shi@uoil.ca

Abstract-Using service migration in Clouds to satisfy a
sequence of mobile batch-request demands is a popular solution to
enhanced QoS and cost effectiveness. As the origins of the mobile
accesses are frequently changed over time, moving services closer
to client locations not only reduces the service access latency but
also minimizes the network cost for service providers. However,
these benefits do not come without compromise. The migration
comes at cost of bulk-data transfer and service disruption, as a
result, increasing the overall service costs.

In this paper, we study the problem of dynamically migrating
a service in Clouds to satisfy a sequence of mobile batch-request
demands in a cost effective way. More specifically, to gain the
benefits of service migration while minimizing the increased
monetary costs, we propose a search-based dynamic migration
algorithm that can effectively migrate a single or multiple servers
to adapt to the changes of access patterns with minimum service
costs. The algorithm is characterized by effective uses of historical
access information to conduct virtual moves of a set of servers as a
whole under a certain condition so as to overcome the limitations
of local search in cost reduction.

1. INTRODUCTION

A new generation of Cloud enabled mobile services are in
general hard to achieve using the traditional technologies due
to the intrinsic characteristics of the mobile accesses such as
the very large scales, time-space variation idiosyncrasies, and
high sensitivities to service latency. Some of these character
istics include:

• The rapid changes of service requests: the mobile
service requests are in general highly time and location
varying. They are continuously changing with respect
to the time and location of the mobile users;

• The diversity of service access patterns: the Internet
is made up small world in the sense that the very
different users can be gathered in small communities
sharing common interest (e.g., approximately the same
set of data items), and thus the access patterns are
different from world to world [I];

• The availability of unreliable network resources: the
unreliability is caused by multiple factors, including
dynamism that introduces unpredictable and changing
behaviors, failures that have an increasing probability
of occurrences as svstem/application scales increase,

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

Fig. 1: Mobile game: an example of service migration

and instability of network states that is intrinsic to
large mobile environments.

Clearly, providing network services without considering these
factors may significantly increase the access delays and much
worse impose a large amount of access traffics on the network
which might course a service disruption.

To cope with these characteristics, it is essential to migrate
the service to some vantage locations in the network that are
close to the users for minimizing the access latency and in
the meantime reducing the network cost for service providers.
A typical example to illustrate the migration benefits is the
multi player mobile games where the game server may migrate
from Asia to Europe and finally to North America depending
on the changing locations of dominant access loads at different
time frames. Traditionally, achieving such benefits usually
employs process migration [2], [3] over wide-area network,
which is very hard if not impossible. Fortunately, by virtue
of the virtualization technologies in clouds, encapsulating the
requested service in a virtual machine and migrating it on
demand in the same or across different data centers is becom
ing a promising way to deploy such services with the afore
mentioned benefits. Several researchers have demonstrated
that it is feasible to migrate virtual machines in a wide-area
network [4]-[6] despite the high cost of bulk-data transfer (e.g.,
server memory image and associated data files) and service
disruption. Furthermore, regarding the service migration, some
preliminary results on single server migration have already
been achieved with respect to virtual networks [7], [8] and
autonomic networks [9], [10].

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:57:09 UTC from IEEE Xplore. Restrictions apply.

However, the trade-off between the benefits and the costs
(from the monetary cost point of view) of migrating multiple
servers as a whole has not been thoroughly studied. In this
paper, we propose a dynamic migration algorithm based on
local search techniques for a set of virtual servers. Local
search is a meta-heuristic method which is usually used to
solve computationally hard optimization problems. However,
in this paper we exploit these techniques to efficiently find
migration targets at runtime and in the meanwhile, develop a
virtual move strategy to overcome their limitations to adapt
to the dynamic changes of mobile access patterns for total
service cost reduction. Unlike some previous studies [7], [8],
[11] on single server migration in distributed approaches, we
are particularly interested in an efficient centralized algorithm
for migrating a set of K servers as a whole when K is upper

bounded by DC (i�g: »), here flmax is the maximum node og rrutx

degree of a n-node network. This constraint is practical as the
number of the deployed service replicas (i.e., virtual servers)
is usually not necessary to be proportional to the number of
network nodes [12]. With the given central control, we get
three benefits from such service migration:

1) reduce the total service cost of the request demands;
2) achieve a global load balancing among the servers

in an efficient way, which is usually difficult for
distributed algorithms;

3) overcome the configuration complexity (i.e., the com
bination of the server locations) to further ensure that
the K servers will be eventually migrated to a set of
suboptimal service nodes and remained there as long
as the request pattern is not significantly changed.

All these benefits are particularly in favor of a set of
cooperative servers to move around in the network to service
the user requests.

Due to the space limitations, in this paper, we only focus
squarely on the first aspect of the benefits and show its
optimality in a tree-structured network. Other related results
can be found in [12].

II. DYN AMIC SERVICE MIGRATION MODEL

We consider an arbitrary n-node network G(V, E) as a
service infrastructure to provide a mobile service. The service
has K 2 1 replicas (also called servers), each running on a
virtual machine (VM). The set of hosting (physical) machines
consist of a configuration, denoted by H, which is accessed
by a sequence of batch requests (J = (Jl(J2 ... (Jm issued from a
set of external machines (Le., mobile terminals). The requests
arrive in an online fashion and are satisfied by triggering the
migration of the servers in H. As a result, the subset of the
server locations would be frequently changed over time. We
denote the subset H at time ti as Hi.

A request is routed to the service over a wireless link first
to connect the network via a connect point and then based on
some algorithms or metrics to reach the service. We denote
the connection cost (monetary) as M and the transmission
cost (monetary) between any pair of nodes u and v as Cuv'
According to the charge models of the most current cloud
infrastructure services, it is reasonable to assume that both
these two types of costs are available from the infrastructure

Ri4

Ril 1(/ \ 1 '---- ----'

G(V.E)

":7;� > :�_::� -:F1
-- - kJ

Ri2

Fig. 2: An example of service accesses and migration model.

service providers (ISPs) priory to the overlying cloud service
providers (CSPs). Therefore, a batch request (Ji at time ti can
be represented by a set (Ji = Uj {(aij, (Jij)), here aij and (Jij
is a sub-request of (Ji sent to the network via connect point aij'
In other words, Uj(Jij represents the entire set of requests of
(Ji. Fig. 2 is an example of this model where batch request (Ji
contains four request subset (Ji = {(ail, Ril)' ... , (ai4, Ri4)}.
There are two server replicas located at wand u, and one of
them moves from u to v during ti-l and ti to satisfy (Ji for
total cost reduction, that is Hi-l = {w, u} and Hi = {w, v}.

Clearly, in order to satisfy (Ji, each request r E (Ji will be
eventually routed to certain h E Hi via the closest ar E V.
This is typically achieved by the underlying routing function
determined by ISPs. As a result, the total monetary cost of
access (hereafter access cost) of batch request (Ji can be simply
calculated as the total connection costs plus transmission costs
of all the requests in (Ji along the routing path, which can be
expressed as Costacc(H, (Ji) = l(JiIM+ L:rEai Ca,. q,(r), ¢(r) E
H, where ar is request r's nearest connect point and ¢(r) is
r's service node determined by the routing function ¢(.). Note
that in this equation we implicitly assume that the sizes of
requests are so small that the network bandwidth is never the
bottleneck for their transmissions, rather, the link latency is the
issue. Clearly, this cost is affected by the level of the network
latency.

In contrast to the requests, which are rather light-weight,
the traffic volume of migrating services is usually not negli
gible due to the large size of service states. Unlike the access
cost which is dominated by the access latency, the migration
cost (monetary) Costmig of the service depends greatly on
the service size and available bandwidth on the migration
path. Therefore, we assign node v with a migration cost set
{3v = {(3vulu E N(v)} (clearly, (3vv = 0) to reflect the server
migration costs from v to the corresponding target u, u E N(v)
where N(v) represents the neighbor set of v. Particularly, for
any u and v in G we denote {3 = maX(U,V)EE{{3uv} and
{3' = min(u,v)EE{{3uv} for later discussion. Again, {3v is also
given by the ISPs in advance for each node v in the network.

To minimize the access cost, we need to identify a matching
function 7r that can figure out the migration target server
in Hi for each server in Hi-I. To this end, we denote
Hi-l = {UI,U2, ... ,U,.,} and Hi = {VI, V2, ... , v"j and have

Costmig(Hi-l, Hi) = min{'" {3u·v (.)} where 7r is the
1f � J TI J

permutation of {l, 2, ... , K}. Costmig(Hi-l, Hi) represents the

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:57:09 UTC from IEEE Xplore. Restrictions apply.

minimum cost to migrate from Hi-I to Hi.
Therefore, for a sequence of batch requests (J = (JI(J2 ... (Jm,

the goal of the service migration is to determine HI, H2, ... , Ht
(t is to be determined) to minimize the total service cost
defined as Cost(Hi) = Cost(Hi_l) + Costacc(Hi-l, (Ji) +
Cost mig (Hi-I , Hi), given Cost(Ho) = O. This recurrence
indicates that the total cost to satisfy (J i is equal to the total
cost of satisfying the first i-I requests plus the access cost in
configuration Hi-I and then the migration cost from Hi-I
to Hi. Clearly, this model is more amenable to the inter
datacenter migration rather than the intra-datacenter migration
in reality as the intra-datacenter network latency is low and
the bandwidth is usually high. However, it does not mean
that the model is not allowed to apply to the intra-datacenter
migration. Note that if the", servers are not allowed to move,
this optimization problem is reduced to the classic ",-median
problem [13], [14], which is a typical NP-complete problem.

III. ALGORITHM DESCRIPTION

In this section, we present our dynamic migration algorithm
which services the incoming batch requests in a time sequence
order without needing any a prior knowledge of complete
access pattern. We first overview the algorithm and then
describe it in depth.

A. Result Outlines

According to our model, it is possible to access the
server remotely without needing for the server to move to
the request points (represented by the corresponding access
points). Therefore, the basic idea of the algorithms can be
built upon this fact by selecting the optimal locations in the
network with respects to the current batch request and then
migrate servers to these locations for the subsequent requests.
Our algorithms are based on the rent-or-buy paradigm in the
ski rental problem to determine the migration and leverage the
local search technique with historical access information to
select the target configurations.

Due to the complexity of this problem, we first concern
ourselves with the restricted situation when", is upper bounded

by O(log(i�g;=ax))' is the maximum node degree of network

G. Under this constraint the defined local space can be
exhaustively searched by our algorithm in a simple yet efficient
way and a migration scheme triggered by (Jt can be served

within OCoi(i�g�:ax) hi) time complexity. Furthermore the

algorithm ensures that the virtual servers are eventually mi
grated to the optimal service nodes and remain there as long
as the request sequence is not significantly changed. Then, we
remove this constraint and extend the result to a more general
case (i.e., '" ::; O(n)). We show that in this situation with the
configuration complexity, the local space can only be partially
searched according to some heuristics and a migration scheme
can be determined within O(",4D.max(l(Jtl + D.;;'ax)) without
the guarantee of the eventual migration to the optimal service
locations.

B. Definition

To ease the understanding of the algorithm, we first define
some used concepts and data structures as follows:

Epoch
Phase I Phase2

'g mi

Phase3

acc ace ace '-----'.l...-_-'---'--_"---'-----' ____________ .

u-2 Ri-lu_1 Ri Ii Ri+l u+1 Ri+2

Fig. 3: The relationships between epochs, phases and time
stages in our algorithms.

Local Space: Given a batch-request (Jt and server config
uration Hi at time t, we first define a neighborhood of Hi
(i.e., local space), denoted by N(Hi) = {HP,Hl,.·.,Hl,
... , } Each HI signifies a distinct neighbor configuration of
Hi, and the algorithms is to conduct local search in N(Hi)
to identify certain Hi with total cost reduction and migrate

all the corresponding elements in Hi to their targets in HI
after serving (Jt by Hi' The algorithm has the knowledge of

the network topology. As such given '" ::; O(log(i�g;max))'
N(Hi) can be computable in O(",n) time.

Epoch & Phase: The algorithm operates on per-epoch basis
along the time-line which is further divided into a sequence of
phases. Each phase defines a period of time during which no
migration is incurred to satisfy a sub-sequence of requests (i.e.,
at most", servers can be migrated between any two adjacent
phases), and is hence signified by a server configuration called
pivot configuration (Le., Hi in the following discussion), which
is created at the beginning of the phase. An epoch which is
composed of one or multiple phases is delimited by some time
instance when a certain property is held by the neighborhood
of the pivot configuration (discuss later). An example of the
relationships between epochs, phases and time stages is shown
in Fig. 3 where an epoch consists of three phases, Phase}
spans across time stages [ti-2, ti-I] and [ti-I, til as there is
no migration in [ti-l, til whereas in Phase2 and Phase3 only
one time stage is covered.

C. Data Structures

The algorithm maintains two data structures for each
configuration in N(Hi) on per-epoch basis. One is an Access
Counter (Ae) that is used to monitor and accumulate the access
costs in an epoch. The other is an History Recorder (HR) used
to record the history of the corresponding access requests in the
same epoch. During the service, the algorithm progressively
accumulates and records for the pivot configuration Hi the
access costs and requests in the pivot counter AC and pivot
recorder HR respectively.

D. Basic Ideas

The essence of the algorithm is to leverage the rent-or
buy paradigm to determine the service migration and take
advantage of a short historical access information to prune
the local space for efficient finding the migration target with
reduced service cost. The movement cost (Le., the buy cost)
is defined as the maximum service migration cost from the
source pivot configuration Hi to a target neighbor in N(Hi)
whereas the historical access information is gathered by the
current phase during the service and used in the subsequent

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:57:09 UTC from IEEE Xplore. Restrictions apply.

one or more phases to facilitate the server migrations with the
total service cost reduction as the goal.

In each epoch the algorithm is composed of multiple
iterations, each corresponding a phase. In the beginning of
each iteration, the algorithm first leverages the rent-or-buy
paradigm to determine the migration by comparing the access
cost in the pivot counter and the computed movement cost.
If the value of the pivot counter is less than the movement
cost, the pivot configuration will be fixed at Hi to continually
services the incoming requests until the value is greater than
the movement cost. Otherwise, the pivot algorithm broadcasts
its HR (received from the last pivot) to all its neighbor nodes in
N(Hi). Each neighbor node then overwrites its own HR, and
mimics the service to the requests in the HR by accumulating
the cost in its AC. After that, each neighbor node sends
back its AC to configuration Hi, and the pivot algorithm
compares the value of each neighbor's AC with that of the
pivot counter. Depending on the comparison outcomes, two
cases are distinguished to migrate the servers either virtually
or physically,

1) Virtual Moves:: If there is at least one neighbor with
the AC value less than that of the pivot AC, the algorithm
at pivot randomly selects a migration target from those with
the minimum AC as the new pivot configuration for the next
phase, and relay the pivot HR to the new phase. We call such
migration a virtual migration since in this case we can repeat
the same algorithm at the new target to pick the next most
preferable location, and make the new target to be only a
temporary stop (i.e., virtual configuration) without requiring
the servers to migrate physically.

2) Physical Migration:: Otherwise, if all the neighbors of
the virtual configuration have the AC values greater than the
virtual counter, the algorithm marks the end of the current
epoch. In this case, the servers are directly moved to the nodes
in the virtual configuration which is then promoted to a pivot
configuration. In this situation, all the data structures will be
reset for a new epoch, and the algorithm restarts from scratch
as well. On the other hand, when the value of the virtual
counter is less than the movement cost, it also signifies the
completion of a sequence of virtual phases. At this time, the
algorithm opens up a new physical phase by informing the
original pivot to physically migrate the servers to the new
virtual configuration in a direct and minimum-cost way. Note
that in this case, the virtual configuration is also promoted to
a pivot configuration, but its data structures are not reset in
favor of the migrations.

IV. TIME COMPLEXITY AN ALY SIS

The complexity of the algorithm comes from several as
pects. The first one is Costmov(Hi). The second one is the re
cursive V irtualM igration(), which is dependent of the depth
of the recursion, and the final one is the VirtualServeO being
invoked inside VirtualMigrationO, which is determined by
the product of IN(Hi)1 and Idi(Hi)l. First, we have the
following lemma to bound the complexity of Costmov(Hi),

Lemma 4.1: The time complexity of Costmov(Hi) is
upper-bounded by O(Kn).

To compute the overall time complexity, we bound the
values of the variables in the remaining aspects with the

following lemmas,

Lemma 4.2: Given a static network with a connection rate
of f-l and migration costs f3uv to move a server between u and
v, we have Idi(C)1 :::; O(K) for 'lie E N(H;) given a pivot Hi.

Consequently, the complexities of Serve(Hi)
and VirtuaIServe(di(C), C) are O(KIO"tl) and

O(K Lj�iC)IIO"jl) ;:::; 0(K210"tl) I respectively since for

each request in O"t we need to find the nearest server from K
choices.

By following the same arguments in Lemma 4.2, we have
a similar result for the length of the virtual migration path:

Lemma 4.3: Given a static network with fixed rate of f3uv
to migrate a server between u and v, the length of the virtual
migration path of any given Hi is also upper-bounded by O(K).

Theorem 4.4: Given K :::; OC (;�g:)) and all pairs og 11HtX

of transmission costs in advance, our migration algorithm
triggered by O"t can make a migration decision within the time

complexity of 0(K2(n + KIO"tl)).
Theorem 4.5: Given K :::; O(log(;�g:max)) under a tree

structured static network, the algorithm will eventually migrate
the K servers to the optimal locations and remain there as long
as the request patterns are not changed significantly.

V. CONCLUSIONS

In this paper, we developed an efficient multi-server migra
tion algorithm by leveraging local search techniques. The al
gorithm is distinct from those existing ones in its effective use
of the historical access information to conduct virtual moves
of a set of K servers as a whole when K :::; OCOg(;�g:max))
in the service migration. We conclude that with moderate
migration costs, using a single server is more cost-effective
to satisfy the sequence of requests in Clouds than deploying
multiple servers. Our results are particularly promising to those
time-bounded services that are deployed on cloud platforms to
achieve enhanced QoS and cost effectiveness.

REFERENCES

[1] K. Kleinberg, "The small-world phenomenon: an algorithm perspec
tive," in Proceedings of the 32nd annual ACM symposium on Theory
of computing, 2000.

[2] D. S. MilojiCic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
"Process migration," ACM Comput. Surv., vol. 32, no. 3, pp. 241-299,
Sep. 2000.

[3] J. M. Smith, "A survey of process migration mechanisms," SIGOPS
Oper. Syst. Rev., vol. 22, no. 3, pp. 28-40, Jul. 1988.

[4] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, "A live
storage migration mechanism over wan for relocatable virtual machine
services on clouds," in Cluster Computing and the Grid, 2009. CCGRID
'09. 9th IEEElACM International Symposium on, 2009, pp. 460-465.

[51 w. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, "Cost of
virtual machine live migration in clouds: A performance evaluation," in
Proceedings of the 1st International Conference on Cloud Computing,
ser. CloudCom '09, 2009, pp. 254-265.

[61 T. Wood, K. K. Ramakrishnan, P Shenoy, and J. van der Merwe,
"Cloud net: dynamic pooling of cloud resources by live wan migration
of virtual machines," in Proceedings of the 7th ACM SIGPLANISIGOPS
international conference on Virtual execution environments, ser. VEE
'11,2011, pp. 121-132.

lIt is reasonable to assume that each request in the history recorder has the
same order of the size with IJ t.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:57:09 UTC from IEEE Xplore. Restrictions apply.

[7] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath,
S. Schmid, and 1. Widmer, "Competitive analysis for service migration
in vnets," in The Second ACM SIGCOMM Workshop on Virtualized
Infrastructure System and Architectures (VISA), Sept. 2010.

[8] K. Oikonomou and 1. Stavrakakis, "Scalable service migration in
autonomic network environments," IEEE J.Sel. A. Commun., vol. 28,
no. 1, pp. 84-94, Jan. 2010.

[9] R. Mortier and E. Kiciman, "Autonomic network management: some
pragmatic considerations," in Proceedings of the 2006 SIGCOMM
workshop on Internet network management, ser. INM '06. New York,
NY, USA: ACM, 2006, pp. 89-93.

[10] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, "A survey of
autonomic communications," ACM Trans. Auton. Adapt. Syst., vol. 1,
no. 2, pp. 223-259, Dec. 2006.

[11] P. Pantazopoulos, M. Karaliopoulos, and l. Stavrakakis, "Centrality
driven scalable service migration," in Proceedings of the 23rd Interna
tional Teletraffic Congress, ser. ITC '11, 2011, pp. 127-134.

[12] Y. Wang, B. Veeravalli, and C.-K. Tham, "Service migration in the
cloud for mobile accesses," University of New Brunswick, Computer
Science Technical Series Report, Tech. Rep., 2013.

[13] K. Jain and Y. Y. Vazirani, "Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
lagrangian relaxation," Journal of the ACM, vol. 48, pp. 274-296, March
2001.

[14] M. Charikar and S. Guha, "Improved combinatorial algorithms for
the facility location and k-median problems," in IEEE Conference on
Fundations of Computer Sciences, 1999, pp. 378-388.

Authorized licensed use limited to: Carleton University. Downloaded on May 31,2020 at 23:57:09 UTC from IEEE Xplore. Restrictions apply.

