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Abstract

A Black Hole is a highly harmful host that disposes of visiting agents upon their
arrival without leaving any observable trace of such destruction. In this dissertation,
we study the Black Hole search problem using mobile agents in four topologies: ring,
hypercube, torus and complete network. We do so without relying on local storage.
Instead we use a less-demanding and less-expensive token mechanism.

In the first part of this dissertation, we study in depth the black hole search
problem in an anonymous ring network. We prove that with co-located agents, the
problem can be solved with a minimal of two co-located agents, three tokens in total
performing in Θ(n log n) moves. With scattered agents, we prove that, in oriented
rings, the number of moves can be reduced from O(n2) to the optimal Θ(n log n) using
only O(1) tokens per agent, without any knowledge of the team size. Interestingly,
the proposed algorithm also solves, with the same cost, the Leader Election problem
and the Rendezvous problem for the scattered agents despite the presence of a Black
Hole. Then we prove that, even if the ring is un-oriented, locating the Black Hole
is feasible with a minimum of three (3) scattered agents. With a team of four (4)
or more scattered agents, O(1) tokens per agent, a Black Hole can be located with
Θ(n log n) moves.

We study the Black Hole Search problem also for three other topologies. For the
co-located agents, we show that the Black Hole can be located with minimum of 2
agents performing Θ(n) moves with O(1) tokens in each of these three topologies. We
present solutions for the Torus and Complete Network with scattered agents, knowing
that the Black Hole Search problem was never studied with scattered agents in any
of these three network topologies, neither using the whiteboard model, nor with the
token model.

For these four topologies, in both the co-located and scattered agents cases, we
obtain solutions with minimum number of agents and demonstrate that the number
of tokens can be reduced to a constant number even if both the mobile agents and
the network are anonymous.
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Chapter 1

Introduction

1.1 Introduction and Thesis Statement

Whereas exploration problems by mobile agents have been extensively studied in the

context of safe networks, the reality of networked systems supporting mobile agents is

that these systems are highly unsafe. Indeed, the most pressing concerns all pertain

to security issues, mainly in regards to the presence of a harmful host (i.e., a network

node damaging incoming agents) or of a harmful agent (e.g., a mobile virus infecting

the network nodes)[24, 68, 74, 75, 76, 93, 99, 109].

Computational and algorithmic research has just recently started to consider these

issues. The computational issues related to the presence of a harmful agent have been

explored in the context of “intruder capture” and “network decontamination”. In the

case of a harmful host the focus has been on the notion of a Black Hole (Bh), that is,

of a node that disposes of any incoming agent without leaving any observable trace of

this destruction [27, 30, 42, 44, 45, 46, 48, 49, 79]. The goal of all these investigations is

to determine the fundamental properties, the computational limits, and the inherent

complexity of the Black Hole Search (Bhs) problem. In this dissertation, we continue

the investigation of the Bhs problem.

As mentioned earlier, a Bh is a network site that disposes of any incoming agent

without leaving any observable trace of this destruction. It corresponds to, for ex-

ample, a node where a resident process (e.g., an unknowingly installed virus) deletes

visiting agents or incoming data. Furthermore, any undetectable crash failure of a site

1
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in an asynchronous network transforms that site into a Bh. In presence of a Bh, the

first important goal is to determine its location. To this end, a team of mobile system

agents is deployed. Their task is completed if, within finite time, at least one agent

survives and knows the links leading to the Bh. The research goal is to determine

under what conditions and at what cost mobile agents can successfully accomplish

this task, called the Black Hole Search (Bhs) problem. The main complexity param-

eter is the size of the team; i.e., the number of agents used in the search. Another

important complexity measure is the amount of moves performed by the agents in

their search.

Both solvability and complexity of Bhs depend on a variety of factors; first and

foremost on whether the system is asynchronous [42, 44, 45, 46, 48] or synchronous

[27, 30, 31, 79]. Indeed the nature of the problem changes drastically and dramatically

in each case. For example, in both synchronous and asynchronous systems, with

enough agents it is possible to locate the Bh if we are aware of its existence. However,

if there is doubt on whether or not there is a Bh in the system, in absence of synchrony

this doubt cannot be removed. In fact, in an asynchronous system, it is undecidable

to determine if there is a Bh [45]. The consequences of this fact are numerous and

render the asynchronous case considerably difficult. In this dissertation we continue

the investigation of the asynchronous case.

Other important factors influencing solvability and complexity are the amount of

a priori knowledge held by the agents (e.g., number of nodes, map of network, etc.)

and the means offered by the system for agent communication and coordination (e.g.,

whiteboard, blackboard, reliable message passing, etc). In particular, with the excep-

tion of [44], all existing investigations on Bhs in asynchronous systems have assumed

the presence of a powerful inter-agent communication mechanism, whiteboard, at all

nodes. In the whiteboard model, each node has available a local storage area (the
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whiteboard) accessible in fair mutual exclusion to all incoming agents. Upon gaining

access, the agent can write messages on the whiteboard and can read all previously

written messages. This mechanism can be used by the agents to communicate and

mark nodes or/and edges, and has been commonly employed in several mobile agents

computing investigations (e.g. see [10, 24, 55, 58, 63, 64, 90, 92, 99]). Although many

research questions are still open, the existing investigations have provided a strong

characterization of the asynchronous Bhs problem using whiteboards. The avail-

ability of whiteboards at all nodes is a requirement that is expensive to guarantee

in practice and theoretically (perhaps) not necessary. This leads to the theoreti-

cally intriguing and practically important question of whether there are simpler and

less expensive inter-communication and synchronization mechanisms that would still

empower a team of agents to locate the Bh.

In this dissertation, we consider the less powerful token model, often employed

in the exploration of safe graphs. In this model, each agent has available a bounded

number of tokens that can be carried, placed on or removed from the middle or a

port of a node [44, 49, 52, 53]. All tokens are identical (i.e., indistinguishable) and

no other form of communication or coordination is available. Some obvious questions

immediately arise: is the Bhs problem still solvable using this weaker mechanism,

and if so under what conditions and at what cost? Notice that the use of tokens

introduces another complexity measure: the number of tokens. Indeed, if the number

of tokens is unbounded, clearly it is possible to simulate a whiteboard environment;

hence the question immediately arises of how many tokens are really needed. These

questions are clearly theoretically relevant, as the answers would shed light on the

nature and limits of the problem and on the impact of communication mechanisms

on computability and complexity. They also have a practical relevance. In fact,

although existing mobile agent platforms provide whiteboards or even stronger means
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for communication and coordination of mobile agents, such platforms are not available

on most networked environments. Hence, a less intrusive mechanism such as tokens

might be more feasible.

We ask all these questions and intend to provide definite answers for the ring,

hypercube, torus and complete network. We start our research by investigating the

ring topology, which is the sparsest bi-connected graph1 and the one for which the

cost (in terms of number of moves) for Bh search with whiteboards is the worst. Then

we study the three other topologies that have much stronger connectivity.

In all four network topologies studied in this dissertation, the problem of locating

the Bh using tokens is examined both in the case of co-located agents, that is when

all the agents start from the same node and (with the exception of the hypercube) in

the case of scattered agents, that is when the agents start from different nodes.

The problem becomes considerably more difficult if the agents are scattered, that

is, when they start from many different nodes. In particular, with scattered agents,

the presence (or lack) of orientation in the network topology and the team size are

important factors. Here, an “oriented” network topology is taken to be one in which

all the agents are able to agree on a common sense of direction. Conversely, an

“unoriented” network topology means the agents may not be able to agree on a

common sense of direction.

Finally, letting ∆ denote the degree of a network topology, we observe the following

fact: when a team of scattered agents are in an unoriented topology, even if the team

size is ∆, it is possible that all the agents disappear in the Bh after their first steps

upon waking up. Hence, we observe:

Observation 1 ∆ agents are not enough to locate the Bh in an unoriented network

of degree ∆ if the agents are scattered.

1Edge bi-connectivity is required for Bhs in asynchronous systems [46]
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1.2 Major Contributions

In this dissertation, we have considered the token model, which is less powerful and

less expensive than the whiteboard model. Some obvious questions were raised: is

the Bhs problem still solvable using this weaker mechanism, and if so, under what

conditions and at what cost? Also, notice that the use of tokens introduces another

complexity measure: the number of tokens. Indeed, if the number of tokens is un-

bounded, clearly it is possible to simulate a whiteboard environment. Hence another

question was immediately raised: how many tokens are really needed?

We asked all these questions and provided answers for the ring, hypercube, torus

and complete network. We started our research by investigating the ring topology,

which is the sparsest bi-connected graph and the one for which the cost (in terms of

number of moves) for Bh search with whiteboards is the worst. Then we studied the

three other topologies, which have stronger connectivity.

In all four network topologies, which were studied in this dissertation, the problem

of locating the Bh using tokens has been examined in the case of co-located agents,

that is when all the agents start from the same node and scattered agents, that is the

agents do not start from the same node.

The results of this dissertation are summarized as follows (See Figure 1.1):
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Figure 1.1: Simplified summary table of the algorithms in this dissertation.

In the co-located agents case, Bhs is indeed solvable [44, 49]. In particular, in [49]

we show that a team of two or more co-located agents can solve Bhs with Θ(n log n)

moves and two (2) tokens per agent in a ring network. Later, we develop simple

algorithms to solve Bhs problem for the three other network topologies. Without

requiring the FIFO rule2, we prove that:

• using two (2) co-located agents, O(1) tokens in total and Θ(n) moves, the Bh

can be successfully located in a labeled hypercube.

• using two (2) co-located agents and O(1) tokens in total, the Bh can be suc-

cessfully located with Θ(n) moves in a labeled torus.

• using two (2) co-located agents and O(1) token in total, the Bh can be success-

fully located in a complete network without sense of direction [60, 61, 62], with

2Throughout this dissertation, the FIFO rule refers to the fact that a node must process agents
in their serialized FIFO order of arrival in this node. Consequently, because of this rule, an agent
cannot overtake another on the same link.
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Θ(n) moves in total.

In the case of scattered agents, the following results are obtained in the ring

topology: in [52], we show that a team of two or more scattered agents can solve Bhs

with Θ(n log n) moves and five (5) tokens per agent when the orientation is known.

Furthermore, in [53] we show that a team of three (3) or more scattered agents can

solve Bhs with O(n2) moves and four (4) tokens per agent when the orientation is

unknown. But given one more agent (4 scattered agents in total), Bhs can be solved

with Θ(n log n) moves and four (4) tokens per agent when the orientation is still

unknown. For the Torus and Complete Network topologies, we prove that:

• using three (3) scattered agents and seven (7) tokens in total, the Bh can be

successfully located using Θ(n) moves in a labeled torus. Also, k scattered

agents can locate the Bh using one token per agent after executing O(k2n2)

moves in a labeled torus.

• using n scattered agents and one (1) token per agent, the Bh can be successfully

located in a unoriented complete network with O(n2) moves in total.

The resultes of this thesis constitute four major contributions:

First, we observe that it is rather unrealistic to have at least O(log n) bits of local

storage available all the time to agents to access through fair mutual exclusion (as

is the case using whiteboards). Also, face-to-face recognition3 (which is commonly

hypothesized) is not easily realizable in practice. Consequently, obtaining a solution

to the Bhs problem that requires neither local storage nor face-to-face recognition

constitutes, in our opinion, a significant improvement to the state of the art for this

problem. We present such a solution, which is based on the token model. It is

important to note that this token model imposes more constraints on the Bh search

3Agents are able to see/identify each other
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problem than the whiteboard model does, since it requires that both local storage

and face-to-face recognition be avoided.

Our second contribution is two-fold. On the one hand, we claim that, costwise

(with respect to memory usage and number of moves), the algorithms we develop show

the token model to be as efficient as the whiteboard model [45, 46, 49]. This is im-

portant given the fact that the token model is more constrained than the whiteboard

one. On the other hand, we contend that investigating the token model separately

for each of the four abovementioned topologies results in algorithms that are more

efficient than a general, topology-independent, one. Thus, our second contribution

is to suggest that, for Bhs, topology-specific token-based algorithms are as powerful

(i.e., able to solve the problem) and as efficient as those based on a whiteboard model.

Third, we want to generalize our results by considering two flavors of the Bhs

problem, namely: using either co-located or scattered agents. The latter are agents

that start at different locations in the network, whereas the former all start at the

same node. More precisely, upon waking up, scattered agents start from different

nodes, which are called homebases. Since such agents start from different homebases,

they may not agree on a same sense of direction when the network is unoriented.

Also, contrary to co-located agents, the scattered agents must initially execute the

exploration of the topology at hand individually (that is without cooperating with

other agents). This fact leads to a cost increase in terms of the total number of

moves. In order to reduce this move cost, we let all the agents form pairs (or ‘gather’)

first. Then we try to eliminate all the extra agents once at least two agents become

co-located. The lack of a shared sense of orientation and the absence of an initial

common strategy greatly increase the complexity of the Bhs problem when using

scattered agents. Indeed, even when using a whiteboard model, Bhs with scattered

agents has only been studied in the ring topology [44]. And thus solving the Bh
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search problem in three topologies using scattered agents constitutes, in our opinion,

a significant contribution.

Last, we study several performance impact factors (namely: team size, knowledge

of team size, token cost, sense of direction, FIFO and connectivity of the network

topology) and investigate the trade-offs between them. Such an investigation of these

performance impact factors should considerably help the researcher to choose the best

strategy to solve the Bhs problem under different environment constraints.

The premise for these contributions is the postulate that the following are open

problems:

1. solving the Bhs problem while avoiding whiteboards.

2. establishing whether known bounds for the Bhs problem can be improved by

considering specific network topologies (as opposed to not making assumptions

about topology).

3. solving the Bhs problem with scattered mobile agents.

In summary, we believe our proposed contributions directly address these three

open problems.

1.3 Thesis Organization

In Chapter 2, we will introduce the framework, summarize the literature and explain

the research method. We will introduce 15 Bhs algorithms over Chapter 3, 4, 5 and 6.

In Chapter 3 we are going to study the Bhs problem in the ring topology in both the

co-located agents and the scattered agents cases. In Chapter 4, the Bhs problem is

investigated in the hypercube topology with co-located agents. The Bhs algorithms

for tori are presented in Chapter 5. In Chapter 6, Bhs in complete networks is
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studied. Finally, in Chapter 7, we conclude this dissertation by recapitulating our

whole research in Section 7.1, before Section 7.2 that offers a comparative evaluation.

The chapter finishes by pointing to some future work in Section 7.3.



Chapter 2

The Framework, Literature Review and Research Method

2.1 Model and Framework

We are going to study the Bhs problem in four types of network topologies, namely:

ring, hypercube, torus and complete network. We first briefly introduce these four

topologies in 2.1.2, then, in 2.1.1, we discuss the aspects of our research framework

shared across these topologies.

2.1.1 Overall Framework

Let G = (V,E) denote a simple connected undirected graph, where V is the set of

vertices or nodes and E is the set of edges or links in G. A vertex cut of G is a set

of vertices whose removal renders G disconnected. The vertex connectivity is the size

of a smallest vertex cut. A graph is called k-connected or k-vertex-connected if its

vertex connectivity is k or greater; a complete graph with n vertices has no cuts at all,

but by convention its connectivity is n− 1. We assume that the graph is anonymous,

that is, the nodes of the graph do not have any unique identifier. At each node x ∈ V ,

the incident edges are labeled by an injective mapping λx. Hence, each edge (x, y)

has two labels, λx(x, y) at x, and λy(x, y) at y. λx(x, y) and λy(x, y) will be called

the port numbers. We say a graph is oriented, if there is a globally consistent of such

labeling (or sense of direction) of all the edges (links), unoriented otherwise [60].

Operating on G is a set of k agents a1, a2, ..., ak. A Mobile Agent is a software

11
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entity, with social ability (communicate with each other), computing, and most im-

portant, mobility (i.e., can move from a node to a neighboring node). The agents

have limited computing capabilities and bounded storage. They obey identical set of

behavioral rules (referred to as the “protocol”), and can move from node to neigh-

boring node. We make no assumptions on the amount of time required by an agent’s

actions (e.g., computation, movement, etc.) except that it is finite. Thus, the agents

are asynchronous [45]. Also, these agents are anonymous (i.e., do not have distinct

identifiers), autonomous (i.e., each has its own computing and bounded memory ca-

pabilities). They may start at the same node, called homebase (HB for brevity).

But the agents may also start at different nodes, each of which is also called a HB.

Recall that when all the agents start from the same HB, they are said to be co-located

agents. When the agents do not start from the same HB, they are said to be scattered

agents. Different agents may start at different and unpredictable times regardless of

being co-located or scattered. Agents do not know how many other agents woke up

(being active) before them.

We postulate that, while executing a Bh search, the agents can interact with their

environment and with each other only through the means of tokens. A token is an

atomic object that the agents can see, carry, place in the middle of a node or on a

port of the node, or remove. Several tokens can be placed at the same location. The

agents can detect such multiplicity, but the tokens themselves are undistinguishable

from each other. Initially, there are no tokens in the network, and each agent starts

with some fixed number of tokens (which depends on the specific algorithm, as we

will explain later).

The basic computational behavior of an agent (executed either when an agent

arrives at a node, or upon wake-up) consists of three actions called steps. First an

agent is to examine its current node and evaluate (as a non-negative integer) the
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multiplicity of tokens at the middle of the node and/or on its ports. (An agent

therefore may have to evaluate several multiplicities for its current node.) Second, an

agent may modify the tokens (by placing/removing some of the tokens at the current

node). Third, an agent may either become Passive/fall asleep (i.e., temporarily stop

participating to the Bhs) or leave the node through a port. Finally, an agent may

become DONE, namely terminate the whole algorithm. This computational step is

performed as a single atomic (i.e., none interruptable) operation. We assume that

there is a fair scheduling of the steps of the operation at the nodes, so that, at any

node at any time, at most one computational step will take place, and every intended

step is performed within finite time.

Note that the tokens are the only means for inter-agent communication. There is

no read/write memory (e.g., whiteboards) for the agents to access in the nodes, nor

is there face-to-face recognition. In fact, the agents do not even see each other —

they can only see the tokens. This computation is asynchronous : in the sense that,

the time an agent sleeps or is on transit is finite but unpredictable.

Most importantly, it is postulated that one, and exactly one, of the nodes of the

network is highly harmful — it disposes of every agent that enters it, without leaving

any trace of this destruction observable from the outside. Due to this behavior, we

will call this node the Black Hole (or Bh for brevity). All the agents are aware of

the presence of the Bh, but, at the beginning of the search, the location of the Bh

is unknown. The goal of this search is to locate the Bh. At the end of the search,

there must be at least one agent that has survived (not entered the Bh) and knows

the location of the Bh.

We will consider three complexity measures for the Bhs problem. The first one

is size: the number of agents needed to locate the Bh. The other two complexity

measures we are interested in are the token size (i.e., the number of tokens each agent
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needs to start with) and the cost (i.e., the total number of moves executed by the

agents in the worst case over all possible timings).

2.1.2 Four Network Topologies

The choice of interconnection network [1] topology remains a critical subject in the

design of efficient distributed networks. Most of the performance limitations are due

to the performance of the communication system. Between extreme cases such as

weakly connected circular rings or strongly connected complete networks, a solu-

tion will result from a compromise in order to satisfy, as it was mentioned by Hillis

[72], a set of sometimes incompatible requirements: small degree and small diameter,

bounded degree and expandability, fault tolerant connectivity and efficient layout,

and so forth. Moreover it should be of obvious interest for the routing system that

the topology may provide symmetrical schemes for global communications [35]. A

symmetrical scheme means that all nodes can behave in a similar way and from this

fact will arise a maximum simplicity in the design and processing of the system’s

communication kernel. More precisely, symmetry in the topology means that the

representative graph is provided with an algebraic group structure as it is the case for

the hypercube and some other families of Cayley graphs [1]. The hypercube therein

appeared as a promising topology in the past decade in addition to its property of

minimum broadcast graph [98]. Unfortunately, degree increasing with size brings on

one troublesome hardware drawback with respect to the expandability requirement.

That is not the case of torus, its vertex-transitive extension. This feature gives a

renewal of interest to this topology which had been the first one to be proposed for

parallel computers [107] and, in spite of a rather large diameter, returns up-to-date

[96].

In this dissertation, we consider the Bhs problem in four topologies. They are:
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two extreme cases such as weakly connected circular rings and strongly connected

complete networks, and two cases in the middle: hypercubes and tori.

2.2 Overall Literature Review

The research on safe exploration of unknown graphs was started by Shannon in 1951

[101]. Most of the work since then has focused on single mobile agent exploration

(e.g., [2, 9, 13, 34, 37, 39, 54, 65, 91, 94]).

For exploring arbitrary anonymous graphs, various methods of marking nodes

have been used by different authors. Bender et al. [13] proposed the method of

dropping a pebble [73] (i.e., a token) on a node to mark it and showed that any

strongly connected directed graph can be explored using just one pebble, if the size

of the graph is known, and using O(log log n) pebbles otherwise. Dudek et al. [54]

used a set of distinct markers to explore unlabeled undirected graphs. Yet another

approach, used by Bender and Slonim [14] was to employ two cooperating agents, one

of which would stand on a node, thus marking it, while the other explored new edges.

In Fraigniaud and Ilcinkas [63, 64] marking was achieved by accessing whiteboards

located at nodes, and their strategy explored directed graphs and trees. In [39, 64]

the authors focused on minimizing the amount of memory used by the agents for

exploration. However they did not require the agents to construct a map of the

graph.

Safe explorations by multiple agents were initially studied for a team of finite

automata [18, 19, 21, 22, 23, 28, 82, 95, 97]. More recently such investigations have

focused on collaborative exploration by Turing machines. As mentioned above, a

two agent exploration algorithm for directed graphs was introduced in [14], whereas

algorithms for exploration by more agents were given by Frederickson et al. for

arbitrary graphs [66], by Averbakh and Berman for weighted trees [8], and more
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recently by Fraigniaud et al. for trees [63]. Finally, an algorithm has been recently

presented by Das et al. for constructing the map of an arbitrary unknown anonymous

graph by scattered (or dispersed) agents making use of whiteboards [32].

The Black Hole Search problem has been recently investigated in different con-

texts. The problem posed by the presence of a harmful host has been intensively

studied from a programming point of view (e.g., see [75, 99, 109]), and recently also

from an algorithmic perspective [45, 46]. In asynchronous environments, it has been

studied when the network is an anonymous ring, characterizing the limits and pre-

senting optimal solutions [45]. In [46], the problem has been considered when the

network is arbitrary and optimal solutions have been given under different assump-

tions about the level of topological knowledge available to the agents. The results

of [42] achieve an optimal linear cost for many important interconnection networks.

Finally, an efficient protocol for networks of arbitrary but known topology has been

presented in [47]. In a synchronous environment, the tree has been investigated in

[29] and optimal solutions given, with general results presented in [79].

In all these investigations, the nodes of the network have available to them a

whiteboard, that is, a local storage area that the agents can use to communicate

information. Access to the whiteboard is gained by mutual exclusion and the capacity

of the whiteboard is always assumed to be at least of O(log n) bits.

Among the many problems of interest in mobile agent computing, only rendez-

vous has been researched in both the whiteboard [11] and the token models [85]. In

the former model, this problem, which requires the agents to gather in the same node,

has also been investigated in the presence of a Bh [43].

The Bh location problem has been studied with a concern on identifying conditions

for its solvability and determining the smallest number of agents suffice for its solution

[45, 46]. The Bhs problem with whiteboard in a ring topology was studied by [45].
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To conclude, recall that the premise for this dissertation is that the whiteboard

model rests on the rather unrealistic requirement that each node of the network to

have a whiteboard.

In [48], Bhs by mobile agents using a whiteboard model is studied in some inter-

connection networks including the hypercube and torus topology. n moves is proved

to be sufficient for Bhs, when there is a labeled map [2, 13, 34, 37, 39, 63, 94] available

for each agent.

The most recent research on the Bhs problem with tokens is presented in [44]. A

general solution on an unknown graph with ∆ + 1 mobile agents, O(∆2M2n7) moves

(here, M is the number of edges in the graph, n is the number of nodes in the graph,

∆ is the maximum number of degree of the graph) is presented.

We continue the literature research pertaining to each individual topology in the

following subsections.

2.2.1 Existing Research on the Hypercube

Many graph-theoretic results about hypercubes are known. In 1984, L. N. Bhuyan and

D. P. Agrawal [16] studied generalized hypercube structures for a computer network.

Wu [111], Bhatt and Ipsen [15] both studied the embedding trees in hypercube and

published their result in 1985.

In 1988, Saad and Schultz [98] proposed a theoretical characterization of the n-

cube as a graph and showed how to map various other topologies into a hypercube.

In 1991, Kaklamanis proved that the bounds for Oblivious Routing in the Hyper-

cube are tight[77].

In [106], an election algorithm for the oriented hypercube, where each edge is as-

sumed to be labeled with its dimension in the hypercube was proposed. The algorithm

exchanges O(n) messages (where n is the size of the cube). A randomized version
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of the algorithm achieves the same (expected) message bounds, but uses messages of

only O(log log n) bits and can be used in anonymous hypercubes. In 1997, Kranakis

and Krizanc studied distributed computing on anonymous hypercube networks [84].

Variations of the hypercube networks have been proposed by several researchers.

Hamiltonian properties of hypercube variants are explored in [5, 7, 25, 81, 98].

Dobrev and Ruzicka studied Linear Broadcasting and n log log n election in an

unoriented Hypercube in 1997 [50]. Optimal Leader Election in a labeled Hypercube

was presented by Flocchini and Mans [59].

In [42], Bhs by mobile agents in Hypercubes and related networks were stud-

ied using whiteboards with co-located agents. Then, in 2005, Flocchini addressed

contiguous search in the Hypercube for capturing an intruder [56].

In [48], Bhs by mobile agents using a whiteboard model is studied in some in-

terconnection networks including the hypercube topology. n moves is proved to be

sufficient for Bhs, when there is a labeled map [2, 13, 34, 37, 39, 63, 94] available for

each agent.

2.2.2 Existing Research on the Torus

Traditionally, a torus is oriented if its node have assigned their communication links

North-East-South-West labels in a globally consistent manner [78]. In [57], a new way

of labeling tori is presented. In 1988, Bodlaender [20] studied several transitive net-

works such as: ring, complete network, a 2-dimensional grid network with boundary

connections, i.e. the torus.

Broadcasting a message to all the other nodes of an asynchronous totally unla-

beled torus was studied in [40] in 1998. The same year, under the same assumption

(anonymous unoriented Tori), Dobrev and Ruzicka improved the lower and upper

bounds achieved in [51]. The proposed algorithm works also on non-square tori, does
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not require the knowledge of sizes n and m, and uses only messages of size O(1) bits.

This is the first known broadcasting algorithm on an unoriented torus that does not

use all edges.

In [87], the message complexity of distributed algorithms in Tori and Chordal

Rings when the communication links are unlabeled was studied. A preprocessing

algorithm was introduced to introduce the notion of a handrail: a partial structural

information that allows messages to travel with a globally consistent direction.

Flocchini, Huang and Luccio studied the decontamination problem in chordal

rings and tori in [57]. In [70], the authors study the map construction problem using

mobile agents in an anonymous, unoriented torus of unknown size. An optimal result

was achieved with one token per agent, and Θ(n) moves in total.

2.2.3 Existing Research on the Complete Network

In 1989, Korach, Moran and Zaks presented algorithms for leader election and span-

ning tree construction in an asynchronous complete network in [80]. An optimal com-

plexity of O(n log n) was achieved. Singh [104] presented a Leader Election algorithm

that requires O(n) messages and O(log n) time with sense of direction. In the same

paper the lower bound Ω(n log n) was achieved for an asynchronous complete network

without sense of direction. In 1998, Santoro and Mans presented an optimal Leader

Election protocol in a faulty loop network, which requires only O(n log n) messages

in the worst-case, where n is the number of processors [89]. Recently, [108] analyzed

algorithms for leader election in complete networks using asynchronous communica-

tion channels. The paper presented a novel algorithm that reduces the information

necessary to select a leader when compared with other leader election algorithms for

complete networks. In that paper, the algorithm works without sense of direction.

It achieves O(n) messages and O(n) time without requiring knowing the number of
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nodes in the system.

Cockayne studied multi-message broadcasting in complete graphs in 1980. An

optimal solution was presented in [26]. Dobrev [41] studied the broadcasting problem

in complete networks with dynamic faults.

The Bhs problem has not been studied specifically on complete networks. The

closest research consists in general algorithms on arbitrary graphs in the whiteboard

model [46, 79], as well as for exploring a dangerous unknown graph in token model

[44].

2.3 Research Method

As previously mentioned, we want to consider four specific topologies namely: ring,

hypercube, torus and complete network. For both co-located and scattered agents,

we plan to solve the Bhs problem in those topologies using tokens.

Some basic problems, such as Leader Election [38, 100, 103, 104, 108], Broadcasting

[26, 40, 41, 50, 51] , have been solved on the topologies that interest us in this

dissertation. We observe that the broadcasting problem appears to be relevant for

the Bh search problem, since during this search, the mobile agents must traverse the

whole graph in order to locate the Bh in the network. Similarly, we believe that results

obtained in Leader Election algorithms with respect to reducing the number of active

agents in order to minimize the total number of moves could help with finding the

minimal team size required to solve the Bh search problem. Ultimately, we remark

that existing research on hypercube, torus and complete network, has been helpful in

devising algorithms for solving the Bhs problem on the proposed topologies.

As we mentioned earlier that the ring is the sparsest bi-connected graph. It is

the most challenging topology and thus it is the first we tackle, in the next chapter.

Having obtained a solution for Bh search in a ring using tokens, we then consider
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the torus and hypercube topologies. Once we have solutions for these two topologies,

we then tackle the complete network next since it has the highest connectivity. We

observe a very interesting fact: contrary to the case of co-located agents, in the case of

scattered agents, the degree of complexity of a Bhs algorithm is directly proportional

to ‘the connectivity of a topology.

We initially selected these topologies because they are commonly used in practice

and frequently referenced in literature. In turn, we will show for each topology, that

this allows us to determine the minimum size for the team of agents used for a search.

But there is more to say on this selection of topologies. Indeed, we remark that

in earlier separate work [102, 103], we had suggested that it is possible to identify

common aspects in a family of algorithms for a single topology. In this dissertation,

we have reused some of those ideas to approach the task at hand. More specifically,

during our research, we came to believe that some of the insights gained in developing

a solution to the Bh problem with tokens in a ring were reusable across the other

topologies we consider. This belief rests on the observation that there are common

characteristics between all the topologies we consider. Indeed, the hypercube, the

torus and the complete network can all be thought of as multi-connected rings. For

example, any torus topology with a dimension of more than 3 ∗ 3 can be presented as

a donut shaped graph (see Figure 2.1); a hypercube with more than 2 dimensions can

be presented as a structure that consists of rings with common vertices (see Figure

2.2); and a complete graph is known to be a fully connected chordal ring [88] (see

Figure 2.3). This viewpoint suggests that some aspects of our solutions to the Bhs

with tokens in a ring can be reused in these other topologies. In particular, the

“cautious walk with token” technique presented in chapter 3, indeed appears to be

highly reusable in these other topologies.) Consequently, the possibility of such reuse

reinforces, in our opinion, the coherence of the set of topologies under investigation
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in this dissertation.

Figure 2.1: A Torus

Figure 2.2: A 5-Hypercube

Figure 2.3: A complete graph with n (n > 3) nodes is a full connected Chordal Ring
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Finally, from a methodological viewpoint, we add that once we obtained solutions

for the torus topology, we compared them to the solutions we already had for the

ring (for both co-located and with scattered agents). Most interestingly, the algorith-

mic and complexity similarities and differences between these two sets of solutions

provided a clear indication of how to proceed with the hypercube and the complete

network. In particular, in our opinion, considerable algorithmic resemblance suggests

looking for a “core” algorithm applicable to a family of “ring-relevant” topologies. We

also noticed that the complexity measures we had determined directly stemmed from

the specifics of each of the selected topologies. Ultimately, this leads us to prove (in

Section 7.2, Chapter 7) whether topology-specific solutions offer better performance

than topology-independent ones for the problem at hand.



Chapter 3

Black Hole Search in Rings

In this chapter, the network under consideration is an asynchronous ring of n nodes

with a single Bh. In such a network, it is known that when using whiteboards, the

Bhs problem can be solved with a team of just two agents, and performing only

Θ(n log n) moves[45]. Here, we consider the same topology and examine the Bhs

problem using tokens. We consider two sub-problems: using co-located agents and

using scattered (or equivalently dispersed) agents.

For the co-located agents case, we first suggest that a team of two agents is suf-

ficient to locate the Bh in finite time (even though the token model is a weaker

coordination model than whiteboards). Furthermore, we claim that this can be ac-

complished using only O(n log n) moves in total, which is optimal, as when using

whiteboards. Finally, we show that the agents need to use only O(1) tokens. These

results are obtained iteratively from improving an initial simplistic solution. The first

improvement we present uses a total of 10 tokens. In our second improvement, that

number is reduced to 3.

The point to be ultimately grasped from these algorithms is that, although tokens

are a weaker means of communication and coordination than whiteboards, their use

does not negatively affect solvability and it does not even lead to a degradation

of performance. On the contrary, whereas the protocols using whiteboards assume

at least O(log n) dedicated bits of storage at each node, the token-based solutions

proposed here use only three tokens in total. In other words, we contend that, with

24
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respect to memory requirements, our token-based solutions are less demanding than

whiteboard-based ones.

For the scattered agents case, when the orientation of the ring is available, we

show that a minimum of 2 agents can locate the Bh within O(kn + n log n) moves

with only 1 token per agent, here k is the number of agents. Then we prove that a

Bh can be located in an anonymous ring by anonymous asynchronous and scattered

agents, using O(n log n) moves in total and four (4) tokens per agent without any

knowledge of the team size.

Also, we show that in an unoriented ring, a team of k scattered agents, where

k ≥ 3, can locate the Bh within n2 moves, each agent using O(1) tokens without

knowing k (i.e., the total number of the agents). Interestingly, we can reduce the

number of moves to O(n log n), which is optimal, with a minimum of 4 scattered

agents and O(1) tokens per agent. These results hold even if both agents and nodes

are anonymous.

3.1 Basic Tool and Observations

3.1.1 Basic Tool — Cautious Walk with Tokens (CWWT)

Cautious Walk with Token (henceforth CWWT for brevity) is an adaptation of the

cautious walk technique used in systems with whiteboards [45]. This algorithm is the

basic step in all our algorithms and is explained below.

At any time during the execution of this algorithm, a port will be classified either

as With Tokens (i.e., one or more tokens have been placed on this port) or Without

Tokens (i.e., no tokens on this port). Whereas the details of how to establish that

a port is with or without tokens will differ across the algorithms we will introduce

throughout the dissertation, this classification holds: for CWWT, a port is always



26

determined to be with or without tokens.

During a CWWT, having a certain number of tokens on a port indicates that the

link of this port is currently being explored by an agent. For brevity, we will simply

say that the port is being explored. The exact number and location of tokens required

to determine that a port is being explored may vary between the algorithms that use

CWWT. Clearly, a port under exploration may be dangerous, that is, its link may

possibly lead to the Bh. Once a port is known to not lead to the Bh, it is considered

safe. To prevent unnecessary loss of agents, we require that no two agents enter the

Bh through the same link. In order to achieve this, we establish two basic rules for

the agents that use CWWT. The first rule is:

• When an agent a arrives at a node u with a port p under exploration, that agent

is not allowed to move through port p. In fact, agent a can only leave through

port p once p becomes safe.

In order to explain how a port becomes safe, consider an agent a that leaves

token(s) on a port p of node u in order to explore the node v through the link of p.

Our second rule captures how p becomes safe:

• Upon reaching node v through port q, if v is not a Bh, then a immediately

returns to u and removes tokens on p. Thus, p necessarily becomes Without-

Tokens and both its link and itself are thereafter considered safe. Port q is also

considered safe once being visited by a.

What agent a2 does next depends on the specific algorithm that uses CWWT.

Typically, a2 will return to v and continue exploring the topology at hand. However,

the presence or absence of tokens in u and/or on p may lead to different behavior for

a2, as will be explained later.
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To conclude, we must emphasize that CWWT works if, and only if, agent a2

cannot modify v in anyway before a2 has first returned to u to indicate p and the

link of p are safe and then gone back to v. In turn, this going-back-to u followed by

returning-back-to v is a single atomic instantaneous action.

3.1.2 Observations

It is essential to understand that, regardless of topology, because of the asynchrony,

agents cannot distinguish a slow node from a Bh. From this we get:

Lemma 1 [45] It is impossible to find the Bh if the size of the topology is not known.

In the co-located agents case, all the agents can agree on a same sense of direction.

But the first move of an agent can end up in the Bh, regardless of the topology, we

immediately get:

Lemma 2 [45] At least two agents are needed to locate the Bh in the co-located agents

case in any topology.

In the case of scattered agents in ring topology, we observe that:

• since all the agents may start from different nodes upon wake-up, there may be

no common agreement on the orientation of the ring;

• there are two links leading to the Bh;

• the first move of an agent can end up in the Bh,

From Observation 1, we know that 2 scattered mobile agents are not enough to

locate the Bh in an unoriented ring.



28

3.2 Bh Search by Co-located Agents

3.2.1 Elimination Technique

In order to minimize the cost, that is the total number of moves executed by all

agents, we use an elimination technique to reduce the number of active agents to two

in the co-located versions of our algorithms — namely, the first two agents to wake-

up. The subsequent co-located Bhs algorithms of this chapter are therefore described

using two agents, and assume this elimination technique has first been applied. Let

us elaborate on this technique.

Upon initial wake-up, an agent examines the HB. There are three possibilities:

• There is no token on any port. This means the agent a1 is the first to wake-up.

In this case, place a token on one port, and this determins the orientation. We

call this port a right port. Then a1 will execute the Bhs algorithm by starting

exploration from the right port of the HB. a1 will be referred to as the right

agent.

• There is/are token(s) only on the right port. This is the second agent to wake-

up. Place a token on the left port and execute the Bhs algorithm by starting

exploration from the left port of the HB. This agent will be called agent a2 and

be referred to as the left agent.

• There are tokens on both ports. This means two agents already woke-up be-

fore. The current agent becomes Passive, namely, ceases to participate in the

computation.

3.2.2 General Description and Basic Ideas

A node is explored if it has been visited by an agent, unexplored otherwise. The set

of the explored nodes is called the explored region; the part of the ring consisting of
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unexplored nodes, the unexplored region. As all agents start from the same HB, the

explored region and unexplored region partition the ring into two connected parts.

In this ring, the two explored nodes that have an unexplored neighbor are called the

Last-Safe-Places (LSPs). At the very beginning of the search, the HB is the sole

LSP. Clearly, the LSPs keep changing while the explored region is getting larger and

larger. Exploration is performed using the CWWT.

At any moment in the execution, a port can be classified as

• unexplored — no agent has exited or arrived via this port yet;

• dangerous — an agent has exited via this port, but no agent has arrived yet via

it, or

• safe — an agent has arrived via this port.

As previously explained, the CWWT is used to make a port safe.

Reduction Technique

The main technique for locating the Bh in a ring with co-located agents is borrowed

from [45]. We sketch it out here and then provide additional details in the next

subsection. Each agent holds a numeric counter that can be increased and decreased

by 1 according to each specific algorithm. The two first agents to wake up logically

partition the unexplored region into two connected parts: d(n − 1)/2e for the right

agent a1 and to b(n− 1)/2c for the left agent a2, and then each agent goes to explore

its part using CWWT. Since there is only one Bh, one of the two agents (say agent

a1) will finish exploring its part. Agent a1 then traverses the explored part until it

reaches the LSP of agent a2. The counter of a1 is used so that, at that moment, a1 will

know the distance between the LSPs, which corresponds to the size of the explored

region. Since n is known, a1 can compute the current size of the unexplored region. If
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this unexplored part consists of a single node v, a1 determines that the Bh is located

at v and terminates the algorithm (since a2 has already been terminated by entering

the Bh). Otherwise, a1 divides the remaining unexplored region into two connected,

almost equally sized work assignments Wa1 and Wa2 for a1 and a2, such that Wa2

contains the node to which a2 is currently heading. Then, a1 leaves a message for

a2 (informing it about Wa2 , as explained shortly) and goes on to explore Wa1 . The

process is repeated until the unexplored region contains a single node — the Bh.

Communication between agents therefore involves an agent leaving or receiving a

message. We investigate this idea next.

Communication Technique

The previous description omits details of how the agents communicate, how to identify

an LSP, and how to implement the CWWT. In [45] whiteboards were used to store

a message, as well as the status of the ports. In our research, we aim to implement

a similar approach but using only tokens. In other words, communication between

agents must be achieved using tokens. Furthermore, we aim to use an overall constant

number of tokens.

The first step towards this goal is to use tokens only for dangerous ports (possibly

leading to the Bh). Thus, no tokens are used to identify safe or unexplored ports.

This is feasible because all ports between the dangerous ports leaving from LSPs are

implicitly safe.

The second step, namely using tokens to encode a message, is trickier because

we want to use as few tokens as possible. In our algorithms for Bh location using

co-located agents, in the context of the previous description, the message left by a1

for a2 is not the size of Wa2 , but the number of times a1 has finished its part before

a2 has made any progress. We will show later that this information is sufficient for
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a2 to continue its work assignment. For now, let M denote the number encoded in

the message from a1 to a2. When agent a2 gets this message, it can re-compute the

size of its work assignment by halving the size of its last work assignment M times

(and being careful to use the same rounding as a1 used when the unexplored area has

odd size). The key observation is that M is conveyed from a1 to a2 using a single

token and can be at most log n. The basic technique we use to encode the message

is to have a1 put a token for a2 at a location that allows a2 to obtain M by counting

from its node (its LSP) to the node where the token has been dropped in the explored

regions.

If and when a1 completes its current work assignment, it must increment M . This

merely consists in picking the token corresponding to M and dropping it on the next

node in the correct direction.

Finally, agent a1 has to somehow signal to a2 that there is a message waiting for

it. How this is achieved will vary from algorithm to algorithm. The basic technical

difficulty lies in the fact that the tokens are undistinguishable and seeing a token

might mean very different things, depending on context. In addition, we should avoid

situations where one agent needs more tokens then it has, while the other collects

tokens that it does not need.

Plan for the Rest of the Section

In the rest of this section we introduce three algorithms: Divide with Token, Divide

with Token +, and Divide with Token −. The first one uses O(n log n) tokens and

simulates a whiteboard in each node. Given we want to reduce the token cost, this

is not acceptable. However, it is crucial to understand that as we reduce the number

of tokens used, the interpretation of tokens becomes more complex. More precisely,

sometimes the same number of tokens placed in different locations may mean different
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things, or the same number of tokens in the same location may have different meanings

to an agent depending on the state of this agent. In the second algorithm, we use a

constant number of tokens, and we try to avoid ambiguity by using different numbers

of tokens to mean different things. This results in a fairly simple algorithm that,

however, does not use the optimal number of tokens. Finally, the algorithm Divide

with Token − aims to rectify this problem by reusing the tokens as much as possible

and applying detailed context analysis when tokens are encountered.

All three algorithms presented in this section use the CWWT technique and de-

pend on the FIFO requirement explained earlier.

3.2.3 Algorithm Divide with Token

If the number of tokens each mobile agent can carry is unlimited, all the messages used

for communication in order to locate the Bh in the whiteboard model, can be easily

simulated by numbers of tokens in each node. The idea is simple: A certain number

of tokens in each node can represent a certain meaning, that is, a certain message.

Hence, it is quite straightforward to solve the Bhs problem with an unlimited number

of tokens after conducting some modifications on the algorithm presented in [45].

Such modifications merely consist in mapping each message that can be written/read

from/to the whiteboard into a certain number of tokens. We call this simple algorithm

Divide with Token. It follows that:

Observation 2 The Bhs problem can be solved in a Ring topology with tokens.

Algorithm Divide with Token is based on the assumption that an unlimited num-

ber of tokens is available for all the agents. Obviously, this is an overly simplistic

assumption and the problem becomes trivial to solve. Therefore, it is not useful to

expand on this algorithm. Instead, we repeat, our objective is to have a constant
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number of tokens available for each agent, so that the token model is really less

expensive than the whiteboard model, as we hope to demonstrate.

3.2.4 Algorithm Divide with Token +

The basic idea of algorithm Divide with Token + is to use the following specific

number of tokens to convey specific meanings:

• 1 token at a port — used for agent elimination at the HB

• 2 tokens at a port — dangerous port at the LSP of an agent. We call these two

tokens on the port the CWWT tokens.

• 3 tokens at a port — dangerous port with a message for the agent

• 1 token in the middle of a node — so-called end-point marker used to capture

M (i.e., the number of times a1 has finished its part before a2 has made any

progress, as explained above). The length of the segment of the explored region

that starts from the LSP of a2 and ends at the node with this end-point marker

is M .

• 2 tokens in the middle of a node — the message from one agent to the other has

been read. These two tokens can be picked up and reused for the next message

Beyond these conventions, we require that each agent maintain the following vari-

ables:

• Steps : the size of the remaining work assignment, initialized to d(n− 1)/2e for

the right agent a1 and to b(n− 1)/2c for the left agent a2

• MsgILeft : used to store the value of M that the agent at hand is to leave for

the other agent

• DistC — used to calculate the distance between LSPs
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• Msg4Me — used to store the value of the M that the other agent left for the

agent at hand

The values of both MsgILeft and Msg4Me are computed while traversing the

explored region. This is explained in the description that follows.

Algorithm Description

The algorithm is described for the right agent a1 (which will be referred to using the

first person singular in such descriptions throughout the dissertation). The algorithm

for the left agent a2 is almost identical; the only differences being the use of opposite

directions, and the use of the floor function instead of the ceiling one when calculating

the work assignment (see Subsection 3.2.2).

In the initialization step, the previously-mentioned elimination technique is used

to limit the number of active agents to two. This technique also determines the right

agent a1 and the left agent a2. Note that unlike [45], the initial work assignment of

the first agent is the whole unexplored region so that we do not need to deal with

the case where the first agent has explored its part, while the second agent has not

started the algorithm yet. When the second agent wakes up, it will seek the first

agent to divide the workload based on what remains unexplored at that moment.

In procedure “Explore” an agent explores its work assignment using CWWT,

checking for messages from the other agent while exploring. Here, checking for a

message means detecting an end-point marker in the middle of a node.
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Algorithm 1 Algorithm Divide with Token + — Procedure “Initialization” and
“Exploring”
1: Initialization:(upon initial wake-up in the HB)
2: DistC = 0, Mes4Me = 0, MesILeft = 0
3: if the right port has no token on it then
4: mark as dangerous: put two tokens on the right port
5: execute procedure Explore(n− 1) as the right agent a1

6: else if the left port has no token on it then
7: mark as dangerous: put two tokens on the left port
8: execute procedure Seeking() as the left agent a2

9: else
10: become Passive immediately
11: end if
12: procedure Explore(Steps)
13: while true do
14: go from the current node u to its right neighbor v
15: return back to node u // as per Cautious Walk
16: if there are still two tokens on the right port of u then // no message for me
17: if u is the HB then
18: remove one token from the right port of u
19: else
20: remove two tokens from the right port of u, which is safe
21: end if
22: move to v, put two tokens on the right port of v and decrement Steps.
23: if Steps = 0 then // finished exploring my assignment
24: exit the loop and execute Seeking() // now find the other agent
25: end if
26: else // there must be 3 tokens on the right port — a message waiting for me
27: exit the loop and execute procedure Checking() // check the message
28: end if
29: end while
30: end procedure

In procedure “Seeking” the agent determines the distance between the LSPs
and then either locates the Bh (if there is a single unexplored node remaining) or
leaves/updates the message for the other agent. Several cases need to be handled:

• this is the first message for the other agent,

• a message for the other agent has already been left before, but that agent did
not read it yet and now the message must be incremented,

• a message for the agent has already been left and it has been read, a new
message should be left now.

Furthermore, an agent executing procedure “Seeking” must not get confused by
the tokens remaining in the HB after the elimination technique.



36

The details of procedure “Seeking” follow (for a right agent, as usual):

Algorithm 2 Algorithm Divide with Token + — Procedure “Seeking” and “Check
& Split”

1: procedure Seeking
2: go to the left until a token is encountered in a node u. Use variable DistC to count

the distance traveled
3: if found two tokens on the left port then // u is the LSP of the other agent
4: put a third token on the left port and also put a token in the middle of u

// indicate that there is a message, and the message’s value is “0”
5: execute Check&Split(DistC )
6: else if found one token in the middle of a node u then // this is the end-point

marker of agent a2’s last message and has not been yet
7: remove the token, go to the node on the right, put the token there and increment

MsgILeft // update/increment the message
8: execute Check&Split(DistC + MsfILeft −1)
9: else if found two tokens in the middle of a node u then // the other agent read

my previous message
10: remove the two tokens from the middle and continue from the beginning of

Seeking, not resetting the DistC counter
11: else if found two tokens — one each on each port then // this is the HB, ignore
12: ignore them and continue from the beginning of Seeking, not resetting the DistC

counter
13: end if
14: end procedure

15: procedure Check & Split(Dist)
16: if Dist = n− 2 then // single unexplored node remaining
17: become DONE, the Bh is in the remaining unexplored node
18: else
19: go right until two tokens are found on the right port // return to your LSP
20: execute Explore(d(n−Dist)/2e) // new work assignment, the left agent would

use floor here
21: end if
22: end procedure

We emphasize that procedure “Checking” is executed by the agent that notices

a message has been left for it. The indication of such a message is simply one extra

token, for a total of 3 tokens, on the port on which the agent left its CWWT tokens.

Then, this agent “reads” the message by traversing leftward until an end-point marker

is found. Note that, as captured in the algorithm above, for the first message this
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means zero leftward moves.

The agent “reading” the message must then indicate to the other agent that the

message has been “read”. This is achieved by placing another token “on top of” the

end-point marker. In other words, tokens are undistinguishable but, conceptually, we

suggest this extra token be thought of as a “message-read” token. The key point is

that indicating a message has been read allows the other agent to reuse these tokens

for a next message. Here are the details:

Algorithm 3 Algorithm Divide with Token + — Procedure “Checking”
1: procedure Checking
2: remove the third token from the right port
3: go left until a token is found in the middle of a node u, counting in Msg4Me the

number of nodes traversed
4: put a second token in the middle of u
5: go Msg4Me nodes to the right // returning to the LSP
6: for (i = 0; i ≤ Msg4Me; i++) do // compute the new work assignment
7: Steps = dSteps/2e // again, floor function will be used by the left agent
8: end for
9: execute Explore(Steps)

10: end procedure

Correctness

In this section, we discuss the correctness of algorithm Divide with Token +.

Lemma 3 At most two agents will become active.

Proof: According to the Elimination technique explained in Subsection 3.2.1, any

other agent wakes up later than the first two agents will become Passive immediately

once noticing the tokens in its HB.

2

The following observation is trivial to prove:
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Observation 3 The nodes in the part of the ring that is between two Last-Safe-Places

(LSPs) and includes the HB, are safe.

Given this, let us start by addressing the correctness of what we introduced earlier

as the communication (as defined in subsubsection 3.2.2) facet of our algorithm:

Lemma 4 Communication between agents a1 and a2 works correctly.

Proof: As previously explained, M is the number of times a1 has finished its work

assignment before a2 explores another node in the unexplored region. Recall that M

is captured by leaving a token (called an end-point marker) in the middle of a node n.

Agent a1 leaves this token by counting M nodes from the LSP of a2. Also recall that

when a1 notices the message has not been read, it must increment it. This is achieved

by a1 picking up and moving the end-point marker to the neighbor of n away from

the LSP of a2. Most importantly, because of the FIFO requirement, no race condition

can occur between a1 and a2 during this moving of the end-point marker : a2 cannot

overtake a1 and therefore will find the end-point marker in the correct location.

Once a2 detects the message of a1, it removes the end-point marker. Consequently,

the next time a1 seeks a2, it will not encounter an end-point marker and thus will end

up in the LSP of a2. Given we do not allow overtaking, the behavior of the agents

will depend on which of the two arrives first at the LSP of a2. In this context:

• if a1 arrives first, then a2 will notice an extra token (as previously mentioned)

requiring it to go and check the message a1 left for it. Consequently, a2 will

follow a1 until a1 leaves its end-point marker. Then a2 will proceed with its new

work assignment.

• if a1 arrives after a2, then a1 will follow a2. Agent a2 will move its LSP to the

node it just explored, and leave its CWWT tokens on the next dangerous port

of that node. Agent a1 will consequently expand the size of the explored region
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and proceed to leave a message for a2. To do so, a1 will add a token to that

dangerous port and then go and place its end-point marker before resuming its

own exploration.

Recapitulating, we have shown that:

• M can be correctly incremented (through the moving of the end-point marker)

• once the end-point marker is removed: If a1 arrives first at the LSP of a2,

then a1 will place a new end-point marker that a2 will correctly pick up to

continue its exploration. Furthermore, if instead a2 arrives first at its LSP, then

a2 will continue its exploration, and a1 will increment the size of the explored

region before proceeding with leaving a message for a2 and resuming its own

exploration.

Thus we conclude that communication between a1 and a2 works correctly within

the context of the algorithm at hand. More specifically, communication does not affect

the ability of this algorithm to expand the explored region until the Bh is found.

2

Next, we introduce lemmas that address the other facets of the algorithm at hand.

Lemma 5 An agent that walks without using CWWT will only do so on safe edges/links.

Proof:

According to the algorithm described earlier, the possible situations in which an

agent walks without CWWT are:

• An agent a1 goes to check the message the other agent a2 left for it. Given

the location of a1 and the fact that this message (in the form of a token in

the middle of a node) is at most log n away from a1 (see 3.2.2), this walk is

definitely between the two LSPs.
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• An agent a1 goes back to its LSP after seeking its partner a2 or checking for a

message left by a2.

In both cases above, the agent necessarily walks between the two LSPs. And we

know this is safe given Observation 3. In fact, there is only one hypothetical situation

in which an agent could possibly go beyond the explored region:

• An agent a1 goes to seek the other agent a2 and ends up overtaking a2 and

possibly ending in the unexplored region. This situation is impossible. More

precisely, because of the previously introduced FIFO requirement and because

a1 cannot use the link of a port marked with token(s) by a2, it is impossible for

a1 to overtake a2.

Having shown that the situations in which an agent walks without CWWT occur

only in the explored (or equivalently, safe) region, we conclude the Lemma is proven.

2

In the following Lemma we prove that at most one agent dies in the Bh using this

algorithm. Consequently one agent survives and locates the Bh.

Lemma 6 At most one agent dies.

Proof: First, the elimination technique mentioned earlier guarantees there are only

two agents used to locate the Bh at the start of the search. Second, as previously

mentioned, we know agents will never go through the same unexplored (i.e., danger-

ous) link at the same time. Consequently, no two agents will die in the Bh using the

same link. Third, through the use of our reduction technique from Subsection 3.2.2),

as soon as an agent notices that the size of the explored region is n − 1 nodes, the

task is achieved and the Bh is located.
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It follows from these three observations that after the fist agent dies in the Bh

(leaving behind it a dangerous port), the second agent will not traverse that dangerous

port but instead grow the explored region till it includes all the nodes but the Bh.

The key observation is that this second agent will never have to explore a dangerous

port since the size of the explored region reaching n− 1 nodes will stop the algorithm

before that.

2

Lemma 7 Within finite time, one agent will determine the location of the Bh.

Proof: From Lemma 6, we know one agent will survive and find the Bh. The question

then is to know how many moves (i.e., link traversals) are required. We observe that

the worst case, that is, the case that requires the greatest number of moves (as will be

explained below), occurs when the Bh is the immediate neighbor of the HB. In this

case, one agent immediately dies, and the other agent must grow the explored region

to n−1 nodes. Given our reduction technique, this requires n log n moves. And since

each such move takes finite (but unpredictable) time, we can conclude that a finite

amount of time is required, even in the worst case, for one agent to locate the Bh.

2

Hence we conclude:

Theorem 1 Algorithm Divide with Token + correctly locates the Bh after finite

time.

Complexity Analysis

Let us start with two important observations:

Observation 4 Because the agents start from the same HB, even if the ring is un-

oriented, the agents can agree on a common (be it clockwise or counter-clockwise)
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direction for the ring.

Observation 5 Regardless how many agents start in the same HB, we can always

reduce the number of agents to two using the elimination technique described in Sub-

section 3.2.1. This technique requires two tokens.

Theorem 2 Algorithm Divide with Token + correctly locates the Bh in a ring with

n nodes, employing two co-located agents and ten (10) tokens in total, requiring

O(n log n) moves.

Proof: The proof of number of tokens used per agent follows:

Claim 1 There are 4 situations in which token(s) are required:

• Eliminate extra agents in the HB: one token is used by each of the two first

agents to wake up. Those agents each mark one without token port of the HB
upon waking up. As previously explained, this guarantees 2 agents are used by

the algorithm.

• CWWT: as previously explained, two tokens are used by each agent in order to

explore the ring using CWWT.

• An agent uses one token (placed in the middle of a node) as an end-point marker

(as explained at length earlier).

• An agent a1 that leaves a message must use one token to notify its partner a2

that a message (in the fork of an end-point marker) awaits a2. This notification

token is placed as a third token on the dangerous port explored by a2.

It follows that 5 tokens are used by each agent. Hence, algorithm Divide with Token

+ uses a total of 10 tokens for 2 agents.

Let us now briefly consider the number of moves required by each agent (based

on the earlier description of the algorithm).
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• Most importantly, in procedure “Explore” an agent explores its work assignment

using CWWT. Each port explored costs 3 moves and there at most n− 1 nodes

to explore. So exploration entails 3(n− 1) moves.

• Because an agent a1 does not start to seek the other agent a2 before a1 has

finished exploring approximately half of the unexplored region, and because an

agent a1 does not go to check the message the other agent a2 left to it until the

a2 has finished exploring approximately half of the unexplored region, we infer

that there will be at most log n calls to procedures “Seeking” and “Checking”.

• Let us now consider the cost, in terms of moves, for a single call to procedure

“Checking” or procedure “Seeking”. The key observation is that an agent per-

forming either of these procedures always walks in the safe region, which has a

maximum of n − 1 nodes. Consequently, a call to procedure “Checking” or to

procedure “Seeking” requires at most n moves.

Hence, there is a maximum of 3n + 2n log n moves performed by the two agents. It

follows that algorithm Divide with Token + correctly locates the Bh employing two

agents and ten (10) tokens in total, requiring O(n log n) moves.

2

3.2.5 Algorithm Divide with Token −

In this algorithm, our goal is to locate the Bh while minimizing the token cost.

Consequently, the use of tokens is carefully planned. We will distinguish:

• the presence from the absence of a token in a specific location

• using i tokens in one location from using i tokens in another location.

• for an agent a1, using i tokens in location l when a is in state s1 from using i

tokens in the same location l when a1 is in state s2
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Detailed Description

The following variables, local to each agent, are used in this algorithm:

• Steps — the size of the remaining work assignment

• HBpos and LSPpos — relative position with respect to the HB and the LSP

of the agent. This allows an agent to know when it is at the HB or at its LSP

without using tokens for marking these

• MsgILeft — used to store the value of M that the agent at hand is to leave for

the other agent (as in previous algorithm)

• DistC — used to calculate the distance between LSPs

• Msg4Me — used to store the value of M that the other agent left for the agent

at hand (as in previous algorithm)

From the previous algorithm, we also reuse the definitions of what is a safe and

what is a dangerous port.

For this algorithm, there are two key differences from the previous one. First,

whereas two tokens were used to mark a port under exploration in algorithm Divide

with Token +, here we use only one. Second, when agent a1 wants to indicate it leaves

a message for its partner agent a2, then a1 “steals” the token a2 left on the port it

is exploring. a1 uses this stolen token as the end-point marker for the message it

leaves for a2. Most interestingly, agent a2 detects a message was left for it by noticing

that the token it left on the port under exploration is absent. Except for these two

differences, the algorithm at hand works essentially like the previous one.

In this algorithm we will use tokens only to:

• mark a dangerous port (as usual, as part of the CWWT )
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• encode M using an end-point marker (as in the previous algorithm)

• in the HB in order to limit the number of active agents to two (as per the

elimination technique introduced earlier)

Having a port under exploration use only one token (that may be stolen) is quite

straightforward, except in the HB. More precisely, because there are several possible

combinations of tokens in the HB, it is useful to enumerate them, along with their

interpretations. To do so, we will use a triplet giving respectively the number of

tokens on the left port of the HB, its middle, and its right port:

• (0, 0, 2) — the right port is dangerous (i.e. the HB is the LSP of the right

agent), the left port is unexplored (the second agent has not woken-up yet)

• (0, 0, 1) — the right port is safe (the LSP of the right agent already moved to

the right), the left port is unexplored

• (2, 1, 0) — both the right and the left port are dangerous. There is a message of

value 0 waiting for the right agent. Here the second agent woke up before the

first agent explored its first port. In its initial step, the second agent changed

(0, 0, 2) to (2, 0, 1), but then immediately transformed that to (2, 1, 0) by exe-

cuting the procedure “Seeking” (as per the description of the initialization step

found shortly below).

• (1, 0, 1) – the right port is dangerous, the left port is safe

• (2, 0, 0) – the left port is dangerous, the right port is safe

• (1, 0, 0) – both ports are safe

• (1, 1, 0) – if seen by the right agent whose LSP is the HB: the left port is safe

and there is message 0 waiting for me; if seen by the left agent whose LSP is

the HB: the right port is safe and there is message 0 waiting for me
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• other configurations do not occur

Note that although configuration (1, 1, 0) has two possible interpretations, there

is no ambiguity because this configuration will not occur when the HB is the LSP of

both agents. Please recall that at least one agent must have finished its assignment

in order to leave a message.

The algorithm below is described for the right agent a1 (using the first person

of the singular). The algorithm for the left agent a2 is almost identical. The only

differences are using opposite directions, and using the floor function instead of the

ceiling function when calculating the work assignment.

At the beginning of the algorithm, in what we will call the initialization step, the

elimination technique is used to limit the number of active agents to two, as well as

to choose the right agent a1 and the left agent a2.

As previously explained, the procedure “Checking” is executed by an agent that

detects that a message has been left for it. The right agent reads the message by

traversing leftward until an end-point marker is found. Note that for the first message,

there will be zero leftward moves. Moreover, a message is left only when both agents

are active. Therefore there is no confusion if the end-point marker is found at the

HB (as explained above).

In procedure “Explore” an agent explores its work assignment using Cautious

Walk, checking for a message from its partner agent.
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Algorithm 4 Algorithm Divide with Token − — Procedure “Initialization” and
“Explore”
1: Initialization:(upon initial wake-up in the HB)
2: if the right port has no token on it then
3: put two tokens on the right port
4: execute procedure Explore(n− 1) as the right agent a1

5: else if the left port has no token on it then
6: move one token from the right port to the left port and add an additional token to

the left port
7: execute procedure Seeking() as the left agent a2

8: else
9: become Passive immediately

10: end if

11: procedure Explore(Steps)
12: while true do

// might enter the Bh in this step
13: go from the current node u to its right neighbor v
14: return back to node u // doing the Cautious Walk here
15: if there is a token on the right port of u4 then // no message for me yet
16: remove the token from the right port of u
17: move to v, put a token on the right port of v and decrement Steps.
18: if Steps = 0 then

// finished exploring my assignment, now find the other agent
19: exit the loop and execute procedure Seeking()
20: end if
21: else // there is no token on the right port, i.e. message waiting for me
22: exit the loop and execute procedure Checking()
23: end if
24: end while
25: end procedure

In procedure “Seeking” the agent determines the distance between the LSPs and

either locates the Bh (if there is single unexplored node remaining) or leaves/updates

the message for the other agent.

4Please note that here the number of tokens might have changed from 2 to 1 because u is the HB
and the second agent had waken-up meanwhile. But that still does not entail a message notification.
Also, it is important to understand that here the code for the left agent is not simple mirror image
of the code for the right agent. In fact, the corresponding test by the left agent will be: there is a
token on the left port of u, or u is the HB and there are two tokens on the left port of u.
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Algorithm 5 Algorithm Divide with Token − — Procedure “Checking”, “Seeking”
and “Check & Split”

1: procedure Checking
2: go left until a token (end-point marker) is found in the middle of a node u, counting

in Msg4Me the number of nodes traversed
3: remove this token, return to your LSP and put the token on the right port
4: for (i = 0; i ≤ Msg4Me; i++) do // compute the new work assignment
5: Steps = dSteps/2e // again: we use floor in the case of the left agent
6: end for
7: execute Explore(Steps)
8: end procedure

9: procedure Seeking
10: go left until a token is found at node u, counting in DistC the distance traveled
11: if found a token on the left port of a non-HB node, or two tokens on the left port

of the HB then
// u is the LSP of the other agent, leave a message 0

12: move a token from the left port to the middle of u
13: execute Check&Split(DistC )
14: else if found one token in the middle of a node u then

// this is the end-point marker of my last message, agent a2 did not read it yet
// update/increment the message

15: move the end-point marker one node to the right and increment MsgILeft
16: execute Check&Split(DistC + MsgILeft −1)
17: else if found one token on the left port of the HB then // HB, ignore
18: ignore and continue on Line 19 as if nothing found
19: end if
20: end procedure

21: procedure Check&Split(Dist)
22: if Dist = n− 2 then // single unexplored node remaining
23: become DONE, the Bh is in the remaining unexplored node
24: else
25: return to your LSP and execute Explore(d(n−Dist)/2e)
26: end if
27: end procedure

Correctness and Complexity Analysis

Lemma 8 At most two agents will become active.

Proof: See Lemma 3
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2

Lemma 9 If a message is left for an agent, that agent detects the presence of that

message and correctly computes its contents.

Proof: We prove the lemma for the agent a1 exploring to the right (i.e., for the right

agent). The proof for the left agent a2 is analogous. When a1 finds out that there

is a message waiting for it, by not finding its token when returning from CWWT,

Lines 13− 14 of procedure “Explore”, according to Line 11 of procedure “Checking”

it travels to the left to locate the end-point marker, that is, the token placed in the

middle of a node. As explained for in algorithm Divide with Token +, a1 cannot

overtake agent a2, even if a2 is concurrently incrementing its message. Moreover, the

searching for the end-point marker is safe,: a1 will not travel past a2’s LSP. Also, a

non-zero message is left only by an agent that already explored its assignment. Thus,

the distance between LSPs must be at least bn/2c.
2

Let us define the work assignment of the right/left agent as follows:

• If the agent is traversing the dangerous link from its LSP and there is a message

waiting for it, the work assignment of the agent is only the node on the other

side of the dangerous port

• Otherwise, the work assignment of the agent is the Steps nodes to the right/left

of agent’s LSP.

Lemma 10 At any moment, the work assignments of the right and left agents are

disjoint. Moreover, if there is no message waiting for an agent then the work assign-

ments form a partition of the part of the ring delimited by the LSPs (or the LSP of

the right agent and the HB, if there is single agent active) and not containing the

HB.
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Proof: By induction over the execution. According to Line 4 in procedure “Initial-

ization”, the initial work assignment of the right agent a1 covers all nodes between

the HB and a1’s LSP (which is the HB). This property is maintained by construction

of procedure “Explore”, until the second agent a2 leaves a message for a1.

If there is a message waiting for an agent (say a1), the agent a2 at the moment it left

the message computed its work assignment as half of the part remaining unexplored

between the LSPs. Since this part contains at least two nodes (otherwise a2 would

terminate), half of it ( = b’s assignment) does not contain the node a1 is currently

heading to.

Finally, if there are no messages waiting, the execution of the algorithm is either at

the beginning when there is only one agent (a case we have already addressed above)

or after one agent (say a1) read a message M and recomputed its Steps according to

Lines 13 − 14 of procedure “Checking”. Consider the value d of variable DistC of

agent a2 at the moment when it left the first message (of value 0) for agent a1. Since

a2 has just finished its assignment, by our induction hypothesis, the current value of

a1’s Steps equals to n − d (i.e. the initial value of a2 divided by 2). At the moment

a1 reads the message M , a2 has halved its Steps M + 1 times (Line 37 in procedure

“Check & Split”), and that is exactly what a1 does in Lines 13 − 14 of procedure

“Checking” (also applying Lemma 9). The partitioning works properly even when

halving odd-sized workloads because one agent uses ceiling and the other uses floor.

Afterwards, the invariant of the lemma is maintained by construction of Explore until

another message is left.

2

Since, by construction, the only previously unexplored nodes an agent enters are

in its work assignment, we immediately get:

Corollary 1 At most one agent enters the Bh.
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Another consequence of Lemma 10 is that, at any time, there is at most one

message present in the ring, and at most one agent executing procedure “Seeking” or

“Check & Split”.

From construction (Line 37 of procedure “Check & Split” and Lines 13 − 16 or

Checking), it follows that the parameter Steps is at least halved in each consecutive

call to procedure “Explore” (i.e. the unexplored region is at least halved). Since no

waiting is specified in any place of the algorithm, procedure “Seeking”, “Check &

Split” and “Checking” each take at most n − 2 moves and either terminate or are

followed by a call to Explore. Consequently, the algorithm terminates in O(n log n)

steps. And because the only way to terminate is to detect there is a single unexplored

node, this node must contain the Bh.

Most importantly, note that, at any time, at most three tokens are present in

the ring: the one remaining at the HB and one used by each agent for marking a

dangerous port and for messaging. This follows from:

• In Line 3 of procedure “Initialization”, the first agent places two tokens as it

wakes up. The second agent adds one more token (Line 6) and no more agents

become active (Line 8)

• Nowhere else in the execution of this algorithm are new tokens introduced. That

is, when an agent places a token, it is a token that this agent is reusing. This

observation holds when an agent moves a token to the next port to explore, when

it steals the token of its partner to leave a message (reusing the stolen token

as end-point marker), when it increments a message (by moving the end-point

marker), and when it reads a message (by recuperating its stolen token).

Putting all the observations together, and following the lower bound from the

whiteboard model presented in [45], we conclude:



52

Theorem 3 Algorithm Divide with Token − correctly locates the Bh in a ring with n

nodes, employing two co-located agents and three (3) tokens in total, using O(n log n)

moves.

3.3 Bh Search in an Oriented Ring by Scattered Agents

3.3.1 Basic Observation

We have already observed that communication in an algorithm that uses tokens is

less straightforward to understand than in a model relying on whiteboards. As we

will see below, the use of scattered agents instead of co-located agents complicates

communication further.

Let us start with a few observations/assumptions:

• The agents start from different nodes, that is, from different homebases Hs.

• The agents agree on the same sense of direction, that is, all the agents agree on

the same orientation (i.e. right and left, or clockwise and counterclockwise).

• No agent knows the location of the other agents.

• The agents may or may not know the team size k (that is, the total number of

agents). We consider both situations later in this section.

3.3.2 Algorithm Gather Divide

Basic Ideas and General Description

Before attempting to generalize our results, in this subsection, we study Bhs under

the following conditions:

• The total number of agents, k, is known.

• The orientation of the ring is known.
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• One token per agent is available.

We show that, the number of moves is kn + n log n using the algorithm Gather

Divide we now introduce.

An intuitive solution for locating the Bh using scattered mobile agents is to some-

how have two of the surviving agents eventually form a pair of agents that use a same

node as HB, and then simply have these two paired agents use algorithm Divide with

Token - to find the Bh. We think of two paired agents that execute algorithm Divide

with Token − (i.e., the optimal solution we obtain for Bhs in ring topology with

co-located agents) as having (conceptually) gathered in a same HB.

The gathering process works as follows. When an agent wakes up, it goes right

(since there is orientation) to explore, using CWWT (one token on a port is used

as CWWT token). As soon as it meets another agent that is exploring “in front of

it”, it becomes a “follower” of that agent: it follows this explorer wherever the latter

goes (see details below). In particular, a follower moves its token to the middle of the

node it is currently visiting in order to signal its presence. Clearly, a explorer may

die in the Bh. When a follower is the first agent to arrive at a node in which there

are k− 2 followers, it will start algorithm Divide with Token −[49] acting as a “right

paired agent”, but only after all the other followers at that node become Passive.

After this, the sole explorer will start executing Divide with Token − as a left paired

agent immediately, if it did not die in the Bh.

Detailed Description

The sketchy description given above can be formalized as follows (referring explicitly

to the agent executing this algorithm as “the agent”):
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Algorithm 6 Algorithm Gather Divide
1: The agent wakes up, then explores to the right (using CWWT ) until it finds a token in

the node it enters, at which point the agent becomes a follower.
2: As a follower, the agent leaves a token in the middle of the current node and then waits

to continue walking until the token on the right port of the current node disappears.
3: if upon arrival at a node, there are the tokens of k − 2 agents in the middle of that

node then
4: The agent becomes the Left Paired Agent, and leaves a token on the left port of this

node. It then waits until either A or B happens:
5: A: there is no token in the middle of the current node and there is a token on the

right port; B: there is no token in the middle of the current node and there is no token
on the right port

6: if A happens then
7: The agent picks up the token on the right port then leaves it in the middle of

the current node
8: else if B happens then
9: The agent picks up the token on the left port and immediately starts algorithm

Divide with Token − as the Left Paired Agent.
10: end if
11: else
12: The agent erases its token then becomes Passive as soon as a token appears on the

left port of the current node.
13: end if
14: if When, as a right explorer, the agent comes back to its last-safe-place and sees that

there is a token on the left port or that its own token was moved to the middle then
15: This agent becomes the Right Paired Agent and immediately starts algorithm Divide

with Token −
16: end if
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Analysis

Most importantly, because there is orientation in the ring, all agents share a common

understanding of “right” and “left”. This is critical to ensure all scattered agents

start exploring to the right. In turn, because all scattered agents explore in the

same direction, at most one agent will die in the Bh before the Left and Right Paired

Agents are identified. This stems from having followers have to wait for their explorer

to come back from a dangerous link before these followers can follow.

Furthermore, it is known that during the execution of algorithm Divide with Token

−, at most one of the two active agents dies in the Bh. Consequently, it follows that:

Corollary 2 At most two agents enters the Bh.

Theorem 4 Using k (k > 2) scattered agents, one token per agent, after O(kn +

n log n) moves, algorithm Gather Divide correctly locates the Bh in an oriented ring

with n nodes.

Proof: For determining the Left and Right Paired agents, it is key to understand

that the worst case is to have k agents travel all the ring except for the Bh, which is

O(kn). Then we already know that algorithm Divide with Token − correctly locates

the Bh using O(n log n) moves. It follows that algorithm Gather Divide correctly

locates the Bh in O(kn + n log n) moves.

2

The question then is: can we do better? The answer is yes, as explained next.

3.3.3 Algorithm Pair Elimination

Introduction

In this next algorithm, which we call algorithm Pair Elimination, we achieve locating

the Bh using O(n log n) moves in total and four (4) tokens per agent (still using
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anonymous agents and nodes). This is a significant improvement over algorithm

Gather Divide [53], costing only 3 more tokens per agent.

Interestingly, we remark that the algorithm Pair Elimination also solves the Leader

Election problem and the Rendezvous [3, 4, 11, 12, 36, 58, 112] problem despite the

presence of a Bh. We will elaborate on this later.

Finally, in the algorithm Pair Elimination as in Algorithm Gather Divide, all

agents have the same behavior (i.e., follow the same algorithm), but start at different

nodes. Also, agents may start at different and unpredictable times. The HBs are

marked before the execution of the algorithm starts.

General Description

The basic idea of the algorithm Pair Elimination is to let all the agents try to form

pairs as soon as they wake up. All the paired agents will eliminate all the single agents

they meet. Each pair keeps a level. A pair increases its level each time it eliminates

another pair. When two pairs meet, the higher level pair always eliminates the lower

level pair. Between pairs of the same level, the right pair eliminates the left pair. As

we will show, eventually only one pair will survive, and one of the two agents forming

that pair will locate the Bh. Before we explain this algorithm in detail, we need to

introduce some terminology.

Given an agent ai and a node v 6= Bh, we say that v has been explored by ai if it

has been visited at least once by ai; unexplored otherwise. The explored region of ai

is the set of non-Bh nodes explored by ai, and the unexplored region of ai is the set

of nodes unexplored by ai.

The HB of an agent is identified by having one token in the middle of that node.

An agent ai starts exploring the ring from itsHB, moving to the right until it becomes

part of a pair or dies in the Bh. Its explored region is a segment with HB as one of



57

the two end nodes. Following terminology of this chapter, we call the other end node

of ai’s explored region the LSP(Last Safe Place) of ai.

A node u, in which two agents are paired, is called the BP (Birth Place) of that

pair. Paired agents explore the ring in opposite directions. When a pair is formed,

there are two LSPs: the two end nodes of the union of explored region of the two

paired agents.

The Birth Place of a pair is identified by having three or more tokens in its middle.

Each Birth Place has a level. In particular, if it has i + 3 tokens in the middle of

the node, then that node is identified as a i-BP (i-Level Birth Place). An BP starts

being a 0-level-BP. The level of a BP is also the level of its pair. Also, we will show

that the highest level of a pair is at most log n.

A BP is called a CP (Crown Place) if at least one of the agents of its pair has

finished exploring half of the ring size (b(n− 1)/2c). A Crown Place CP is identified

by having two tokens in the Middle. When a BP becomes crowned, its level becomes

higher than any other (with the exception that its level will be the same as the other

CP, if ever such a second CP is set, as will be explained later. As we will prove in

Subsection 3.3.3, there will be maximum 2 CPs during each algorithm execution.)

The agents of a CP are referred to as crowned agents, and have their level set so that

they can eliminate all non-crowned agents. We will also use the expression crowned

pair. (How one CP eliminates the other is explained later. The key idea is that, once

down to a single CP, we can reuse algorithm Divide with Tokens-.)

The priority relationship is shown in Figure 3.1.

Low level

Left Pair
Level(1)

Right Pair
Level(1)

Left Pair
Level(2)

Right Pair
Level(logn)Level(logn)

Left Pair
... ... ... Crowned Pair

Left
Crowned Pair

Right

High level
High priorityLow priority

Figure 3.1: Pair levels table
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Let us now describe the algorithm:

Let a1 meet a single agent a2 going to the right. Note that, since agents do not see

each other, this situation is detected by a1 finding tokens in some predefined position.

In this case, a1 leaves a message for a2 and becomes a left paired agent. When a2

sees the message from a1, it becomes a right paired agent. As usual, since there are

no whiteboard to write messages on, this communication is done only moving and

placing tokens according to predefined rules.

Because of the complexity of this algorithm with respect to the use of tokens, we

reuse ideas introduced earlier in the chapter but introduce an improved terminology.

In this algorithm, an agent leaves a (Message Notice) — MN for its (paired) partner

by stealing the token in this partner’s LSP and placing it on the port of a node

between the two LSPs. Once so placed, the token becomes a Message Sign (MS ) for

its partner. As usual, the distance between the MS and the partner’s LSP represents

the information the agent wants to deliver to its partner.

After a pair is formed, the two paired agents start exploring the ring in opposite

directions. They keep exploring a pre-defined number of nodes (initially, b(n−1)/2c).

If one finishes its work assignment, as in previous algorithms, it goes to seek its

partner, and calculates the unexplored region according to the location of its partner.

It leaves a message notice and a message sign to the partner then goes back to its

LSP. We say this paired agent finished a stage.

In general, the following chain of actions by a paired agent a1 constitutes one

stage: it explores a pre-calculated number of nodes, it checks the location of the

partner, it leaves a message for it, and then goes back to its LSP. The information in

the message left for its partner is, as usual, the number of times a1 finished exploring

its pre-calculated portion of the ring. This information is used by a paired agent to

calculate the number of nodes to visit in the next stage. When a paired agent a2
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detects a message notice, it goes to check the message, and uses it to calculate the

number of nodes it needs to explore in the next stage.

If a paired agent goes into the BP of a lower level pair, it terminates the pair of

agents corresponding to that BP by removing all the tokens in that BP. It then goes

back to its LSP and continues exploring.

When a left paired agent arrives at the BP of a same level pair, it terminates the

corresponding pair by removing all the tokens in their BP. It then goes to its BP to

increase its pair level, and goes back to its LSP and continues exploring.

When a left paired agent goes into a BP of a higher level pair, it becomes Passive

immediately.

When a right paired agent a2 arrives at the BP of a higher or same level pair, it

goes back to its BP. If there is no token there, then a2 becomes Passive. Otherwise,

a2 goes to the BP of the pair with the same level on the right to terminate that pair.

At any time, if a paired agent a1 encounters a single agent a3, a1 terminates a3

by stealing its token.

We can now proceed with a more procedural presentation of the algorithm. We

use the point of view of a right explorer (RE for brevity) to describe the algorithm.

Most of the procedure for left explorers (LEs for brevity) can be achieved by changing

the words “right” into “left” and vice versa in the procedures for the REs. The only

procedure in which LEs and REs behave differently is Right (Left) Exploring. We

will explain this in subsection 3.4.2.

Finally, in the algorithm:

• parameter BPdist is used for an explorer to remember its BP

• EDist records the number of explored nodes between the two LSPs

• steps records the number of steps one explorer needs to explore in each stage

• message is used by an explorer to remember the message the partner left for it.
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Procedure “Form Pair”

This procedure is used to form a pair out of two single agents so that they can

cooperate to locate the Bh. Initially, as soon as an agent wakes up, it moves right

using CWWT. There are five situations a single agent can encounter when arriving

at a node:

• A: it finds two or more tokens in the middle of a node. In this case, the node is

either a pair’s i-BP (3+ i tokens in the middle), or a crowned place (two tokens

in the middle).

• B: it finds one token in the middle of a node for the second time. This means

the agent knows there are at least two agents on its right side. Given these two

agents both go right, and this sense of direction is common to both of them,

eventually they will form a pair, even though one may already die in the Bh.

(Later we will prove that even in this case, Bh still can be located.) So the

agent can become Passive immediately.

• C: it finds a token on the right port of a node (which corresponds to meeting

an agent walking with CWWT to the right). The action for this event is given

in the pseudo code below.

• D: it finds out that there is no token in the port where it left its CWWT token,

and there are no tokens in the center. It means that a paired agent (with a

greater or equal level but to its right) terminated it.

• E: it finds out that there is no token in the port where it left its CWWT token,

and there are two or more tokens in the middle of the node. It means it now

forms a pair with another agent.
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Algorithm 7 Algorithm Pair Elimination — Procedure “Initialization” and “Form
Pair”
1: Initialization: Wake up; go to the right with CWWT, steps = 0, BPdist = 0, EDist = 0
2: procedure Form Pair
3: keeps walking right using CWWT until A, B, C, D or E happens
4: if A, B or D happens then
5: becomes Passive
6: else if C happens then
7: becomes a Left Paired agent, moves the token from the right port to the middle
8: leaves two extra tokens in the middle as a BP mark. Then executes Left

Exploring(steps, EDist)
9: else if E happens then

10: becomes a Right Paired Agent and executes Right Exploring(steps, BPdist,
EDist)

11: end if
12: end procedure

Procedure “Right Exploring”

This procedure is used by a RE to explore the ring. A RE walks with CWWT to

explore a pre-calculated number of nodes (also called steps) of the ring according to

the position of the LE. The RE ignores any other agent except for its partner. There

are five situations a RE can recognize while exploring:

• A: it goes into a node with at least three tokens, but fewer tokens (in the middle)

than its level. This is a BP that has a lower level than the one of RE.

• B: it goes into a node with at least three tokens, the number of tokens (in the

middle) being greater or equal to its level. This is a BP of equal or greater level

than the one of RE.

• C: it finds no token on the port where it left its CWWT token. That is, its

token has been stolen.

• D: it finishes exploring the last of its assigned nodes. The number of nodes to

explore is given by: (b(n− EDist)/2c).

• E: it finds a token on the right port of a node.
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• F: it determines EDist = n− 2. This means the explored region contains n− 2

nodes.

Algorithm 8 Algorithm Pair Elimination — Procedure “Right Exploring”
1: procedure Right Exploring((steps, BPdist, EDist))
2: keep walking to the right using CWWT, increasing BPdist, EDist and decreasing

steps, until A, B,C or D happens
3: if A happens then
4: pick up the tokens in the node, then keep executing Right Exploring(steps,

BPdist, EDist)
5: else if B happens then
6: go back to the BP
7: if there are still tokens in your BP then
8: check the current level, go back to your LSP, then execute Right Explor-

ing(steps, BPdist, EDist)
9: else

10: become Passive
11: end if
12: else if C happens then
13: execute Checking–Right Pair
14: else if D happens then
15: put a token on the right port, then execute Seeking–Right Pair
16: else if E happens then
17: steal the token on the right port, then execute Right Exploring(steps, BPdist,

EDist)
18: else if F happens then
19: become DONE
20: end if
21: end procedure

Procedure “Left Exploring”

Procedure “Left Exploring” works almost the same as procedure “Right Exploring”,

except for the following situation: when a LE goes into a BP of the same level, it

steals all the tokens, then goes back to its own BP to update its level. It becomes

Passive immediately if it goes into BPs of a higher level pair. There are six situations

a LE can recognize while exploring:

• A: it goes into a node with at least three tokens, but fewer tokens (in the middle)
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than its level. This is a BP that has a lower level than the one of the RE.

• B: it goes into a node with at a number of tokens (in the middle) equal to its

level. This is a BP that has the same level than the one of the RE.

• C: it goes into a node with at a number of tokens (in the middle) greater than

its level. This is a BP that has a greater level than the one of the RE.

• D: it finds CWWT token was stolen in its LSP.

• E: it finishes the pre-calculated portion of ring assigned to it. This pre-calculated

part could be b(n − EDist)/2c after “seeking” procedure, or bsteps/2messagec
(it needs to half the unexplored region message times according to the message

that the partner left to it) after procedure“Checking”. Here UEDist is the

number of nodes left unexplored in each stage.

• F: it finds a token on the left port of a node.

• G: it determines EDist = n− 2.
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Algorithm 9 Algorithm Pair Elimination — Procedure “Left Exploring”
1: procedure Left Exploring(steps, EDist)
2: keep walking to the left using CWWT and increasing BPdist and EDist, decreasing

steps, until A, B, C,D,E or F happens
3: if A happens then
4: pick up the tokens, keep executing Left Exploring(steps, EDist)
5: else if B happens then
6: pick up the tokens then go back to the BP
7: if there are still tokens in your BP then
8: increase the level, then return your LSP and execute Left Exploring(steps,

EDist)
9: else

10: become Passive
11: end if
12: else if C happens then
13: become Passive
14: else if D happens then
15: then execute Checking–Left Pair
16: else if E happens then
17: put a token on the left port, then execute Seeking–Left Pair
18: else if F happens then
19: steal the token on the left port, then execute Right Exploring(steps, BPdist,

EDist)
20: else if G happens then
21: become DONE
22: end if
23: end procedure

Procedure “Checking”

Procedure “Checking” is executed when the CWWT token of a paired agent is stolen.

It can mean either it got eliminated by a higher level pair, or received a Message Notice

from the partner. But it cannot determine which case it is until later. In the first

case, this agent will go back to its BP and realize all the tokens (in the middle)

disappeared. In the second case, the agent will find a token on a port (it is a right

port, if it is a right paired agent executing procedure “Checking”; it is a left port,

otherwise). This token is a Message Sign. Also, this Message Sign could be in its BP.

The agent then calculates the number of nodes to explore in the next stage, using the
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message it just collected. As in previous algorithms, the number of steps between an

explorer’s LSP and the MS is the number of stages the partner finished.

Algorithm 10 Algorithm Pair Elimination — Procedure “Checking”
1: procedure Checking — Right Pair(BPdist,steps)
2: keep going to the left and increase message until either A or B happens
3: if A: there is no token in the middle of the BP then // its BP
4: become Passive // its pair was eliminated by a higher level pair
5: while not B, keep going to the left, keep increasing EDist
6: end if
7: if B: finds a token on the right port then // MS
8: steps=bsteps/2messagec
9: pick up the tokens and walk back to its LSP, execute Right Exploring(steps,

BPdist, EDist)
10: end if
11: end procedure

Procedure “Seeking”

Procedure “Seeking” is used for an explorer to seek its partner. When a paired agent

executes procedure “Seeking”, it means it finished exploring the number of nodes

assigned to it at this stage. The number of nodes an agent needs to explore in the

very first stage is b(n − 1)/2c. Recall, a pair is called a crowned pair and a BP is

called CP as soon as one of the paired agent explored b(n− 1)/2c nodes in the ring.

We observe that when a paired agent executes procedure “Seeking” for the first time

it implies this pair reached crowned level. This agent goes back to its BP to make

it a crowned place. If there is no token in this agent’s BP, it means this pair was

eliminated by another pair earlier.It then becomes Passive immediately. If there are

more than 3 agents in the middle of the node, this left paired agent then picks all

but 2 tokens in order to crown the pair. It then execute procedure “Seeking” to the

right. If there are 3 tokens in the middle of the BP, this means the right paired agent

has not come back from its CWWT walk as a single agent. So, the left paired agent
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does not need to go to leave a message for the partner.

Algorithm 11 Algorithm Pair Elimination — Procedure “Seeking”
1: procedure Seeking — Right Pair(EDist, BPdist)
2: keep walking to the left and increasing EDist until back at the BP
3: if there is no token in its BP then
4: become Passive
5: else if there are more than two tokens in the middle then
6: pick up all but two tokens // crown the pair
7: end if
8: if there are 3 tokens then
9: keep walking to the right until go back to its LSP

10: execute Right Exploring(steps, BPdist, EDist) with b(n − EDist)/2c new
steps.

11: else
12: keep going to the left, keep increasing EDist until there is a token on the left

port // the left pair’s LSP or MS
13: if EDist = n− 2 then
14: becomes DONE
15: else
16: pick up the token, move to the right neighbor, put a token on the left port.
17: keep walking to the right until go back to its LSP
18: execute Right Exploring(steps, BPdist, EDist) with b(n − EDist)/2c

new steps.
19: end if
20: end if
21: end procedure

Analysis to Algorithm Pair Elimination — Correctness

First, observe that pairs will indeed be formed:

Lemma 11 At least one pair is formed.

Proof: There are at least two agents in the ring and the orientation of the ring is

known. Upon the algorithm starts, all the agents go right. Sooner or later, one will

catch up with another, then they form a pair. When there are only two agents a1 and

a2, if a1 dies in the Bh, a2 will eventually see the token a1 left before it died. a2 will
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still form a pair with a1 (assuming a1 is alive) by moving the token into the middle

and adding two more tokens.

2

Lemma 12 Let a1 and a2 be the only 2 agents in the ring. If a1 dies in the Bh before

a1 and a2 forms a pair, a2 can still locate the Bh correctly.

Proof: According to procedure “Form Pair”:

• Before a1 disappeared in the Bh, it left one token (given a1 is a single agent)

on the right port of the node u, which is to the left of the Bh.

• a2 keeps going to the right until it encounters the last token a1 left in u before

it died in the Bh. a2 then moves the token into the middle of u and adds two

more tokens.

According to procedure “Left explorer”:

a2 keeps exploring to the left until it realizes that b(n−1)/2c nodes were explored.

It then execute procedure “Seeking”.

According to procedure “Seeking”, a2 goes back to u to update the level of the

BP of a1 and a2. When a2 sees that there are 3 tokens in the middle of its BP, it

goes back to its LSP instead of keep going right to try to leave a message for a1.

This prevents a2 from dying into the Bh. Once a2 goes back to its LSP, it will start

exploring the ring in a new stage.

The above procedures will be repeated until sooner or later a2 counted the explored

region includes n − 2 links and n − 1 nodes during a “Seeking” procedure. This

terminates the algorithm before a2 dies into the Bh. Hence, even if a1 died in the

Bh before a1 and a2 forms a pair, a2 can still locate the Bh correctly.

2
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Next observe that the number of pairs that reach level i is at most half the number

of pairs that reach level i− 1:

Lemma 13 Let xi denote the number of pairs that reach level i. Then 2xi ≤ xi−1.

Proof: Consider three consecutive level i − 1 pairs: A, B, and C; and assume that

B reaches level i. This can happen only if (see Figure 3.2): the right agent of pair

B or the left agent of pair A have not reached the other pair’s (i − 1) − BP before

the left agent of pair B or the right agent of pair C reached the other (i− 1)− BP ,

then pair C is eliminated by pair B. Otherwise, pair B will be eliminated by pair

A. In general, taking any two neighboring pairs, at most one of them will survive

and reach level i, the other one will be eliminated. Hence, the number of pairs that

reached level i is at most half of the number of pairs that reached level i− 1.

2
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Figure 3.2: The BPs of three consecutive pairs that reached level i− 1

Finally observe that at least one pair survives in each stage:

Lemma 14 Let xi denote the number of pairs that reach level i. Then xi ≥ 1.

Proof: Because of the priority rules (i.e., higher level pairs can eliminate lower

level pairs), the right most pair that reaches level i − 1 will eventually kill its “left

neighboring” level i − 1 pair, and it will not be eliminated. So it will eventually

reaches level i.
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2

By Lemma: 11, 13 and 14, the maximum possible level follows:

Corollary 3 The maximum level reached is log n.

Proof: According to Lemma 13, the number of pairs that reached level i is at most

half of the number of agents that reached level i− 1. Namely, in each level, at most

half of the pairs will reach a higher level. From b(n−1)/2c pairs in level 1 at the very

beginning, when there is only one pair left, the maximum level of the pair is log n.

2

Lemma 15 Eventually at least one and at most two crowned pair(s) will be formed.

Proof:

• If there is only one pair left at level i, then it will be crowned.

• For a pair to become crowned, one of its agents must have explored b(n− 1)/2c
nodes and its BP must have not been reached by another pair.

It is a fact that if a paired agent reaches the BP of another pair, one of the

two pairs will eventually be eliminated according to the elimination technique

explained earlier.

Hence, we define a segment S with more than b(n− 1)/2c+1 nodes in between

the BPs of a i− level− pair (i < log n) and its neighbor pair, a j− level− pair

(j < log n), in order for a paired agent to have a chance to finish exploring

b(n − 1)/2c nodes (in order to be crowned) without reaching the BP of the

other.

Assume that there are two or more such non-overlapping segments S in the

ring, in order to have three or more crowned pairs. It is clear that because
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(b(n − 1)/2c + 1) ∗ 2 ≥ n, the segments must overlap with each other. In this

case, it is not true that there can be two or more such segments in the ring

without overlapping. Hence there is maximum of one such segment contained

in the ring.

For any highest level (log n) pairs (according Corollary 3) that have more than

b(n−1)/2c nodes in between its BP and the neighbor pair’s BP, it has a chance

of having one of the paired agent finish exploring b(n − 1)/2c nodes without

reaching the BP of the other. As we know, if there are two segments with

b(n−1)/2c nodes in each, they will definitely overlap ((b(n−1)/2c+1)∗2 ≥ n).

But this will no longer cause an increase in the level of the pair. In this case,

there are maximum of one such segment between two BP contained in the ring.

This means, there are maximum of two pairs have more than b(n− 1)/2c node

between the two BPs. Hence, there can be at most two crowned pairs. See

Figure 3.3

2

RE of x travelled

x

y

more than (n/2 +1)nodesn/2 nodes
LE of y travelled

n/2 nodes

Figure 3.3: Two crowned pairs.

Theorem 5 Algorithm Pair Elimination correctly locates the Bh in an oriented ring

with n nodes.

Proof: By Lemma 15 there will be either one or two crowned Pairs. If there are

two crowned pairs, since they have the same level, according to the priority rules, the
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left crowned pair will be eliminated by the other; hence within finite time only one

crowned pair (the right one) will remain.

Next, we observe that the rules of algorithm Pair Elimination for a crowned pair

[49] are precisely the ones of algorithm Divide with Token − for a pair of co-located

agents. This observation holds because the BP of the pair can be seen as the shared

HB of that pair. Hence, once a single crowned pair is set, the correctness of the test

of the algorithm is the same as the correctness of algorithm Divide with Tokens −.

2

Analysis to Algorithm Pair Elimination — Complexity

Theorem 6 Algorithm Pair Elimination correctly locates the Bh within Θ(n log n)

moves in a ring with n nodes.

Proof: In its lifetime an agent goes through three phases, if not eliminated during

the execution. It starts as a single agent, then it becomes a paired agent, and finally

it becomes a crowned agent. The number of moves performed by the agents during

the execution of the algorithm can be separated according to these phases:

• By single agents: the worst case is that there is one agent per node except for

the Bh. They all start doing CWWT to the right. Because of the pair forming

procedure, some of the agents’ CWWT may be interrupted. Consequently, for

those, the number of moves before a an agent is paired will be reduced from 3

to 2. But the worst case is still 3 moves per CWWT. So, there are 3(n − 1)

moves in total if there are n− 1 single agents.

• By all paired agents of level i: each paired agent explores the ring using CWWT.

It goes back to the BP to either increase the level of this pair after a left paired
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agent having gone into the BP of another pair that is in the same level, or

check the current level of the pair after a right paired agent having gone into

the BP of another pair that is in the same or higher level. This agent then

either becomes Passive (if a right paired agent realized that its pair’s current

level is still the same or lower than the level of the BP it just visited) or goes

back to its LSP. So the total number of moves with n − 1 i − level paired

agents, is (3+1+1)∗ (n− 1). According to Corollary 3, there are at most log n

levels of each agent. Hence, the total number of moves by all paired agents is

5(n− 1) log n.

• By crowned agents: There are at most two crowned pairs, and the algorithm

has the right crowned pair win over the left crowned pair. The number of

moves required for the right crowned pair to eliminate the left crowned pair

is constant. Eventually there is one crowned pair left, and its agents share

a same crowned place. Consequently, these crowned agents can locate the Bh

according to Algorithm Divide with Token −, and we already know this requires

O(n log n) moves. The lower bound follows from [45].

Hence, the total cost for locating a Bh in an oriented ring with two or more

scattered agents is Θ(n log n) moves.

2

Theorem 7 Algorithm Pair Elimination correctly locates the Bh with two or more

agents, four (4) tokens per agent in a ring with n nodes.

Proof:

• One token is needed to mark the HB.

• One token is needed for CWWT.
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• When forming a pair, for marking a BP, an agent steals one token from its

partner, then puts two more tokens in order to have three tokens in the middle

of their BP. So two more tokens are needed.

• Each pair will not increase its level unless it first eliminates another pair. A

pair that eliminates another, picks up the tokens in the BP of the other pair.

Finally, that pair uses one token to increase its level in its BP. Consequently,

no extra token is required for pair elimination and for increasing the level of a

pair.

• When an agent crowns its BP, it will then need to leave a message for its

partner. Crowning a BP requires only two tokens in the middle of that node

(which necessarily had 3 or more tokens in its middle). Thus the agent gains

one or more tokens. Clearly, one of these tokens can be reused to leave the

message for the partner.

• Finally, as previously explained, leaving and checking a signal requires a token,

but this token is stolen from the partner agent. So such communication does

not require any extra tokens.

• Thus, we can conclude that, in this algorithm, the total number of tokens each

agent needs is 4.

2

Leader Election and Rendezvous Problem

In distributed computing, leader election is one of the most often used solutions to

solve several recurring problems. Whether used as a solution for simplifying many

complex distributed computing problems, or because of the nature of the problem

itself, the idea of selecting a single coordinator from a population of autonomous
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symmetric entities plays a crucial role in distributed computing. The task of selecting

a single coordinator is known as the problem of Leader Election. Formally, the task

consists in moving the system from an initial configuration where all entities are in

the same state (usually called available) into a final configuration, where all entities

are in the same state (traditionally called follower), except one that is in a different

state (traditionally called leader). There is no restriction on the number of entities

that can start the computation, nor on which entity should become leader [100, 102].

The rendezvous search problem for mobile agents is a search optimization problem

based on the following question: How should mobile agents move along the n nodes

of a network in order to minimize the time required to meet or rendezvous? [3, 4, 11,

12, 36, 58, 112]

Theorem 8 Algorithm Pair Elimination solves the problem of electing a Leader (or

Leader Election) among the scattered agents, in spite of the presence of a Bh. This

algorithm also solves, with the same cost, the Rendezvous problem in the ring topology

despite the presence of a Bh.

Proof: From the following two facts:

• Lemma 3.3.3 illustrated that eventually at least one and at most two crowned

pair(s) will be formed.

• The orientation of the ring is known.

We know that eventually there is only one Crowned Place left in the ring.

First, let the right CP be the leader node, and the right paired agent of this

crowned pair be the leader agent. We conclude that a Leader (agent or a node) can

be elected among the scattered agents on an anonymous ring, in spite of the presence

of a Bh.
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Second, once the Bh is located (algorithm Pair Elimination terminated), the right

paired agent of the right crowned pair becomes the leader agent. Let the leader agent

go to collect all the other surviving agents to go to any of the non-Bh nodes as desired.

Hence, algorithm Pair Elimination solves the problem of electing a leader among

the scattered agents, in spite of the presence of a Bh. It also solves with the same

cost the Rendezvous problem despite the presence of a Bh.

2

3.4 Bh Search in an Unoriented Ring by Scattered Agents

3.4.1 Introduction

As discussed in 3.3.1, Bhs is more complicated and demanding using scattered agents

than with co-located agents. The situation becomes even more complicated when the

ring is unoriented, that is, when there is no common sense of direction, no agreement

on what is left and right.

In this section, we first introduce two algorithms that solve Bhs without relying

on CWWT :

• Shadow check without CWWT that requires a minimum of 3 agents (which is

optimal), O(n2) moves and 5 tokens per agent.

• Modified ‘Shadow check without CWWT’ that can locate the Bh with O(n log n)

moves, which is optimal, with only 1 more agent being used than with algorithm

Shadow check without CWWT.

We then briefly sketch out the algorithm Shadow Check, which solves the Bhs prob-

lem with as low as 3 agents, 1 token per agent, and n2 moves in total. (It works in

both oriented and unoriented rings.)
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These three algorithms demonstrate that locating the Black Hole in an anony-

mous ring network using tokens is feasible even if the agents are scattered and the

orientation of the ring is unknown. In turn, this leads us to conclude that, for Bhs

in a ring, the token model offers solutions that are as efficient as those developed for

the whiteboard model, even if both agents and nodes are anonymous.

Also, we observe that:

• It is possible to solve Bhs with scattered agents in an unoriented ring even

without imposing the FIFO requirement and without using CWWT.

• Ultimately, when choosing a solution to Bhs, one has a choice between different

members of a family of algorithms, each member ideally optimizing one (or

more) performance facets of this problem. For example, algorithm Shadow

check without CWWT optimizes the number of agents, whereas Shadow check

with CWWT optimizes the number of agents and the number of tokens used.

Conversely, Modified Shadow check without CWWT optimizes the number of

moves.

3.4.2 Algorithm Shadow Check without CWWT

Basic Ideas and General Description

We call a node/link explored if it is visited by an agent. As usual, an explored region

consists of contiguous explored nodes and links, and the last node an agent explored

its Last-Safe-Place (LSP for brevity). In the co-located agents case, as soon as the

algorithm starts, an explored region is created. Throughout the execution, there is

one and only one explored region and this region keeps growing larger until includes

n− 2 edges and n− 1 nodes in it. In contrast, in the case of scattered agents, there

are more than one explored regions in the ring. Our goal is to merge all the explored
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regions into one, which eventually includes all the nodes and links with the exception

of the Bh and the two links leading to the Bh. Let us describe how this goal is going

to be achieved.

Upon waking up, an agent becomes a Junior Explorer (JE), exploring the ring

to the right (from the viewpoint of that agent) until it sees another agent5. We say

two agents meet when at least one of the two agents sees the token(s) of the other

agent. When two agents walking in different directions meet, we say they come “face

to face”. When two agents walking in the same directions meet, we say one “catches

up with” the other. When two JE s meet, they both become Senior Explorers (SE),

and start exploring the ring in opposite directions. We call the explored area between

these two SEs a safe region. A SE explores the ring, growing its safe region and

checking after each newly explored node whether the safe region contains n−1 nodes

(i.e., all but the Bh). When two SEs moving in opposite directions meet, their two

safe regions merge into a bigger safe region. The two meeting SEs become checkers

and check the size of the new safe region. There could be more than one such safe

region. When a JE detects a safe region (by encountering a SE), it becomes Passive.

When there is no cycle interruption (see below), each SE repeats the following

cycle: it leaves two tokens on the port (if there is no token on this port) of the

unexplored link on which it is going to move next. Once it reaches the node (if it is

not the Bh), the SE leaves two tokens on the port from which it did not enter that

node. It returns to the previous node, picks up the token(s) on the port it used as

CWWT tokens, then returns to the last explored node.

If, between cycles, an agent notices any unusual event (e.g., token situation change

on certain ports of a node), it stops the cycle and acts according to this interruption.

5More precisely, finds a token of another agent
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Using Tokens for Communication and coordination

• One token on a port means a JE is exploring the link via this port.

• Two tokens on a port means a SE is exploring the link via this port.

• One token on a port and one token in the middle of a node means this is the

node where two agents working in opposite directions meet.

• One token on each port of a node means this is a node where one agent catches

up with another agent working in the same direction.

We are going to explain the details of the algorithm in the next sub-sections.

In order to make the algorithm simpler to understand, we describe the procedure

“Junior/Senior Explorer” from the viewpoint of the agents that agree on the same

“right” direction. The procedure for all the agents that agree on the same “left”

direction can be achieved by changing the words “right” into “left”, and “left” into

“right”.

Procedure “Initialization” and “Junior Explorer”

A JE will eventually either end up in the Bh or become a Checker upon meet ing

a SE or a potential SE, or become a SE upon meet ing another JE. A potential SE

refers to the status of a JE after it either met another JE in the same direction or a

different direction, but before it becomes a SE.

Once an agent wakes up, it becomes an JE that will immediately go to the next

node to its right after putting a token on the right port. There are 6 possible situations

a JE may encounter upon arriving at its right neighbor node u. Now we can look at

the details (expressed with respect the agent at hand) of each case:

• Case 1

The JE, we call it a1, puts 1 token in the middle of node u, then goes back to
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the left node. If a SE caught up with a1, then a1 becomes a Checker to its left.

If the agent it just met, let’s call it a2, in the opposite direction, also left a1 a

sign (i.e., a token in the middle of u), then a1 will become a SE to the left. If

another JE a3 catches up with a1, a1 will pick up all the tokens in the current

node, then become a Checker to the right.

• Case 2

The JE a1 goes back to the left node. If another JE catches up to a1, then

a1 will become a checker to its right. If a1 notices that the SE it just met in

the opposite direction left a1 a sign (i.e.,a token in the middle), then a1 will

immediately become Passive. If a JE met with a1 “face to face” and left a1 a

sign before a SE caught up to that JE, then a1 will become a SE to the left.

• Case 3

The agent a1 puts one token on the left port, then goes back to its left node.

If a1’s token is still there, it will move this token to the left port, add one more

token on the left port, and then become a SE to its left. If either a1 sees the

sign a SE walking to its left direction left to it, or another JE caught up to a1,

it will become Passive immediately.

• Case 4

The agent a1 goes back to its left node. If a1’s token is still there, then it will

pick the token then become Passive. If a SE caught up to a1, then it will become

Passive. If another JE caught up to a1, it will pick up the tokens, then become

a Checker to the right.

• Case 5

The agent a1 returns to the left node. If a SE caught up to a1, then it become

Passive. If another JE caught up TO a1, it will become a checker to the right.

If it notices that the JE it just met left it a sign (i.e., a token in the middle),
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then it will move its 2 tokens to the left port and become a SE to the left.

• Case 6

The agent a1 puts a token on the right port of n then goes back to the left node.

If a1’s token is still there, then a1 will pick the token and continue as a JE. If a

SE caught up to it, then it will become Passive. If another JE caught up to a1,

then it will become a SE to the right.

Procedure Checker

A checker is created when an agent realizes it is in the middle of two SEs exploring

in different directions. The purpose of the checker is to check the distance between

the two SEs. A checker keeps walking to the right until it either sees the token of a

SE going to its right, or a token with one token on each port. If the distance is n− 2,

that means that there are two agents that died in the Bh, and the only node left is

the Bh. Otherwise, it keeps walking to its left until it either sees the token of a SE

going to the right, or a token with one token on each port. If now the distance is

n− 2, then it will become DONE (the Bh is located). Otherwise it becomes Passive

immediately.

Procedure Senior Explorer

A senior explorer s11 will eventually either end up in the Bh or locate the Bh, or

become a Checker upon meet ing another SE or a potential SE. SE s1 is taken to walk

to its right node. If it meets another SE in the different direction, that is, if they

come “face to face”, s1 will pick up all the tokens in the current node and become a

Checker to the right. If s1 realizes it is the node where two JEs working in different

directions met, it will then become a Checker to the right. If s1 realizes this node

is where two JEs working in the same direction met, it will then go back to the left
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port, pick up all the tokens and become a Checker. If it meets a JE going to the left,

then it will pick the token on the left port, put two tokens on the right port, go back

to the left node and pick up the two tokens on the right port. Then s1 will execute

the check phase to the left. If it meets a JE going to the right, then it will put one

more token on the right port, go back to the left node, pick up the two tokens on the

right port, then execute the check phase to the left. If the node is empty, s1 will then

put two tokens on the right port, go back to the left node, pick up the two tokens on

the right port, then execute the check phase to the left.

Once a SE is in the check phase, it walks to the left until it either sees the token

of a SE going to the right, or a node with one token on each port. If there are n− 2

links in the safe region, then it will become DONE. Otherwise this SE goes back to

its LSP. If there is no token on the right port of its LSP, it then will become Passive.

Pseudo Code

A JE will eventually either end up in the Bh or become a Checker upon meet ing a

SE or a potential SE, or become a SE upon meet ing another JE. The pseudo code of

procedure “Initialization” and “Junior Explorer” are in Algorithm 12, 13, 14, 15.

A checker is created when an agent realizes it is in the middle of two SEs exploring

in different directions. The purpose of the checker is to check the distance between

the two SEs. If the distance is n− 2, that means that two agents died in the Bh, and

the only node left is the Bh. Otherwise, this checker becomes Passive. The pseudo

code of procedure “Checker” is in Algorithm 16
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Algorithm 12 Algorithm Shadow Check without CWWT — Procedure “Initializa-
tion” and “Junior Explorer”
1: procedure Initialization
2: wakes up and puts a token on the right port then execute Junior Explorer(right)
3: end procedure
4: procedure Junior Explorer(right)
5: loop
6: walk to the right node
7: if there is 1 token on the left port then
8: execute Case 1
9: else if there are 2 tokens on the left port then

10: execute Case 2
11: else if there is 1 token on the right port then
12: execute Case 3
13: else if there is 1 token in the middle and 1 on the right port then
14: execute Case 4
15: else if there is nothing in the node then
16: execute Case 5
17: else if there is 1 token on each port then
18: execute Case 6
19: end if
20: end loop
21: end procedure



83

Algorithm 13 Algorithm Shadow Check without CWWT — Procedure “Junior
Explorer” — Cases 1 and 2
1: procedure Case 1
2: put 1 token in the middle of the node, go back to the left node
3: if there are 2 tokens on the right port then
4: execute Checker(left)
5: else if there is 1 token on the right port and 1 token in the middle then
6: execute Senior Explorer(left)
7: else if there is 1 token on each port then
8: pick up all the tokens, execute Checker(right)
9: end if

10: end procedure
11: procedure Case 2
12: go back to the left node
13: if there is 1 token on each port then
14: execute Checker(right)
15: else if there are 2 token on the left port then
16: become Passive
17: else if there is 1 token on the right port and 1 in the middle then
18: execute Senior Explorer(left)
19: end if
20: end procedure

Algorithm 14 Algorithm Shadow Check without CWWT — Procedure “Junior
Explorer” — Cases 3 and 4
1: procedure Case 3
2: put 1 token on the left port, go back to the left node
3: if there is only 1 token on the right port then
4: move this token to the left port, add one more token on the left port,
5: execute Senior Explorer(left)
6: else if there are 2 tokens on the right port or 1 token on each port then
7: become Passive
8: end if
9: end procedure

10: procedure Case 4
11: go back to the left node
12: if there is 1 token on the right port then
13: pick the token then become Passive
14: else if there are 2 token on the right port then
15: become Passive
16: else if there is 1 token on each port then
17: pick up the tokens, execute Checker(right)
18: end if
19: end procedure
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Algorithm 15 Algorithm Shadow Check without CWWT — Procedure “Junior
Explorer” — Cases 5 and 6
1: procedure Case 5
2: return to the left node
3: if there are 2 tokens on the right port then
4: become Passive
5: else if there is 1 token on each port then
6: execute Checker(right)
7: else if there is 1 token on right port and in the middle then
8: move the 2 tokens to the left port, execute Senior Explorer(left)
9: end if

10: end procedure
11: procedure Case 6
12: put a token on the right port, go back to the left node
13: if there is 1 token on the right port then
14: pick the token and execute Junior Explorer(right)
15: else if there are 2 tokens on the right port then
16: becomes Passive
17: else if there are 1 token on each port then
18: execute Senior Explorer(right)
19: end if
20: end procedure

Algorithm 16 Algorithm Shadow Check without CWWT — Procedure “Checker”
1: procedure Checker
2: repeat
3: walk to the right
4: until meet a node with either 2 tokens on the right port or 1 token on each port
5: dist = 0
6: repeat
7: walk to the left increasing dist
8: until there are 2 tokens on the left port or 1 token on each port of a node
9: if dist = n− 2 then

10: become DONE
11: else
12: become Passive
13: end if
14: end procedure

The pseudo code of procedure “Senior Explorer” is in Algorithm 17.
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Algorithm 17 Algorithm Shadow Check without CWWT — Procedure “Senior
Explorer” — right agents
1: procedure Senior explorer(right)
2: loop
3: walk to the right node
4: if there are 2 tokens on the left port then // face to face to a SE
5: pick up all the tokens, execute Checker(right)
6: else if there is 1 token in the middle of the node and 1 token on the right port

then
7: execute Checker(right)
8: else if there is 1 token on each port then
9: go back to the left port, pick up all the tokens, execute Checker(right)

10: else if there is 1 token on the left port then
11: put 2 tokens on the right port, pick up the token on the left port
12: go back to the left node, pick up the two tokens on the right port
13: else if there is 1 token on the right port then
14: put 1 more token on the right port, go back to the left node; pick up the 2

tokens on the right port
15: else
16: put 2 tokens on the right port, go back to the left node; pick up the 2 tokens

on the right port
17: end if
18: Walk to the left until found a node with 2 tokens on the left port or 1 token on

each port, increasing dist
19: if dist = n− 2 then
20: become DONE
21: else
22: Return dist steps to the right
23: if there is no token on the right port of the node then
24: become Passive
25: end if
26: end if
27: end loop
28: end procedure
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Analysis of Algorithm Shadow Check without CWWT

According to Lemma 1, we assume there are at least three agents in the ring network.

Because of the way an SE is defined, we remark that:

Lemma 16 There is at least one SE.

Proof: Given there are at least three agents in the ring, there will be at least two JEs

exploring the ring in the same direction. Sooner or later, the third JE will meet one

of the other JE. Hence, in such case, at least two SE will be created. But consider

the situation in which only three agents wake up during the entire execution, and

two agents die in the Bh as JEs. In this case, the third agent sooner or later sees the

token that a JE left before it went into the Bh. The third JE then becomes a SE

and starts exploring in the other direction. Eventually, it will reach the token that

the other dead JE left. Given the two JE both died in the Bh, the distance (on the

explored segment) between the two tokens is n− 2. So the sole SE will be able to tell

the location of the Bh correctly.

2

Corollary 4 At most two agents enter the Bh.

Proof: Before any explorer e (JE or SE) explores a new node, it leaves one or two

tokens in the current node n as markers. Because of such marking, no other agent

(a JE, a SE or a Checker) will go beyond node n. Also, if e successfully explores an

unexplored node, then it goes back to node n (as in CWWT ). If n is the same as

when e left, e will then pick up the marking token(s) and continue exploring the next

node along the ring. This mechanism ensures that there is no more than one agent

that explores a node via the same link. Given there are only two links adjacent to

each node, there are two links leading to the Bh. Hence there is at most one agent
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that enters the Bh from either link connected to the Bh. Thus, at most two agents

enter the Bh.

2

Lemma 17 Two agents that meet in opposite directions will never pass without

noticing each other, if there is no interruption from other agents.

Proof: This is trivial to prove when two agents are in the neighboring nodes, because

as soon as one agent arrives in the other node, it will notice the token(s) on the

port. Instead, we are going to prove with one node between the agents and two nodes

between the agents. When there are two nodes between the two agents, assume that

the two agents has the same speed. Sooner or later, each agent will advance one

node. Hence, two agents will end up in two neighboring nodes and become the same

as when two agents start from two neighboring nodes. If, on the other hand, one agent

is faster than the other one, once this agent advanced one node before the other agent,

the situation will become the same as when two agents have only one node between

them. Consequently the only situation we need to address is when there is one node

between two agents (each in a distinct node). In this case, the faster agent (let us

say it is the agent going to the left) will leave one token on the left port if it is a JE,

leave two tokens on the left port if it is a SE, upon seeing no token in the node. Then

the agent will go back to the right node, pick up its token(s), then go back to the

left node. At this point, we are back to our trivial case of two agents in neighboring

nodes.

2

Lemma 18 A safe region can be created.

Proof: Lemma 16 shows there is at least one SE during the execution. According to

the definition of a SE, when two JE meets (that is, one JE sees the token of the other
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JE) they will create two SEs. The two created SEs will explore the ring in opposite

directions starting from the same node. Hence one segment of explored node(s) is

created. If only three agents wake up during the entire execution, two JEs will die in

the Bh before meeting any other agent (see Lemma 1). The third JE will sooner or

later meet a token that a JE left before dying in the Bh. A segment of safe region is

also created between the third JE and the token of another JE.

2

Lemma 19 The length of a safe region keeps increasing until contains n− 2 links or

n− 1 nodes.

Proof: If there are at least two SEs in the network, the two SEs at each end of the

safe region keep advancing. Each of them does not stop until it meets another SE or

dies in the Bh or finds out that the length of its safe region includes n − 2 links or

n− 1 nodes during checking phase.

When a SE meets another SE, according to the algorithm, both of them become

checkers. Hence, the two safe region merge.

Otherwise, when a SE meets a JE, the JE picks its token if the SE has not picked

it up, then becomes Passive immediately. The SE will keep exploring after it picks

up the token of the JE.

When one SE dies in the Bh, the other will keep exploring the ring until it figures

out the length of the segment is n − 2 during its own checking steps. In either case

the length of the segment still keeps increasing until it reaches length n− 2.

2

Lemma 20 The safe region length is checked after each growth.

Proof: Since a safe region is between two SEs, each SE traverse its safe region after

exploring one more node until it reaches the other SE. Hence a safe region is checked
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after each growth by design of the algorithm.

2

Lemma 21 A safe region will eventually contain n− 2 links and n− 1 nodes in it.

Proof: Each SE goes to check the location of the partner SE after exploring one more

node in each stage. Once the distance between the two LSP is n− 2, an agent stops

exploring. This strategy guarantees that if there are only two SE left, they will not

both die in the Bh. If one of these two SEs dies in the Bh, the surviving agent will

sooner or later advance to the node next to the Bh, then while seek its partner. It

will then notice the distance between the two LSP is n− 2 and will locate the Bh as

the only node left between the two unexplored links.

2

Theorem 9 Algorithm Shadow Check without CWWT correctly locates the Bh in

a ring with 3 or more scattered agents, each having 5 tokens. The total cost is O(n2)

moves.

Proof: Consider there are i safe regions in the ring. An agent traverses a safe region

each time it explores one more node. Given a maximum of n − 2 moves (tokens or

nodes) per agent to traverse such a safe region, and 2 agents per region, a maximum

of 2(n − 2) moves are required to traverse a safe region. There are at most n nodes

in the ring, thus there are at most n − 1 such traversals of safe regions. Hence, a

maximum (n− 1) ∗ 2(n− 2) moves (O(n2)) is taken for traversing safe regions.

In procedure “Checker”, the maximum number of each check is 2(n − 2) since

each checker only traverses a safe region twice during its lifetime (because it becomes

Passive after.). A checker is formed once two SEs or one JE and one SE meet

“face to face”. Hence, there are no more than n/2 such checkers during the entire
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algorithm. Thus, the total number of moves in procedure “Checker” is no more than

2(n− 2) ∗ n/2 = n(n− 1). Hence, the total cost is O(n2) moves.

A JE uses one token on the port to mark its progress. Once a JE meets another

JE, one extra token is used to mark the node in which two JEs meet and form a pair

of SEs. This token will stay in the node until the algorithm terminates. A SE puts

two tokens on a port as soon as it starts existing. It puts another two tokens on the

port of the next node to mark the progress of the exploration process. The first two

tokens are picked up and reused as soon as the second pair of tokens is put. Hence,

a maximum of 1 + 2 + 2 = 5 tokens are used by each agent.

2

3.4.3 Algorithm Modified Shadow Check without CWWT

Motivation

In the previous section, we presented algorithm Shadow Check without CWWT,

which handles Bhs in an unoriented ring with minimum of 3 scattered agents and

5 tokens per agents. According to Theorem 9, an agent on one of the i safe regions

traverses this safe region in order to check the size of the safe region every time it

finishes exploring one more node. This design stems from wanting a team of minimal

size and consequently, having, by design, only one checker. So the explorers have to

both explore the ring and check the size of their safe region. This costS O(n2) moves

in the worst case.

We now consider the impact of adding a second checker. The modified algorithm

Shadow Check without CWWT is designed so that:

• it works for a minimum of 4 scattered agents instead of 3

• eventually 2 checkers are formed and this allows the number of moves required
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to be reduced to Θ(n log n).

Modification

We can obtain algorithm Modified Shadow Check without CWWT from the following

modifications to Algorithm Shadow Check without CWWT:

• change all actions “become Passive” of a JE in procedure “Junior Explorer”

to “become a SE in the same direction reusing the two tokens of the SE that

caught up”, whenever a SE caught up to this JE.

• delete the check phase in procedure “Senior Explorer”. Instead, as soon as a

SE catches up with a JE, it will becomes a Checker working in the opposite

direction.

• the procedure “Checker” in Subsection 3.4.2 is modified as follows:

A checker is created when that agent realizes it is in the middle of two SEs

exploring in different directions. Once an agent becomes a checker, it checks

the size (i.e., number of nodes) of the safe region. If this size is i, then the

Checker follows the SE for b(n − i)/2c moves. We call this a check. A checker

keeps check ing, until the size of the safe region is n− 1. Then it concludes the

only node left is the Bh.

The pseudo code of procedure “Checker” follows:
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Algorithm 18 Algorithm Modified Shadow Check without CWWT — Procedure
“Checker”
1: procedure Checker
2: loop
3: dist = 0
4: repeat
5: keep walking to the right and increase dist
6: until there are 2 tokens on the left port or 1 token on each port of a node or

dist = n− 2
7: if dist = 0 then
8: become DONE
9: else

10: dist = 0
11: repeat
12: walk to the left and increase dist
13: until there are 2 tokens on the left port or 1 token on each port of a node
14: if dist = n− 2 then
15: become DONE
16: else
17: follow the SE for b(n− dist)/2c nodes
18: end if
19: end if
20: end loop
21: end procedure

Correctness and complexity

Given there are at least 4 agents in the ring and given Lemma 16, we know:

Corollary 5 There are at least two SEs formed in algorithm Modified Shadow Check

without CWWT.

Lemma 22 There are at least two checkers.

Proof: Assume there are only 4 agents in the ring and all the agents are still JEs

even after two of them died in the Bh. The remaining JEs will either meet each

other and then become two SEs or eventually see the token of a JE that died in the

Bh. In the first case, the two SEs will then explore the ring in opposite directions.

Eventually each of them will see the token of a JE that died in the Bh, then the SE
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will become a Checker. Hence there are 2 Checkers eventually created. In the second

case, there would be two pairs of SEs formed if the two JEs did not go into the Bh.

This is proved in Corollary 5. The two surviving SEs will then explore the ring in

the opposite directions. Eventually they will meet and form two Checkers. The same

holds if there are more than 4 agents. Hence, there are at least two checkers when

there are 4 agents or more.

2

Theorem 10 Algorithm Modified Shadow Check without CWWT correctly locates

the Bh with a minimum of 4 scattered agents, each using 5 tokens in a un-oriented

ring topology with n nodes. The total cost is Θ(n log n) moves.

Proof: According to Corollary 5, 4 and Lemma 22, eventually there will be 2 checkers

formed/left that keep checking the size of safe regions until the only safe region in

the ring contains n− 1 nodes or n− 2 links. Hence the Bh is correctly located.

Assume there are i safe regions in the ring. A SE keeps exploring nodes along the

ring in one direction. Each SE thus traverses a maximum of n nodes. In procedure

“Checker”, the maximum number of moves for a single check is 2n (given 2 SEs).

There are no more than log n checks, given the procedure does not proceed with the

next check until a checker follows a SE for b(n − i)/2c steps. So the total number

of moves in procedure “Checker” is no more than 2n log n. Hence, the total cost is

O(n log n) moves. The lower bound follows from the whiteboard model presented in

[45]. Hence, the total cost of moves is Θ(n log n).

Finally, because the modification does not affect the number of tokens used by

each agent, by Theorem 9, 5 tokens per agent are used.

2
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3.4.4 Algorithm Shadow Check

Basic Idea and General Description

To conclude, let us briefly sketch out algorithm Shadow Check, which uses O(n2)

moves with only one (1) token per agent and a minimum of 3 agents using CWWT

to locate the Bh. It can be seen as a slight variation of Algorithm Shadow Check

without CWWT. The only difference is that, using of CWWT, exploration can be

handled using a single token. The algorithm can be summarized in the following

Figure 3.4.

Fast Forward

Start

   (Initialization) Junior Explorer Senior Explorer
Junior 

Shadower Senior Shadower

Promote Promote Promote Passive

  ( BHLlcation)
End

Fast Forward

Figure 3.4: Flow Chart for Algorithm Shadow Check

For completeness, we now include a description of the procedures of this algorithm.

Initialization

The procedure “Initialization” works as follows.

Algorithm 19 Algorithm Shadow Check — Procedure “Initialization”
1: procedure Initialization
2: dist = 0
3: wake up and execute Junior explorer(dist) to the right
4: end procedure

Procedure Junior Explorer

Junior explorer (JE) goes to its right with CWWT, until either it dies in the Bh

or meets another explorer. If a JE meets a senior explorer (SE), then it becomes a
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checker, otherwise becomes a SE upon meeting another JE.

Algorithm 20 Algorithm Shadow Check — Procedure “Junior Explorer”
1: procedure Junior Explorer(dist)
2: keep exploring the ring to the right with CWWT (one token on the port), dist + +,

until A, B, C or D happens
3: if A: detect a token on a port then
4: moves the token to the middle of the node, dist = 0
5: execute Senior Explorer(dist) in the direction that had no token on its port
6: else if B: the CWWT token was moved to the middle of the node then
7: picks up the token, dist = 0 execute Senior Explorer(dist) in the same direc-

tion of exploration
8: else if C: detects a token in the middle of the node then
9: dist = 0, flag = 0, execute Check in the same direction of exploration

10: else if D: dist = n− 2 then
11: becomes DONE
12: end if
13: end procedure

Procedure Senior Explorer

A senior explorer will eventually either end up in the Bh or locate the Bh. The

important issue is that a SE puts or removes one token in the middle of nodes while

doing CWWT.
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Algorithm 21 Algorithm Shadow Check — Procedure “Senior Explorer”
1: procedure Senior explorer(dist)
2: explores the ring with CWWT (one token in the middle of the ring) for one step
3: if A: detects a token on the exiting port then
4: moves the token to the middle of the node, dist = 0, flag = 0
5: execute Check in the opposite direction of exploration
6: else if B: detects a token in the middle of the destination node then
7: dist = 0, flag = 0, execute Check in the same direction of exploration
8: else
9: leaves a token in the middle of the node

10: continues exploration in the opposite direction, dist + +, until detects another
token in the middle of a node

11: if dist = n− 2 then
12: becomes DONE
13: else
14: continues exploration in the opposite direction and dist−− until its LSP
15: dist = 0, execute Senior Explorer(dist) to the forward direction
16: end if
17: end if
18: end procedure

Procedure Check

Algorithm 22 Algorithm Shadow Check — Procedure “Check”
1: procedure Check(flag, dist)
2: keeps walking and dist + + until A or B happens
3: if A: dist = n− 2 then
4: becomes DONE
5: else if B: sees a token in the middle of a node then
6: if flag = 0 then
7: flag = 1, dist = 0 executes Check in the opposite direction
8: else
9: becomes Passive

10: end if
11: end if
12: end procedure

Analysis of Algorithm Shadow Check

According to Lemma 1, we assume there are at least three agents in the ring network.

Because of the way the SE is defined, it is very clear:
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Lemma 23 There is at least one SE.

Proof: There are two cases:

• Only three agents wake up during the execution, two agents die in the Bh as

JEs. In this case, the third agent will sooner or later reach the LSP of a died

agent, then become a SE and start exploring in the opposite direction. Sooner

or later it will reach the LSP of the agent. Given the two JEs both died in the

Bh, the distance (of the explored segment) between the two LSP is n − 2. So

this sole SE will locate the Bh correctly.

• Given there are at least three agents, and given a maximum of two agents can

die in the Bh (since their CWWT tokens will prevent others from using the

dangerous links), and given we are not dealing with the previous case, then two

agents will meet sooner or later, according to the definition of SE, and there

will be at least two SEs. Hence, there is at least one SE.

2

Lemma 24 An SE will locate the Bh correctly if there is only one SE during the

execution.

Proof: See Case 1 in Lemma 23.

2

Lemma 25 Let S(t) denote a two-ends-increasing segment, when t (t ≥ 0) denotes

time. If | S(t) |< n− 2 then ∃t′ (t′ > t), | S(t′) |>| S(t) |.

Proof: Assume there are at least two SEs in the network. The two explorers at

each end of a S(t) keep advancing. Each of them does not stop exploring until it

meets another SE or JE. When a SE meets another SE that is at the end of a S(t)′,
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according to the algorithm, both of them become checkers. In this case, after a

finite time, the two segments will merge into one: | S(t′) |=| S(t) | + | S(t)′ |.
∵| S(t) |<| S(t) | + | S(t)′ |, ∴| S(t′) |>| S(t) |. Otherwise, when a SE meets a

JE, the JE becomes the SE and continues exploring while the SE becomes a checker.

Hence, | S(t′) |>| S(t) | still.

2

Lemma 26 A two-ends-increasing segment will eventually contain n − 2 links and

n− 1 nodes in it.

Proof: Since each SE goes to check the location of the partner after exploring one

more node in each stage, and as soon as the distance between the two LSPs is n− 2,

an agent stops exploring. In this way, it is guaranteed that if there are only two SEs

left, they will not both die in the Bh. Once one of these SEs dies in the Bh, the

surviving agent will sooner or later advance to the node next to the Bh, then while

seeking its partner, it will notice the distance between the two LSPs is n− 2 and will

locate the Bh as the only node left between the two unexplored links.

2

Corollary 6 At most two agents enters the Bh.

Proof: Due to CWWT, at most one agent enters the Bh from any link connected to

the Bh. Given there are only two links that lead to the Bh in ring topology, there

are at most two agents that can enter the Bh.

2

Theorem 11 Algorithm Shadow Check correctly locates the Bh with at least 3 scat-

tered agents, each having 1 token in an un-oriented ring. The total cost is O(n2)

moves.
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Proof: Consider there are i two-end-increasing segments in the ring. Each time an

agent makes one more exploration, it traverses the segment back to the partner’s LSP

and then back to its own LSP. This requires at most 2(n− 2) moves (since there are

n − 1 non-Bh nodes and n − 2 links that do not lead to the Bh). And there are at

most n−1 such traversals (since, again, there are n−1 non-BH nodes to explore). In

procedure “Check”, there are no more than n − 1 such checks. So the total number

of moves in procedure “Check” is no more than (n− 1)(n− 2). Hence, the total cost

is O(n2) moves.

2

3.5 Bhs in an Anonymous Ring: Summary

In this chapter we studied Bhs with tokens in the ring topology using both co-located

agents and scattered agents.

For the co-located agents case, we first prove that a team of two agents is sufficient

to locate the Bh in finite time even in this coordination model, which is weaker than

the whiteboard model. Furthermore, we prove that this can be accomplished using

only O(n log n) moves in total, which is optimal, the same as with whiteboards.

Finally, we show that the agents need to use only O(1) tokens. These results are

established constructively: we do present algorithms that allow a team of two agents

to correctly locate the Bh with that number of moves and with those few tokens. The

protocol “Divide with Token +” uses a total of 10 tokens, while in algorithm Divide

with Token −, the number of tokens used is reduced to 3.

Hence we show that, although tokens are a simpler means of communication and

coordination than whiteboards, their use does not negatively affect solvability and it

does not even lead to a degradation of performance. On the contrary, whereas the

protocols using whiteboards assume at least O(log n) dedicated bits of storage at each
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node [45], the ones proposed here use only three tokens in total. See Table 3.1.

The case of Co-located Agents
Divide with Token Divide with Token + Divide with Token −

Orientation No No No
FIFO Yes Yes Yes
uses CWWT Yes Yes Yes
Knows k No No No
Team Size 2 or more 2 or more 2 or more
Token Cost log n 5/agent 3 when k = 2 or

2/agent if k > 2
Move Cost Θ(n log n) Θ(n log n) Θ(n log n)

Table 3.1: Summary of Bhs in an Anonymous Ring with Co-located Agents

In the scattered agents case we investigate solutions for oriented and unoriented

anonymous ring. We presented five different algorithms using scattered mobile agents

to locate the Bh in an anonymous ring topology. The summary is shown in Table

3.2.

When the orientation of the ring is available, we propose two Algorithms: Gather

Divide, and Pair Elimination. We show that using algorithm Gather Divide, a mini-

mum of 2 agents can locate the Bh within O(kn + n log n) moves using only 1 token

per agent. Then we prove that algorithm Pair Elimination can locate a Bh in an

anonymous ring by anonymous asynchronous and scattered agents, using O(n log n)

moves in total and four (4) tokens per agent without any knowledge of the team size.

It is important to note that the proposed algorithm also solves (see Subsubsec-

tion 3.3.3), with the same cost, the problem of Leader Electing among the scattered

agents, in spite of the presence of a Bh. It also solves with the same cost the Ren-

dezvous problem despite the presence of a Bh, extending to tokens the results with

whiteboards of [43].

Later we prove that locating the Bh in an anonymous ring network using tokens
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is feasible even if the agents are scattered and without a sense of direction. Thus,

we prove that, for Bhs, the token model is as powerful as the whiteboard model

regardless of the initial position of the agents and orientation of the ring.

We prove that in an unoriented ring, a team of three or more scattered agents

can locate the Bh within n2 moves, each agent using O(1) tokens without knowing

the number of the agents k. Interestingly, we can reduce the number of moves to

O(n log n), which is optimal, with a minimum of 4 scattered agents using O(1) tokens

per agent. These results hold even if both agents and nodes are anonymous.

Ring
The Case of Scattered Agents

Gather Pair Shadow Shadow Modified
Check Shadow

Check
without without

Divide Elimination Check CWWT CWWT

Orientation Yes Yes No No No
FIFO Yes Yes Yes No No
uses CWWT Yes Yes Yes No No
Knowledge of k Yes No No No No
Team Size 2 + 2 + 3 + 3 + 4 +
Token Cost 1/agent 4/agent 1/agent 5/agent 5/agent
Move Cost O(kn + n log n) Θ(n log n) O(n2) O(n2) Θ(n log n)

Table 3.2: Summary of Bhs in an Anonymous Ring with Scattered Agents

In conclusion, we know Bhs depends on three “performance impact factors”,

namely: the minimum number of agents, the presence or absence of a sense of direction

in the ring, and the number of tokens used. We observe that there is a tradeoff

between the team size (i.e., number of agents) and the number of moves required by

an algorithm. Given all the proposed algorithms require only a constant number of

tokens per agent, we are unable to simulate the distance identity presented in [45].

Distance identity is crucial in order to achieve Θ(n log n) moves with optimal team
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size (3 agents) in the whiteboard model [45]. From the result we get in the token

model, we conclude: with one more agent, the token model is as powerful as the

whiteboard with respect to locating the Bh in an unoriented ring. But with respect

to memory requirements, our algorithms represent a considerable improvement on

the whiteboard model.



Chapter 4

Black Hole Search in Hypercubes

4.1 Topological Characteristics

4.1.1 The Hypercube and Its Labeling

The hypercube is a generalization of a 3-cube to d dimensions, for any integer d > 0,

also called a d-cube or measure polytope [110], see Figure 4.1.

If there are n nodes and they are numbered from 0 to (n−1) in such a way that the

addresses of the connected nodes differ by exactly 1 bit in their binary representation

as illustrated in Figure 4.2, then such a labeled hypercube exhibits some desirable

properties. For example, the labeled hypercube is useful in routing.

d= 3d= 0 d= 1 d=2

Figure 4.1: Hypercube Interconnection Strategy.
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7 = 111

20

1

4

5

3

6

7

0  = 000             4 =100              3 = 011

2 = 010         

1 = 001              5 = 101                          

3 = 011              7 = 111 (one bit difference)
6 = 110 

1 = 001

2 = 010

Figure 4.2: Hypercube Processor Numbering Scheme

The routing in the cube is reduced to finding any direct neighbor that reduces

the number of bit differences between the address of the recipient and the address

of the messenger. In Figure 4.2 for example, to route a message from node 0 (000

in binary) to node 7(111), the path through node 4(100) and 6(110) can be used

since at each processor along the path the bit differences with 7 are reduced by one.

This routing methodology is very efficient since it is “local” and “memoryless”, that

is, it requires neither network access nor internal database lookup. Furthermore,

randomly selecting a neighbor on a path toward a destination eliminates bottlenecks

by distributing the routing on all possible candidates. This numbering scheme has

another advantage:

From studying the characteristics of the hypercube topology we know it is possible

to induce a sub-tree in the hypercube according to the following simple formula:

the “parent” of a processor is its direct neighbor with the lowest address. This is

illustrated for an 8-node hypercube in Figure 4.3 where the original hypercube is

shown on the left and its sub-tree is shown on the right.
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43

Figure 4.3: Sub-tree in a Hypercube of 8 Nodes

The “depth” of a processor in the tree is the number of non-zero bits in its address

in binary representation. The “latency” between two nodes in the tree is log n, where

n is the number of nodes. For example in Figure 4.3, node 7 has three non-zero bits in

its binary address (111) and is three “hops” away from the root node, node 0. Since

the path from 0 to 7 is the longest, the latency is three. The sub-tree is useful for

certain kinds of inter-processor communication, such as broadcasting (or flooding) a

message to all nodes in the network topology. Since its latency is so low, the sub-tree

enables such operations to be accomplished relatively rapidly [33].

Two issues draw our attention from the routing and broadcasting problems briefly

described above:

• the labeling of the hypercube;

• the construction of a sub-graph/network.

Let us now introduce a labeling strategy that gives orientation (i.e., sense of

direction) to the hypercube. In the rest of this section, we will then explain what

kind of sub-graph/network we are going to construct in order to solve the Bhs problem

with minimum cost.

Let L denote the Natural edge labeling [84] of a hypercube defined as follows:

• each node is represented by a d-bit binary string.
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• an edge connecting nodes x = x1...xn and y = y1...yn is labeled as i if and only

if xi 6= yi.

4.1.2 Gray Code

A Gray code is an encoding of numbers so that adjacent numbers have a single digit

differing by 1. The term “Gray code” is often used to refer to a “reflected” code, or

more specifically still, to the binary reflected Gray code [17, 67, 71, 83].

The binary-reflected Gray code for n bits can be generated recursively by prefixing

a binary 0 to the Gray code for n-1 bits, then prefixing a binary 1 to the reflected

(i.e. listed in reverse order) Gray code for n-1 bits. The base case, for n=1 bit, is the

most basic Gray code, G = 0, 1. (The base case can also be thought of as a single

zero-bit Gray code (n = 0, G = “”) which is made into a one-bit code by a recursive

process, as demonstrated in the example below).

Here are the first few steps of the above-mentioned reflect-and-prefix method, see

Figure 4.4:

Figure 4.4: The first several steps in constructing a k-bit Gray code

The above paragraph suggests a simple and fast method of translating a binary

value into the corresponding binary reflected Gray code. Each bit is inverted if the
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next higher bit of the input value is set to one. This can be performed in parallel by

a right bit-shift and a exclusive-or operation if they are available.

4.1.3 Hamiltonian Cycle

A Hamiltonian circuit, also called a Hamiltonian cycle, is a graph cycle (i.e., closed

path) through a graph that visits each node exactly once [105]. A Hamiltonian path,

also called a Hamilton path, is a path between two vertices of a graph that visits each

vertex exactly once. A Hamiltonian graph, also called a Hamilton graph, is a graph

that has a Hamiltonian circuit [110].

Well known relations between Hamiltonian circuits and Gray Code in a Hypercube

are the follow:

• All hypercubes are Hamiltonian, and any Hamiltonian circuit of a labeled hy-

percube defines a Gray code [105].

• A Gray code also forms a Hamiltonian cycle on a hypercube, where each bit is

seen as one dimension.

It is obvious that if we have a Gray code labeling in a hypercube, it is trivial to

construct a ring. In turn, since we know how to solve the Bhs problem in a ring, we

would have a solution for the hypercube. However we remark that

• requiring Gray code labeling is a rather specific constraint.

• solving the Bhs problem in a ring topology is rather expensive with respect to

the cost of moves.

So the immediate issues we need to solve are:

• can we eliminate the need for a Gray code?

• can we reduce the number of moves by using the extra connectivity of the

hypercube (compared with the one of a ring).
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4.2 Basic Technique and Observations

As we mentioned in chapter 1, the most important parameters for a Bhs solution

strategy are the number of agents it requires (the team size), the number of tokens

used and the total number of moves. Recall that in [44] it is demonstrated that in

order to locate the Bh without whiteboards, O(∆2M2n7) moves suffice with ∆ + 1

mobile agents and one token per agent. Here, M is the number of edges in the graph, n

is the number of nodes in the graph, ∆ is the maximum number of degree of the graph.

In [48], Bhs by mobile agents is studied in some interconnection networks including

the hypercube topology. In that research, Θ(n) (n is the number of nodes) moves

are required for a team of two co-located agents with the presence of whiteboards

in the hypercube and with the help of a map. In the token model, if we consider

using two tokens per port, we can achieve the same marking (of nodes and links as

safe or dangerous) as when using whiteboards. The tokens will stay for the entire

algorithm execution, once being left in the nodes or ports. In this case, lots of tokens

are used (namely n ∗ (2n)). Whether we can use only O(n) moves (as was achieved in

a hypercube using whiteboards) becomes an open question, which is addressed in the

next section. There, we will not only prove that the Bhs problem can be solved (as

efficiently as with a whiteboard model) using a token model, but also show that such

solution can locate the Bh using a constant number of tokens and minimum team

size, which is an improvement over both [44] and [48].

4.3 Model and Assumptions

We denote a d-hypercube by Qd. Qd is an anonymous d dimensional hypercube with

n = 2d nodes. All the links use natural labeling: There are 2i−1 links labeled as i
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in each dimension, see Figure 4.5 and Figure 4.6. In Figure 4.5: on the left is a 2-

hypercube with Hamiltonian cycle marked in red and two (22−1 = 2) 2-dimension con-

necting links marked with red cross; on the right is a 3-hypercube with Hamiltonian

cycle marked in red and four (23−1 = 4) 3-dimension connecting links marked with

red cross. From Figure 4.7 we can see: a 4-hypercube consists of two 3-hypercubes

(depicted using purple dash lines) with eight (8 = 24−1) links labeled as 4. These

links labeled as 4 are marked with a red cross in the figure. In fact, a well known

property of hypercube is the following:

Property 1 Qd consists of two d−1-hypercubes connected by 2d−1 links labeled as d.

Noticing this interesting property of hypercubes helps us reduce the cost of the

Bhs problem for this topology.

Operating on Qd are k distinct mobile agents a1...ak. In the case of co-located

agents, all the agents start from the same HB. Each agent has available O(1) tokens.

There is no other form of communication between the agents except for the tokens.

Most importantly, unlike for the ring topology described in Chapter 3, we do not

require that all the links and nodes obey the FIFO rule; but like for the ring topology,

CWWT technique is used through out this chapter.
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4.4 Basic Ideas

The cost of the Bhs problem in a ring network is the worst among the Bhs cost in all

the network topologies in whiteboard model. It is not surprising that the ring, as the

sparsest of bi-connected network topologies, has the worst Bhs cost. The key factor

here is the connectivity. It is proved in [46] that edge bi-connectivity is required for

Bhs in asynchronous systems. An Ω(n log n) lower bound is established for the Bhs

problem in an anonymous asynchronous ring (which is the least connected network

topology) in both whiteboard [46] and token models [49]. We also know that if we

want the mobile agents to locate the Bh, it is necessary for the mobile agents to

traverse the whole network [46].

Given the key property of hypercubes mentioned in Property 1, we find a way for

two mobile agents (as we proved earlier, 2 is the minimum team size for Bhs problem)
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to traverse the hypercube with tokens. The basic idea can be carried out using the

following four steps:

• let one agent stay in their common HB, and the other agent move to the other

ring through the connecting link using CWWT.

• have both agents explore their own ring (Hamiltonian Circuit of each (d − 1)-

hypercube) according to the permutation (see below) with CWWT. After an

agent has finished exploring its ring, we call this ring a safe ring. Given the Bh

in the network can only be in one of the two rings, we call the other ring, which

has not finished being exploring, a dangerous ring.

• let the agent that finished exploring the safe ring go to the other ring through

a connecting link. This agent will help the other agent exploring the dangerous

ring. It keeps walking according to the permutation until it sees the marker of

the other agent.

• When an agent notices that one node is marked by a CWWT, which means it

is under exploration by the other agent, that first agent will bypass (see below)

through a safe ring to the next node on the ring being currently explored.

• the agent that explores n− 1 nodes will survive and report the location of the

Bh.

Here we use an important technique we call bypass. This bypass technique will be

used and only be used after one of the two rings in the hypercube is fully explored,

that is, once a safe ring exists. The general description of bypass technique is given

in the following subsection, and the details of procedure “Bypass” will be explained

in subsection 4.5.2.

For now, the immediate detail we need to solve is how do we make the agents

only walk on the Hamiltonian cycle and 2d−1 links labeled as d, in a labeled Qd. The
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following technique makes it possible:

We define a permutation that can construct a unique Hamiltonian cycle when a

starting node is given. Let Pd be a permutation of length n: {p1, p2, ..., pn/2, p1, p2, ..., pn/2}.
The sequence is constructed as follows:

• when d = 2, n = 22 = 4, P2: {1, 2, 1, 2};

• when d = 3, n = 23 = 8, P3: {1, 2, 3, 2, 1, 2, 3, 2};

• when d = 4, n = 24 = 16, P4: {1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2};

• when d = 5, n = 25 = 32, P5:

{1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2};

If we let P ′d denote the sequence from the second digit to the 2d−1th
digit of

Pd, then:

• when d = i− 1, n = 2i−1, Pi−1: {1,P ′i−2, i− 1,P ′i−2, 1,P ′i−2, i− 1,P ′i−2}

• when d = i, n = 2i, Pi: {1,P ′i−1, i,P ′i−1, 1,P ′i−1, i,P ′i−1}

While d increases, each permutation Pd can be constructed by executing the fol-

lowing two steps on permutation Pd−1:

• replace the second occurence of ‘1’ found in the sequence by ‘d’;

• duplicate this modified sequence and append it to its own end (effectively cre-

ating a sequence that consists of the modified sequence followed by itself).

Given all the agents know the size of the hypercube n = 2d, they can all come

up with such a permutation individually. All their permutations will be the same,

because they construct it according the same rules. Each element in the permutation

represents a label of a link. Every such number indicates which link an agent is going

to explore next.
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Theorem 12 Permutation Pd computed by an agent constructs a Hamiltonian cycle

of Qd.

Proof: There is a Hamiltonian cycle in a d dimension hypercube, when d ≥ 2. Hence

we assume we intend to construct a Hamiltonian cycle of a d (d ≥ 2) dimensional

hypercube.

When d = 2, P2: {1, 2, 1, 2}, see Figure 4.8, it is obvious a Hamiltonian cycle is

constructed correctly.

1

 A  B

 C  D

1

2 2

Figure 4.8: A Hamiltonian cycle constructed according to the permutation we proposed in
a 2 dimensional hypercube

Now assume that when d = i, following the order of links indicated in

Pi: {1,P ′i−1, i,P ′i−1, 1,P ′i−1, i,P ′i−1}, a Hamiltonian cycle is constructed correctly.

When d = i + 1, we know there are two i dimensional hypercubes in the i + 1

dimensional hypercube due to the characteristics of the hypercube topology. We also

know each i dimensional hypercube has a Hamiltonian cycle constructed according

to Pi as per our assumption.

As we can see, there are two links labeled 1 in the Hamiltonian cycle constructed

according to Pi. If we call the two rings (i.e., Hamiltonian cycles) that have 2i nodes

R − a and R − b, we can merge R − a and R − b into one ring with 2i+1 nodes by

the following three steps:
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• remove one of the two links labeled 1 in both R− a and R− b.

• link one of the two nodes currently adjacent to only i−1 links in R−a to one of

the two nodes currently adjacent to only i− 1 links in R− b with a link labeled

i + 1 in the i + 1 dimensional hypercube.

• link the unique node currently adjacent to only i−1 links in R−a to the unique

node currently adjacent to only i − 1 links in R− b with another link labeled

i + 1 in the i + 1 dimensional hypercube.

If we call this merged ring R−(i+1), we can observe that this R−(i+1) includes

all the nodes in the i + 1 dimensional hypercube, because it includes all the nodes

of R − a and R − b which, in turn, include all the nodes of two sub-hypercubes of

the i + 1 dimensional hypercube. Hence, when d = i + 1, following the order of links

indicated in Pi+1: Pi+1: {1,P ′i, i + 1,P ′i, 1,P ′i, i + 1,P ′i}, a Hamiltonian cycle can

also be constructed correctly. See Figure 4.9 This concludes the proof of:

Permutation Pd computed by an agent constructs a Hamiltonian cycle of Qd

(n = 2d).

2

k nodes

y

x

1

k nodes

1

1

x

y

x’

y’

k nodes

k nodes

Figure 4.9: Merging Hamiltonian cycles of two i-hypercubes into a Hamiltonian cycle of
(i + 1)-hypercube. Here k = 2i.
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4.5 Co-located Agents Case — Algorithm Two Rings

4.5.1 General Description

In the case of co-located agents, 2 mobile agents a1 and a2 operate on Qd. They

both start from the same HB. The agent that first wakes up, called a1, will explore

the ring Ra contained in the Qd−1 according to the Hamiltonian cycle construction

rule explained in Section 4.4. Before it starts exploring this sub-hypercube Qa, this

agent leaves a token in the middle of its HB in order to inform the partner (we call it

a2) to go to Rb and start exploring there. a1 then explores its ring. Once it finishes

exploring Ra, if a2 has not waken up yet, then a1 will move the token that it left

in the middle of their HB to the port that leads to the link labeled n. To do so, a1

informs a2 to follow it to explore Rb together. Recall that when an agent finishes

exploring its ring, this ring becomes a safe ring. Once a2 wakes up, it will notice

the token in its HB. Consequently it will go (with CWWT ) to the ring (Rb) in the

second sub-hypercube Qb through the link labeled n, then start exploring Rb. Each

agent explores a ring using CWWT technique, until it notices its CWWT token is

moved by the partner.

Given the Bh can only be in one of the Hamiltonian cycle, eventually one agent

will finish exploring its ring. Let us assume that agent a2 finishes exploring Rb first.

Then a2 will go to ring Ra to help a1 to finish its job. Agent a2 goes to look for a1 in

Ra if there is no token in their commonHB. Since, the Hamiltonian cycle constructed

according to what we proposed is unique given the same starting node, a2 is able to

follow a1 on Ra, instead of going in the opposite direction. Once a2 catches up with

(that is, sees the token of) a1, the two of them will start using the bypass technique

described in the next section until they locate the Bh.

After a1 finishes exploring Ra, there are two possible token positions, see Table 4.1:
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Tokens position Meaning

There is no token in the node a2 is exploring Rb

There is one token on the port leading to link d a2 is going to Rb through link d

Table 4.1: Token positions and their explanation — 1

After a2 wakes up, it may see three possible token positions, see Table 4.2:

Token Positions Meaning

One token in the middle of the node a1 is exploring Ra

One token in the middle of the node a1 is exploring the neighbor
and one token on a port node of HB on Ra

There is only one token on the port a1 is exploring Rb

leading to link d before a2 wakes up

Table 4.2: Token positions and their explanation — 2

4.5.2 Bypass Technique

The purpose of the bypass technique is to let one agent use the links available to it

(beyond those that belong to one ring) in order to be able to explore the node next

to the node that is currently under exploration by the other agent. This will ensure

that two agents do not explore the same node at the same time. It also ensures all

the nodes in the network get traversed using a linear number of moves, so that the

total number of moves for locating the Bh stays linear. Given one token on a port

means the next node is under exploration, a port can be classified as with token or

without token at any point of time. An agent can only go through a port without

token. The bypass technique will be and only be used after one of the two rings in

the hypercube is fully explored, that is, once a safe ring exists. Before going into the

bypass step, both agents are trying to finish exploring their respective ring. After an

agent finished exploring the safe ring, it walks according to the permutation until it

sees a node with token. This makes the agent get to the “bypass” procedure. The
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other agent, which is still trying to finish exploring its ring, keeps exploring until it

notices its token was moved by the other agent. This triggers that agent to advance

to the “bypass” procedure.

Once in the “bypass” procedure, an agent acts differently whether advancing in

the safe ring or in the dangerous ring. When an agent is in the dangerous ring, it

moves the token to the port that leads to the link connecting the two rings if there is

no token on this port in the same node. Otherwise, it picks up the token from this

port; it will then walk to the safe ring through the link that has a port marked.

When an agent is in this safe ring, it goes two (2) steps according to the permu-

tation. If the node is with a token, this agent will move this token to the port leading

to the link labeled according to the next bit in the permutation, and go to the node

through this link. This little procedure gets repeated until the agent arrives in a node

without a token. If/when there is no token in the node, it will leave a token at the

port that leads to the link connecting back to the dangerous ring, then it becomes

ready to go back to the dangerous ring.

After an agent is ready to go back to the dangerous ring, it will go to explore one

node in the dangerous ring, then come back to the safe ring through the same link in

order to pick up the token it left on the port. But this token will either still be there

or it will have been moved to the port leading to the link labeled according to the

next bit in the permutation by the other agent. If the token is still at the same port,

(meaning the other agent did not visit this node), then the agent will pick it up and

go back to the dangerous ring. It will repeat exploring a new node in the dangerous

ring with a CWWT token until it notices the token was moved to another port of the

same node. It then starts another execution of the “bypass” procedure. See Figure

4.10, 4.11 and 4.12.
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Figure 4.10: Bypass Technique — Steps 1, 2, 3 and 4

Black Hole Black Hole
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Figure 4.11: Bypass Technique — Steps 5, 6, 7 and 8
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oh! I explored (n−1)nodes Black Hole Black Hole

The node above is a BH!

Black Hole

Figure 4.12: Bypass Technique — Steps 9, 10 and 11

4.5.3 Procedure “Initialization” and “Find a safe ring”

High Level Description

Two agents start from the same HB. As soon as the first agent wakes up, it leaves

a token in the middle of the node, then starts exploring the first Hamiltonian cycle,

which is given in the permutation it constructed upon waken up. An agent explores

a ring with CWWT until it either finishes exploring this ring or sees a token in a

node. When the second agent wakes up, it picks the token and goes to the second

Hamiltonian cycle and starts exploring that ring with CWWT until it either finishes

exploring that ring, or sees a token in a node, or finishes exploring all the nodes in

the hypercube except for the Bh.

When an agent finishes exploring its ring, it goes to the other ring through a

link labeled d using CWWT. Once on the other ring, this agent keeps walking with

CWWT according to the indication of its permutation until it sees a token in a node
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or notices its CWWT token is moved by the other agent. Then both agents start

executing procedure “Bypass”.

It is important to mentioned that we use variable nCount to record the total

number of nodes an agent exlores/bypasses.

Pseudo Code

The pseudo code of procedure “Initialization” and “Explore on a Ring” are in Algo-

rithm 23, 24

Algorithm 23 Algorithm Two Rings — Procedure “Initialization”
1: procedure Initialization
2: wake up, nCount=1
3: if there is no token in the HB then // a1 wakes up
4: put a token in the middle of the node
5: execute Explore on a Ring(nCount)
6: else if there is only one token on a port then // a2 wakes up after a1 started

exploring the second ring.
7: pick up the token
8: execute Explore on a Ring(nCount)
9: else if as long as there is a token in the middle then

10: pick up the token in the middle
11: execute Explore on a Ring(nCount)
12: else if there are two tokens on a port then // a2 wakes up after a1 finished exploring

the safe ring and has gone to the dangerous ring.
13: if nCount < n/2 then
14: nCount = nCount + n/2
15: end if
16: pick up one token, execute Bypass(nCount)
17: end if
18: end procedure
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Algorithm 24 Algorithm Two Rings — Procedure “Explore on a Ring”
1: procedure Explore on a Ring(nCount)
2: if the agent is in the HB then
3: then go to the other ring through link d with CWWT
4: end if
5: if A (notice your CWWT token was moved to another port) happens then
6: if nCount < n/2 then
7: nCount = nCount + n/2
8: end if
9: execute Bypass(nCount)

10: else
11: repeat
12: start exploring the ring with CWWT, nCount + +
13: until A or B or C happens
14: if A (notice its CWWT token was moved to another port) happens then
15: if nCount < n/2 then
16: nCount = nCount + n/2
17: end if
18: execute Bypass(nCount)
19: else if B (finished exploring its ring — nCount = n/2) happens then
20: if there is no token in the node then // a1 is in the HB or a2 finished Rb

21: go to the other ring through a link labeled d
22: go along the ring following the other agent, until see a token in the node
23: execute Bypass(nCount)
24: else if there is one token in the middle then
25: move this token to the port leading to link d
26: execute Explore on a Ring(nCount)
27: else if there is one token on the port leading to link d then
28: execute Bypass(nCount)
29: end if
30: else if C (nCount = n− 1) happens then // explored n− 1 nodes
31: become DONE, the only node it never visited is the Bh
32: end if
33: end if
34: end procedure
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4.5.4 Procedure “Bypass”

Detailed Description

Once an agent starts bypass, if it is on a safe ring, it will move the CWWT token of

the other agent (which triggered “Bypass” procedure) to the port leading to the link

labeled with the next bit in the permutation. Then it executes procedure “Back to

the Dangerous Ring”.

When an agent goes (i.e., either walks with or without CWWT ) into a node with

a token in it on a dangerous ring, it moves the token to the port of the link leading to

the safe ring, then go to the safe ring through the connection link between the two

rings. See Figure 4.10.

After arriving on the safe ring, the agent, let’s call it a1, goes through two links

labeled according to the next two bits in the permutation. There are two possibilities:

• First, there is a token in this node, there is one and only one explanation:

the other agent, let’s call it a2, finished exploring the node in the dangerous

ring and noticed its CWWT token was moved by a1. So a2 followed a1 going

on the safe ring. Eventually a2 overtook a1 and left that token in the node.

• Otherwise, a1 will not see any token in this node.

Now, a1 is ready to go to the dangerous ring and will execute procedure “Back to

the Dangerous Ring”.

Procedure “Back to the Dangerous Ring” is as follows: An agent explores the

next node on the dangerous ring. After exploring a node on the dangerous ring, an

agent comes back to pick up its CWWT token. If it is still at the same port on which

that agent left it, then this agent will pick up the token and go back to the node it

just explored in the dangerous ring.
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It then will explore the next node in the dangerous ring with CWWT. This agent

goes to the next node through the link labeled with the next bit in the permutation.

This step gets repeated until this agent notices its token is moved to another port in

the same node. It then start to bypass again through the safe ring.

When an agent is on the safe ring, and its token is moved by the other agent to

another port in the same node, it then picks up its token, and moves to the node

through the link labeled with the next bit in the permutation. If there is a token

in the node again, then it goes to the next node through the link labeled with the

next bit in the permutation, until it ends up in the node without any token. Then it

becomes ready to go to the dangerous ring again.

Once an agent is ready to go to the dangerous ring, it will execute procedure

“Back to the Dangerous Ring” as mentioned above.

Pseudo Code

The pseudo code of procedure “Bypass” is in Algorithm 25.

4.5.5 Correctness and Complexity Analysis

Correctness

Property 2 Let R1 be one of the Hamiltonian cycle of a Qd−1 in a Qd constructed

according to Pd−1, and R2 be the Hamiltonian cycle of the other sub-hypercube of Qd.

There is an isomorphism [59] between R1 and R2.

Proof: The hypercube has node and edge symmetries [59]. For any pair of edges

(u, v) and (u′, v′) in a d-hypercube Qd there is an automorphism σ of Qd such that

σ(u) = u′ and σ(v) = v′. Such an automorphism can be found for any permutation

π on 1, 2, 3, ..., n such that π(k′) = k where k and k’ are the respective dimensions
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Algorithm 25 Algorithm Two Rings — Procedure “Bypass”
1: procedure Bypass
2: if see a token on the port leading to link d when it is on a safe ring then // This

only happens when an agent finished exploring the ring includes the HB
3: move the token to the port leading to the link indicated by the first bit in the

permutation
4: execute Back to the Dangerous Ring(nCount)
5: end if
6: if its CWWT token is moved to another port then
7: pick up the token
8: else
9: move the token to the port leading to the node on the safe ring

10: end if
11: go to the safe ring through a link labeled d
12: go through two links that labeled with the next two bits in the permutation
13: keep increasing nCount
14: if there is a token on a port then
15: move it to the port leading to the link labeled with the next number in the

permutation
16: nCount + +
17: go to the next node through the link labeled with the next number in the per-

mutation
18: end if
19: execute Back to the Dangerous Ring(nCount)
20: end procedure
21: procedure Back to the Dangerous Ring(nCount)
22: leaves a token on the port leading to the node on the dangerous ring
23: go to the node on the dangerous ring through this port
24: go back to the safe ring through the same link
25: if there is a token on the port where it left its token then
26: pick up the token then go to the node on the dangerous ring that the agent just

explored
27: execute Explore on a Ring(nCount)
28: else if the token is moved to another port in the same node then
29: pick up the token, nCount + +
30: go to the next node according to the next bit in the permutation
31: if there is a token on a port then
32: move it to the port leading to the link labeled with the next bit in the per-

mutation
33: go to the node through the link labeled with the next bit in the permutation
34: nCount + +
35: end if
36: execute Back to the Dangerous Ring(nCount)
37: end if
38: end procedure
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of (u, v) and (u′, v′), [59, 86]. We call v the symmetric node of v′. From Theorem

4.4, we know that the technique we use to construct a Hamiltonian cycle from a label

permutation of a (d − 1)-hypercube is unique. Let Q − A denote one of the two

(d − 1)-sub-hypercubes of Qd, and Q − B denote the other (d − 1)-sub-hypercube

of Qd. Given there is a automorphism between Q − A and Q − B, there is also an

automorphism between the two rings constructed out of the same permutation.

2

Since the two rings have no nodes in common, then:

Lemma 27 Either R1 or R2 is a safe ring.

Lemma 28 Each one of the two rings will be explored by at least one agent.

Proof: Once the first agent wakes up, it will explore the ring of the d − 1-sub-

hypercube that contains the HB. Before it starts, it will leave a token in the middle

of the HB to inform the second agent to explore the other ring in order to prevent

them from exploring the same ring. Only after an agent finds a safe ring, does it go

to the other ring to help the partner agent to finish exploring the other ring. Hence

each one of the two rings will be explored by at least one agent.

2

Lemma 29 One and only one agent dies in the Bh.

Proof: Given:

• both agent construct a Hamiltonian cycle of a d − 1-sub-hypercube based on

the same permutation;

• the two d − 1-sub-hypercubes that are connected by 2d−1 links labeled d, are

automorphic.
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We can conclude that the two agents share the same sense of direction on both

rings. Once an agent, say a1 found a safe ring, it will go to the other ring and explore

the node of the ring in the same order as its partner, say a2, did. Agent a1 follows

the route that a2 traversed until it sees the CWWT token a2 left. Then the two

agents will start exploring the dangerous ring using the bypass technique. According

to this bypass technique, two agents never explore the same node in that ring. The

algorithm terminates as soon as an agent has explored n − 1 nodes. Hence, there is

only one agent dies in the Bh.

2

Theorem 13 The Bh is correctly located by the surviving agent.

Proof: According to Lemma 28, and Lemma 27, at least one agent will eventually

finish exploring a safe ring. As we mentioned in Lemma29, this agent will go to help

the other agent exploring the second ring using the bypass technique. We know from

Lemma 29, that there is one and only one agent survives. The algorithm terminates

as soon as an agent explored n− 1 nodes. Hence the Bh is correctly located.

2

Complexity Analysis

Lemma 30 Two (2) tokens in total are sufficient to locate the Bh in a labeled hy-

percube with co-located agents.

Proof:

• When the algorithm starts, one token is needed for the agent that wakes up

first.

• Each agent needs one token to do CWWT in both exploring and bypass stages.
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• The token used by the first agent in order to inform the second agent can be

reused by the second agent, that is the one that wakes up later than the first

one.

Hence, two (2) tokens in total are sufficient to locate the Bh in a labeled hypercube

with co-located agents.

2

Lemma 31 A linear total number of moves is sufficient using Algorithm Two Rings.

Proof: In procedure “Find a safe ring”, each of the two agents requires a maximum

of 3∗ (n/2) moves to explore a Hamiltonian cycle of a d−1-sub-hypercube of Qd. So,

O(n) moves is sufficient. In procedure “Bypass” and “Back to the dangerous ring”,

for every bypass, a linear number of moves is required. Therefore, even if there are

n/2 such bypass steps, a linear number of moves is still sufficient. Hence, the total

number of moves is linear.

2

According to the lemmas proved above, and following the lower bound from the

whiteboard model presented in [42], we can conclude:

Theorem 14 Using two (2) co-located agents, two (2) tokens in total and Θ(n)

moves, the Bh can be successfully located in a edge labeled hypercube with n nodes.



Chapter 5

Black Hole Search in Tori

5.1 Topological Characteristics

As in the ring topology, in a torus, the number of edges adjacent to each node is fixed

regardless of the number of dimensions or nodes. Informally, the torus is a mesh with

“wrap-around” links that transform it into a regular graph: every node has exactly

four neighbors.

A torus of dimensions a×b has n = ab nodes vi,j(0 6 i 6 a−1, 0 6 j 6 b−1); each

node vi,j is connected to four nodes vi,j+1,vi,j−1,vi+1,j and vi−1,j. All the operations

on the first index are modulo a, while those on the second index are modulo b (see

Figure 5.1).

Figure 5.1: A simple Torus

Given these specific topology characteristics, we develop an algorithm Cross Rings,

to locate the Bh in an oriented torus with co-located agents. Later, we modify

Algorithm Cross Rings in order to locate the Bh in an oriented torus with scattered

129
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agents. In both cases the Bhs problem can be solved with minimum number of agents

with O(1) tokens in total and O(n) moves, which is optimal. We also invent another

Algorithm Single Forward which solves the Bhs problem with 1 token per agent for

k scattered mobile agents after executing O(k2n2) moves.

5.2 Algorithm “Cross Rings” — The Case of Co-located Agents

5.2.1 Assumption, Basic Ideas and General Description

In this section, we study the Bhs problem under the following assumption: there

are k co-located mobile agents to locate the Bh in a labeled torus (the ports in the

torus are consistently labeled: East, West, North, South). Here k is not known to

the agents. We prove later in this section that 2 co-located agents are enough to

locate the Bh with 4 tokens in total. The extra agents can be eliminated in their

common HB, according to the Elimination technique presented in Subsection 3.2.1

with only 1 more token. Hence, the description in the rest of this chapter is based

on a team of 2 agents. The number of nodes n in this torus is known to both agents,

but the dimensions of the torus is unknown. Most importantly, unlike for the ring

topology described in Chapter 3, we do not require that all the links and nodes obey

the FIFO rule; but like for the ring topology, CWWT technique is used through out

this section.

As previously discussed, it is necessary for a team of agents to traverse the whole

network in order to locate the Bh. Obviously, the move cost of locating a Bh is

dependent on the path used by each agent to traverse the network. The number

of moves remains a constant number if the Bhs is executed by a constant number

of co-located agents, each of which traverses the network for a maximum constant

number of times. Figure 5.2 shows an obvious path that allows an agent to traverse
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a torus and back to its HB.

Figure 5.2: All the nodes of a 3 ∗ 4 Torus connected by minimum number of rings.

Let R−NS denote a ring with only the links labeled South and North in a labeled

torus and, let R− EW denote a ring with only the links labeled East and West in

a labeled torus. We also call R−NS a north-south ring, R− EW a east-west ring.

Start from a node, there are two obvious paths that allow an agent to traverse the

torus and go back to the starting node. They are (see Figure 5.3):

• the east-west ring that includes the starting node, plus every north-south ring

that starts with a node in this east-west ring;

• the north-south ring that includes the starting node, plus every east-west ring

that starts with a node in this north-south ring
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Figure 5.3: Two paths that allows an agent to travers all the nodes in a labeled 3 ∗ 4 torus

As we mentioned in Section 5.1, each node in a torus ‘has exactly 4 links that are

labeled consistently. Hence, each node v is on both

• the north-south ring R−NS that includes the North and South links connected

to v;

• and the east-west ringR−EW that includes the East and West links connected

to v.

If we let v (not a Bh) be the HB of a team of 2 agents, then the Bh cannot be

both on the R − NS and the R − EW . This being said, the following observation

becomes obvious:

Observation 6 Let 2 agents start from v. If we let one agent traverse the R−NS,

and another agent traverse the R−EW 6, then there is at least one agent that survives

this traversal.

6The details of ring assignment for these 2 agents is explained in Section 5.2.2.
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If there is only one agent that finished traversing a ring (the other agent died in

the Bh.), then we call this ring a Base ring. If both agents finished traversing their

rings, then we call the ring that is traversed the earliest, a Base ring. A Base ring is

also a safe ring.

From this point on, we assume that the Base ring is a north-south ring. Hereafter,

all descriptions and algorithm procedures are based on this assumption. Importantly,

if in fact the Base ring is a east-west ring, the descriptions and algorithm procedures

can be obtained by exchanging all the keywords according to Table 5.1. Algorithm 30

is an example of obtaining procedure “Explore the east-west Rings” from procedure

“Explore the north-south Rings” by changing the keywords according to Table 5.1.

words in the description and algorithm words in the description and algorithm
when a north-south ring is a Base ring when a north-south ring is a Base ring

east north
west south
north east
south west
east-west north-south
north-south east-west
x y
y x

Table 5.1: Keywords equivalence table

Now, we let the surviving agent(s) (either one or two) explore all the east-west

rings, each of which starts from a node on the Base ring. In order to prevent the two

agents from both dying in the Bh, we let both agents explore a dangerous (defined

in chapter 3) node using CWWT with 1 token on a port.

Before one agent starts exploring a east-west ring R − EW , it puts 1 token in

the middle of a node u. u is a node on both the Base ring and the east-west ring

R− EW . We call the east-west ring with 1 token in the middle of u an RUE (Ring
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Under Exploration), the 1 token in the middle of u, an UET (a token to indicate the

ring is under exploration). An agent explores only the east-west ring that starts from

the neighbor node to the north of the UET. Each time an agent finishes exploring

one east-west ring, it will walk to the north until it sees a UET. It then put a UET

in the next node to the north, come back to pick up the first UET, go to the next

node to the north again and start exploring the east-west ring.

Sooner or later, one of the two agents will finish its east-west ring and advance to

the north with the UET in the north-south ring. Eventually, one agent a1 will finish

exploring all but one east-west ring. The other agent a2 is either exploring the RUE

or died in the Bh in the RUE. This situation highlights an important fact: a ring can

be under exploration even though there is no UET in the starting node u.

Given there is only one Bh, and there is no common node(s) shared by any two

east-west rings, we obtain the following Lemma:

Lemma 32 Eventually all but one east-west rings are explored.

After a1 finished exploring all but one east-west rings, it will go and help a2 to

explore the ring a2 explores. When one agent finishes exploring a ring (e.g. a north-

south ring), it will know the number of nodes x of this ring. It can calculate the

number of nodes y in an east-west ring, given n is known. If a north-south is the Base

ring, we say that an agent finishes a stage once it finishes exploring a non-Base ring.

An agent a1 will not visit an RUE until it has finished y−1 stages. Also, a1 follows

the path that a2 took on the RUE R − OCCU until it sees the CWWT token of

a2. Now a1 and a2 will execute procedure “Bypass on Torus” procedure, of which the

idea is introduced in Subsection 4.5.2, chapter 4. Eventually the algorithm terminates

when there is only one node that is not explored in the last RUE. The only node left

unexplored is the Bh.
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The meaning of token(s) at different locations can be found in Table 5.2.

Token(s) position Meaning

One token in the middle of a node the east-west ring starts from this node
is under exploration (the north-south
ring is the Base ring)

Two tokens in the middle of the HB the Base ring is found
One token on the port an agent is exploring the next node in this
Two tokens on the north ring (CWWT token) the first agent is
port of the HB exploring the north-south ring

Table 5.2: Token positions and their explanation in Algorithm Cross Rings

The details of each procedure are given in the following three subsections.

5.2.2 Procedure “Initialization” and “Find a Base Ring”

When the first agent a1 wakes up, there is no token on any port of the node. a1 will

put two tokens on the north port in its HB to inform the agent a2 that wakes up

later: first, the north-south ring is a RUE ; second, a2 should explore the east-west

ring starting from the HB. Agent a1 then keeps walking to the north with CWWT,

until either it notices that its CWWT token is moved from east port to the south

port or it goes back to the starting node in this north-south ring. When the first case

happens, it means that a2, the second agent to wake up, found a Base (a east-west)

ring and explored all the north-south rings except for the one a1 is exploring. a2 now

is trying to bypass a1. Hence, a1 executes procedure “Bypass on Torus” immediately.

In the second case, there are three possibilities again: there are either 2 tokens on

the north port or 2 tokens in the middle, or 2/3 tokens on the east port. In the first

case, north-south ring becomes the Base ring. a1 informs a2 (did not wake up) of this

result by moving the 2 tokens from the north port to the middle of the node. It then

executes procedure “Explore the east-west Rings” to the east. In the later case, 2

tokens in the middle of the HB shows that the second agent a2 woke up and finished
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exploring the east-west ring before a1 finished exploring the north-south ring. So, the

east-west ring becomes the Base ring. a1 then picks up the two tokens in the middle

and keeps walking to the east until it sees 1 token in the middle of a node. It then

executes procedure “Advance in the Base ring” to the east. In the last case, a1 knows

that a2 woke up and exploring the first east-west ring to the east. a1 then move two

tokens (maybe 2 or 3 tokens on that port.) from the east port to the middle. a1 then

put the first UET, goes to the next node u to the north and put the second UET. a1

immediately goes back to the HB pick up the first UET, then goes back to u. Now

a1 starts executing procedure “Explore the east-west Rings” from node u.

When the second agent a2 wakes up, there are either 2 tokens in the middle of the

HB or 3 tokens in the middle of the HB or 2 tokens on the north port. In the first

case, a1 informed a2 that the north-south ring is the Base ring. Then a2 picks up the

two tokens then keeps walking to the north until it arrives in the node with 1 token

(the UET ) in the middle. It then executes procedure “Advance in the Base Ring”

to the north. In the second case, a2 sees 3 tokens in the middle. This means that

not only does a1 tell a2 the north-south ring becomes the Base ring, but also that a1

is trying to put a UET in the next node to the north. Then a2 picks up two tokens

from the middle of the node and executes procedure “Advance in the Base Ring” to

the north immediately. In the third case, a2 follows the “instruction” from a1 to go

explore the east-west ring. a2 first moves two token on the north port to the east

port to inform a1 that a2 is exploring the first east-west ring. a2 keeps advancing to

the east with CWWT until either it notices that its CWWT token is moved from

the east port to the south port or it goes back to the starting node in this east-west

ring. When the former happens, a2 executes procedure “Bypass on Torus”. When

the latter happens, there are again two possible token position situations in the node:

1. There are 2 tokens on the east port. This means a1 is still exploring the first



137

north-south ring, so this east-west ring becomes the Base ring. a2 moves the

two tokens to the middle of the HB, in order to inform a1 of this news. Then

a2 walks to the next node to the east and executes procedure “Explore the

north-south Rings” to the north.

2. There are 2/3 tokens in the middle. This means that while a2 is exploring the

east-west ring, a1 finished exploring the north-south ring. So, the north-south

ring becomes the Base ring. If there are two tokens in the middle of the node,

a2 picks up the two tokens in the HB then keeps walking to the north until

it arrives in a node with 1 token in the middle. Then a2 executes procedure

“Advance in the Base Ring” to the north. But if there are 3 tokens in the

middle, then a2 knows that not only a1 finished exploring the first north-south

ring (the north-south ring becomes the Base ring), but also a1 is trying to put a

UET in the next node to the north. Then a2 picks up two tokens in the middle

then executes procedure “Advance in the Base Ring” to the north immediately.

The pseudo code of procedures “Initialization” and “Find a Base Ring” in algo-

rithm Cross Rings is given in Algorithm 26 and 27.

Algorithm 26 Algorithm Cross Rings — Procedure “Initialization”
1: procedure Initialization
2: n = 0
3: wake up and execute Find a Base Ring
4: end procedure
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Algorithm 27 Algorithm Cross Rings — Procedure “Find a Base Ring”
1: procedure Find a Base Ring
2: if there is no token on any port of the node then
3: put two tokens on the north port; keep advancing north with CWWT, increasing

xCount, until either A or B happens
4: if A: CWWT token is moved to the east port then
5: execute Bypass on Torus(xCount,y)
6: else if B: back to the starting node then
7: if there are 2 tokens in the north port then
8: move the 2 tokens add one token to the middle, x = xCount; execute

Explore the east-west Rings(x, yCount) to the east
9: else if there are 2 tokens in the middle of the node then

10: pick up the 2 tokens; keep walking east until see a node with 1 token in
the middle, then execute Advance in the Base Ring(north, xCount, x)

11: else if there are 3 tokens in the middle of the node then
12: pick up 2 tokens, then execute Advance in the Base Ring(north,

xCount, x)
13: else if there are 2/3 tokens on the east port then
14: move 2 tokens and add one token to the middle; go north; x++,yCount+

+, put 1 token in the middle; come back to the HB and pick the tokens, go north again;
execute Explore the east-west Rings(x, yCount) to the east

15: end if
16: end if
17: else if there are 2/3 tokens on the north port then
18: move 2 tokens to the middle
19: repeat
20: keep advancing to the east with CWWT, increasing yCount
21: until either A: back to the starting node or B: its CWWT token is moved from

east port to the south port
22: if B happens then
23: execute Bypass on Torus(yCount, x)
24: else if A happens and there are 2 tokens on the east port then
25: move the two tokens to the middle; put a token in the middle, go to the next

node to the east ; yCount + +, put another token in the middle; go back to the HB,
then pick up 1 token in the middle; walk to the next node to the east, y = yCount,
then execute Explore the north-south Rings(y, xCount)

26: else if A happens and there are 2 tokens in the middle then
27: pick up the 2 tokens; keep walking to the north until see a node with 1 token

in the middle, execute Advance in the Base Ring(north, xCount, x)
28: else if A happens and there are 3 tokens in the middle then
29: pick up 2 tokens; execute Advance in the Base Ring(north, xCount, x)
30: end if
31: else if there are 2 tokens in the middle then
32: pick up the 2 tokens; keep walking north until see 1 token in the middle
33: execute Advance in the Base Ring(north, xCount, x)
34: else if there are 3 tokens in the middle then
35: pick up 2 tokens; execute Advance in the Base Ring(north, xCount, x)
36: end if
37: end procedure
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In procedure “Advance in the Base Ring”, when an agent a1 sees a UET, it will

walk on the Base ring to the next node to the north. There are two possible token

configurations:

• a UET in the node. This means the other agent a2 walked faster than a1 and

this token was put by a2. Now a1 goes to the north until sees a node without

any token.

• there is no token in this node. This means a1 is faster than the other agent a2.

Now, a1 goes to put a second UET in the node, then goes back to the node on

the south in order to pick up the previous UET. Once a1 picks up the first UET, it

then goes back to the node to the north. It is possible that the UET is still in the

node, or the node is empty now. If the node is empty, it shows that the other agent

a2 overtook a1: a2 put another UET in a node and a2 picked up the UET that a1

left in this empty node. Regardless whether the node is empty or not, a1 is going

to explore the east-west ring. The pseudo code of procedure “Advance in the Base

Ring” in algorithm Cross Rings is in Algorithm 28.

Algorithm 28 Algorithm Cross Rings — Procedure “Advance in the Base Ring”
1: procedure Advance in the Base Ring(Direction, xCount, x)
2: xTemp = 0 // xTemp is used to remember the position of the RUE in a north-south

ring
3: go to the next node to the north, xTemp + +, xCount + +
4: if there is a UET in the node then
5: go to the north and xTemp + +, xCount + +, until entering an empty node
6: put a UET in this node, then go back to the node to the south
7: pick up the UET, then go to the node to the north again
8: else if xCount = x then
9: go back to the node xTemp links away from to the South

10: end if
11: yCount = 0
12: keep walking to the east and yCount + +, until see a token on the east port
13: execute Bypass on Torus(yCount, x)
14: end procedure
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5.2.3 Procedure “Explore the east-west/north-south Rings”

The pseudo code of procedure “Explore the north-south Rings” and “Explore the

east-west Rings” are in Algorithm 29 and 30.

Algorithm 29 Algorithm Cross Rings — Procedure “Explore the east-west Rings”
1: procedure Explore the east-west Rings(x, yCount)
2: repeat
3: advance with CWWT to the east, yCount + +
4: until A: the token is moved from the east port to the south port, or B: back to the

first node it was, in this east-west ring
5: if A happens then
6: execute Bypass on Torus(yCount, x)
7: else if B happens then
8: if there is no token in the middle of this node then
9: keep going north and increase y until arriving to the node that has 1 token

in the middle
10: end if
11: execute Advance in the Base Ring(north, xCount, x)
12: end if
13: end procedure

Algorithm 30 Algorithm Cross Rings — Procedure “Explore the north-south Rings”
1: procedure Explore the north-south Rings(y, xCount)
2: repeatadvance with CWWT to the north, xCount + +
3: until A: the token is moved from north port to the west port, or B: back to the

first node it started from in this north-south ring
4: if A happens then
5: execute Bypass on Torus(xCount, y)
6: else if B happens then
7: if there is no token in the middle of this node then
8: keep going east and increase x until the node which has 1 token in the middle
9: end if

10: execute Advance in the Base Ring(east, xCount, x)
11: end if
12: end procedure
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5.2.4 Procedure Bypass on Torus

Bypass on Torus Technique

As we explained in Subsection 4.5.2, Chapter 4, the purpose of the bypass technique

is to let one agent use the links available to it (beyond those that belong to one

ring) in order to be able to explore the node next to the node that is currently under

exploration by the other agent. This will ensure that two agents do not explore the

same node at the same time. It also ensures that all the nodes in the network get

traversed using a linear number of moves, so that the total number of moves for

locating the Bh stays linear.

In this chapter, we still use a technique similar to the bypass one to solve Bhs in

a torus. In this section, we still use one token on a port as one agent’s CWWT token.

In other words, a token on a port means the next node through this port is under

exploration; a port can be classified as with token or without token at any point of

time. An agent can only go through a port without token. The bypass technique will

be and only be used after all but one east-west7 ring is still under exploration.

After an agent a1 has finished exploring x − 1 east-west rings, it walks to the

east on the only east-west ring left (CWWT walk is not necessary), it also keeps

increasing variable yCount, until it sees a node with a token on the east port. This

makes the agent get to the bypass step. The other agent a2, which is still trying to

finish exploring its east-west ring, keeps exploring until it notices its CWWT token

was moved by the other agent a1. This triggers a2 to execute the “Bypass on Torus”

procedure. But it is possible that, by the time a1 arrives in the node in which a2 left

its CWWT token, a2 has already disappeared in the Bh. Then a1 will just continue

executing the “Bypass on Torus” procedure and eventually locate the Bh when it

7Recall that we assumed the north-south ring that includes the HB, is the Base ring at the
beginning of this chapter.
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notices that y − 1 (yCount = y − 1) nodes on this east-west ring are explored.

Once it starts the procedure “Bypass on Torus”, an agent acts differently whether

advancing in a safe ring (all the east-west rings that are explored by an agent) or in a

dangerous ring (the only east-west ring that is under exploration, namely, the RUE ).

When an agent is in the dangerous ring, it either moves the token to the north port

that leads to the link connecting the two rings if there is no token on it; or, otherwise,

it picks up the token that has been moved to the north port. It will then walk to the

safe ring through the north port.

When an agent is in a safe ring, it goes two (2) steps to the east. If the node has

a token on the south port, this agent will move this token to the east port. It then

goes to the node on the east. This procedure gets repeated until the agent arrives

in a node without a token. It is important to know that an agent keeps increasing

variable yCount each time it traverse a link on the safe ring.

If there is no token in the node, this agent will leave a token on the south port

that leads to the link connecting back to the dangerous ring, then it becomes ready

to go back to the dangerous ring.

After an agent is ready to go back to the dangerous ring, it will go to explore

one node in the dangerous ring through the south port, then come back to the safe

ring through the same link in order to pick up the token it left on the south port in

the safe ring. But this token will either still be there or it will have been moved to

the east port of the node by the other agent. If the token is still on the same port,

meaning the other agent did not visit this node, then the agent will pick it up and

go back to the dangerous ring. It will repeat exploring a new node to the east in the

dangerous ring with a CWWT token and keeps increasing variable yCount each time

it traverse a link, until it notices its CWWT token was moved to the north port of

the same node. It then starts another execution of the “Bypass on Torus” procedure.
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This keeps executing until an agnet notice the variable yCount reaches y−1 which

means there are y−1 nodes were explored in this east-west ring. Hence, the algorithm

terminates. The only node that is not explored is the Bh. See Figure 5.4, 5.5 and

5.6.

Detailed Description

When an agent goes (i.e., either walks with or without CWWT ) into a node with a

token in it on a dangerous ring, it will move the token to the north port (which leads

to the safe ring), then it will go to the safe ring through this north port. See Figure

4.10.

After arriving on the safe ring, the agent, let’s call it a1, goes two steps to the

east and keeps increasing yCount. There are two possibilities:

• First, there is a token on the south port of this node. In this case, there is one

and only one explanation:

the other agent, let’s call it a2, finished exploring a node in the dangerous ring

and noticed its CWWT token was moved by a1. So a2 followed a1 going on the

safe ring. Eventually a2 overtook a1 and left that token in the node (which is

possible because we do not assume the FIFO requirement on any link or node).

• Otherwise, a1 will not see any token in this node.

When the former case happens, a1 moves this token to the east port and walks

to the next node to the east. This step is repeated until a1 arrives in a node without

any token in it.

If there is no token in the node a1 arrives into, it will leave a token on the south

port. Now, a1 is ready to go to the dangerous ring and will execute procedure “Back

to the Dangerous Ring — Torus”.
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Figure 5.6: Bypass Technique on Torus — Steps 9, 10 and 11

When an agent is on the safe ring, if its token is moved by the other agent to

the east port in the same node, it then picks up its token, and moves to the node

through the east port. If there is a token in the node again, then it goes to the next

node through the east port, until it ends up in the node without any token. Then it

becomes ready to go to the dangerous ring again.

Once an agent is ready to go to the dangerous ring, it will execute procedure

“Back to the Dangerous Ring — Torus”. Let us elaborate.

Procedure “Back to the Dangerous Ring — Torus” is as follows: An agent explores

the node on the dangerous ring through the south port. After exploring a node on

the dangerous ring, an agent comes back to pick up its CWWT token. If this token

is still on the south port on which that agent left it, then this agent will pick up the

token and go back to the node it just explored in the dangerous ring.

It then will explore the node in the dangerous ring with CWWT through the east

port. This step gets repeated until this agent notices its token is moved to the north
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port in the same node. It then start to bypass again through the north port to the

safe ring.

Pseudo Code

The pseudo code of procedure “Bypass on Torus” and “Back to the Dangerous Ring

— Torus” are shown in Algorithm 31 and 32.

Algorithm 31 Algorithm Cross Rings — Procedure “Bypass on Torus”
1: procedure Bypass on Torus(yCount, x)
2: if its CWWT token is moved from east port to the north port then
3: pick up the token
4: else
5: move the token from east port to north port
6: end if
7: go to the node through the north port; go through two links through the east port;

yCount + +
8: if yCount 6= n/x− 1 then
9: if there is a token on the south port then

10: move it to the east port; keep going to the next node to the east and yCount+
+, until a node without a token on the south port

11: end if
12: leave a token on the south port; go to the node on the dangerous ring through this

port; go back to the safe ring through the same link; execute Back to the Dangerous
Ring — Torus(yCount, x)

13: else
14: become DONE.
15: end if
16: end procedure

5.2.5 Correctness and Complexity Analysis

Correctness

According to the Observation 6 and Lemma 32 we introduced in subsection 5.2.1, we

can obtain the following Lemma:

Lemma 33 At least one agent will find a Base ring in the torus.
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Algorithm 32 Algorithm Cross Rings — Procedure “Back to the Dangerous Ring
— Torus”
1: procedure Back to the Dangerous Ring — Torus(yCount, x)
2: if there is a token on the south port then
3: pick up the token then go to the node through the south port; execute Explore

the east-west Rings(yCount, x)
4: else if the token is moved to the east port of the same node then
5: pick up the token, go to the node to the east ; yCount + +
6: if yCount = n/x− 1 then
7: become DONE, the only node that is not visited is the Bh
8: else
9: execute Back to the Dangerous Ring — Torus(yCount,x)

10: end if
11: end if
12: end procedure

If we assume there are y nodes on an east-west ring, and x = n/y nodes on a

north-south ring, then:

Lemma 34 x− 1 east-west rings will be explored eventually.

Proof: According to Lemma 32, all but one east-west rings will be explored eventually.

Given there are x nodes on each north-south ring, x−1 east-west rings will be explored

eventually.

2

Lemma 35 The UET advances on the north-south ring correctly.

Proof: When the first agent starts exploring the first east-west ring, it puts a UET

for the first time. An agent does not move a UET (one token in the middle of a node)

until it finished exploring an east-west ring. This agent then walks to the next node

to the north of the current node, puts a UET, then comes back to pick up the old

UET. Then and only then does it explore the east-west ring starting from the node

with the UET.
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We show in Figures 5.7, 5.8 and 5.9 that even without the FIFO assumption, the

UET can be advanced correctly. In Figure 5.7, we show that instead of picking up

the UET, and carrying it to the next node to the north, an agent a1 can correctly

advance the UET by doing the following three steps:

• leaves a second UET in the next node to the north

• goes back to the node to the south and picks up the first UET.

• goes to the node to the north (where the second UET was left).

This avoids the partner agent a2 overtaking a1 without seeing the UET.

B_3A B_1 B_2

Figure 5.7: The case of one agent involved in moving the UET.

There are four scenarios that will possibly happen, when both agents are in front

of a UET :

• Scenario A: both agents are in the node N1 with the first UET :

Then they both try to put a UET (the second) in the next node N2 to the

north. See Figure 5.8. This triggers the next scenario.
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Figure 5.8: af puts the second UET before as does.

• Scenario B: both agents are in the node with the second UET N2 for the first

time: See a) and b) in Figure 5.9. The faster agent af will then put a UET in

the node, and then go back to N1 to pick up the first UET in the node to the

south. When the other agent as (the slower one) arrives in the node N2, it will

notice that the node has a second UET in it. It then will go to the next node

N3 to the north. So far, there is no conflict in the above scenarios.

At this point, af and as have two different destination nodes N1 and N3. The

first UET, will be picked up by af without any problem. But there are two

possible situations in N3 See b), c) in Figure 5.9:

1. N3 has a UET in it. This means af overtook as, and left a UET there. So,

as keeps going to the next node to the north, until it arrives in an empty

node Ni (i ≥ 4).

2. N3 is empty.

Now as puts a UET in Nj (j ≥ 3). See d) in Figure 5.9. This means that af

is still exploring the east-west ring that starts from Nj−1. Then as goes back
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to Nj−1 intending to pick up the UET in it. It is possible that af may be

still exploring the east-west ring or it finished exploring the east-west ring that

starts from Nj−1. We observe that even af finished exploring the east-west ring

that starts from Nj−1, it will go to Nj first in order to put a UET according to

the algorithm. Given as has already put a UET in Nj, this leads af to go to

Nj+1 (instead of possibly go to Nj−1 that is on the south of Nj) to the north of

Nj. Hence, as will pick up the UET in Nj−1 without any conflict with af .

After as picked up the UET in Nj−1, it goes back to Nj through the north port.

Once as is in Nj, two other scenarios can occur:

• Scenario C: the UET is still there. See e) in Figure 5.10. This means af is

either still exploring the east-west ring that starts from Nj−1, or it overtook as

and is trying to leave another UET in the node Nj+1 next to the north of Nj.

• Scenario D: the UET is missing. See f) in Figure 5.10. There is only one

explanation for this situation:

af overtook as and left another UET in the node Nj+1 next to the north of Nj.

It came back to Nj and picked up the UET.

Regardless what happens in node Nj now, as will start exploring the east-west

ring. This shows there is no conflict in these two scenarios between as and af . Hence,

advancing the UET between the two agents can be executed correctly.

In Figure 5.11, we illustrate one of the four situations: if a2 sees two UET s in a

row, it will know the second UET is the real UET, and act accordingly. Namely, it

will go to the next node to the north, put a second UET, then come back to pick up

the first UET.

When an agent that intends to advance the UET goes back to its HB, it stops

advancing on the Base ring. Instead, it picks up the UET and goes back to the node
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Figure 5.9: The first two scenarios when two agents are both ready to move the UET.
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Figure 5.10: The last two scenarios when two agents are both ready to move the UET.
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C_5C_1 C_2 C_3 C_4

Figure 5.11: One example of how two agents can handle the UET correctly.

in which the other agent left the UET for the last time and tries to help the other

agent explore the last east-west ring left.

2

Lemma 36 None of the east-west rings will be explored more than once.

Proof: An agent does not explore an east-west ring until it finds a node with the

UET (one token in the middle of a node). This agent then moves the UET to the

next node to the north of the current node. Then and only then does it explore

the east-west ring that starts from the node with the UET. This shows that all the

explored east-west rings will not be explored for a second time.

According to Lemma 35, the UET advances on the north-south ring correctly.

Hence, none of the east-west rings will be explored more than once.

2

Lemma 37 At most 1 agent dies in the Bh.

Proof:
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According to algorithm Cross Rings, before any agent starts procedure “Bypass

on Torus”, both agents only travel on:

• either one north-south ring and all the east-west ring. In this case, the north-

south ring is the Base ring. According to the definition of a Base ring, the Bh

can only be on one of an east-west ring. Considering all the possible links both

agents may traverse, only two links on an east-west ring may lead an agent to

the Bh.

• or an east-west ring and all the north-south rings. In this case, the east-west

ring is the Base ring. According to the definition of a Base ring, the Bh can

only be on one of a north-south ring. Considering all the possible links both

agents may traverse, only two links on a north-south ring may lead an agent to

the Bh.

Given the torus is labeled, each north-south ring or east-west ring is also oriented.

If on the one hand, an agent has died in the Bh through a link on the last RUE,

the other agent will start procedure “Bypass on Torus” and eventually terminate the

algorithm before it traverses the other link.

On the other hand, we assume that both agents are alive and they start bypass ing

each other. It is possible that an agent dies in the Bh through a link that connects a

safe ring and the only dangerous ring left. Given bypass technique is used to prevent

two agents from exploring the same node, none of the other link that leads to the Bh

will be used again. So, maximum one agent dies in the Bh during procedure “Bypass

on Torus”.

Hence, at most one agent dies in the Bh.

2

Lemma 38 Within finite time one agent will determine the location of the Bh.
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Proof: From Lemma 33 and 34 we know that two agents will sooner or later find

a Base ring and both agents keeps exploring the east-west rings along the north-

south ring (the Base ring) until eventually one agent explores x − 1 east-west ring.

According to Lemma 36, there are at most x − 1 such explorations before the two

agents start to bypass each other on the last dangerous east-west ring left using a

safe east-west ring. We also observe that from Lemma 37 at most one agent dies in

the Bh. Eventually the surviving agent will stop the algorithm when it explored and

bypassed y − 1 nodes on the last dangerous east-west ring.

2

Complexity Analysis

Lemma 39 Two co-located agents with five (5) tokens in total are sufficient to locate

the Bh in a labeled torus.

Proof:

According to Lemmas 37 and 38, 2 agents are sufficient to locate the Bh.

We now prove that a total of 5 tokens is sufficient for both agents to locate the

Bh.

• When the algorithm starts, two tokens are needed for the agent that wakes up

first in order to determine what is the Base ring. But once the second agent

sees the Base ring is decided, it can pick up the 2 tokens and eventually reuse

them.

• Each agent needs one token to do CWWT for exploring and for bypass ing

(including the “Back to the Dangerous Ring”. As we just mentioned in the

previous item, the second agent can reuse the 2 tokens in the middle of their

HB once the Base ring is decided.



155

• One token is used as a UET.

• As we explained in Lemma 35, before one agent picks up the only UET in the

Base ring from node u, it goes to the next node v to the north to put a second

UET. Only after putting the second UET, does the agent go back to node u to

pick up the first UET. Then it starts exploring the east-west ring from node v.

From this fact, we observe that:

– An agent can use the CWWT token to put the second UET in node v.

– An agent can reuse the picked up UET (one token) in u to continue the

exploration with CWWT. Hence, no extra token is needed.

Hence, using two co-located agents, five (5) tokens in total are sufficient to locate

the Bh in a labeled torus.

2

Lemma 40 O(n) moves is sufficient using algorithm Cross Rings.

Proof: In procedure “Find a Base ring”, a Base ring is decided after agent a1

explored the north-south ring that includes the HB or a2 explored the east-west ring

that includes the HB. If the number of nodes on a north-south ring is x, the number

of nodes on a north-south ring is y, then x∗y = n. So, (x+y) ≤ n moves are required.

Hence, O(n) moves is sufficient.

In procedure “Bypass on Torus”, an agent a1 walks from the dangerous ring,

through 1 link connecting to the north port, to the safe ring. a1 is going to take Ai1

steps before it executes procedure “Back to the Dangerous Ring — Torus”. For every

“Back to the Dangerous Ring — Torus”, a1 uses Ai2 steps before it walks back to the

dangerous ring through 1 link. A maximum of y such links are going to be traversed

given there is maximum of y nodes on each east-west ring. So, it takes an agent O(n)

moves, even when using CWWT.
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The idea of the bypass technique is to let an agent visit a node on a dangerous

ring only through the links on a safe ring. Let u and v denote two nodes on the

dangerous ring. a1 will either traverse i links on the dangerous ring in order to go

to from u to v, or a1 will go through the link that connects to the safe ring, then

traverse i links on the safe ring, then go to v on the dangerous ring through 1 link

that connects from the safe ring to the dangerous ring. See Figure 5.12 (The two

ways for an agent to go from node u to node v are: 1) Through the links and nodes

that are on the dangerous ring; 2) Through the links and nodes that are on the safe

ring.). Hence, on both a safe east-west ring and the dangerous east-west ring on its

north, n links in total are going to be traversed in order to finish traversing the whole

east-west ring. So, O(n) moves are required for an agent during procedure “Bypass

on Torus” and “Back to the Dangerous Ring — Torus”.

Hence, O(n) moves in total are sufficient for both agents to locate the Bh.

2

x links

U V

U’ V’

x links

Figure 5.12: The two ways for an agent to go from node u to node v

According to the lemmas proved above, and following the lower bound from the

whiteboard model presented in [42], we can conclude:
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Theorem 15 Using two (2) co-located agents and five (5) tokens in total, the Bh

can be successfully located with Θ(n) moves in a labeled torus with n nodes.

5.3 Algorithm Modified ‘Cross Rings’ — The Case of 3 Scattered Agents

5.3.1 Assumptions, Basic Ideas, Observation and General Description

In this section, we study the Bhs problem in a labeled torus (labeled the same as

described in Subsection 5.2.1) with 3 scattered mobile agents. Here, we will prove

that 3 is the minimum team size. The number of nodes n and the dimensions of

the torus x× y are assumed known to all the scattered agents. Again as assumed in

Subsection 5.2.1, we do not require that all the links and nodes obey the FIFO rule;

but the CWWT technique is used throughout this section.

As we explained in Section 5.2, Subsection 5.2.1, it is impossible for an agent to

traverse a torus (which, clearly, is necessary for locating the Bh), if this agent only

goes through the north or south ports or only goes through the east or west ports.

Also, it is obvious that one agent is not enough to locate the Bh given that as soon

as this agent wakes up, it can wonder into the Bh directly. Our immediate question

is: are two agents enough to locate the Bh in a labeled torus? We know that 2

agents are enough to solve the Bhs problem if they are co-located, according to the

investigation presented in the previous section. But in this section, we need to study

the Bhs problem in a labeled torus with scattered mobile agents. As mentioned in

the previous chapters, it is a fact that before scattered agents meet in the same node,

they can neither agree on the same sense of direction nor divide their common task

into sub-tasks (i.e., cooperate). So, if we have 2 scattered agents, if they do not meet

each other fast enough, it is possibe that one dies on a north or south port and the

other agent dies on an east or west port while they try to achieve the task separately.
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Hence we can get the following lemma:

Lemma 41 Two scattered agents are not enough to locate the Bh in a labeled torus.

We prove later in this section that 3 scattered agents are enough to locate the Bh

with 7 tokens per agent.

As we know, algorithm Cross Rings solves Bhs problem in a labeled torus with 2

co-located agents. If we can somehow gather two agents into a pair in one node, then

they can start locating the Bh with algorithm Cross Rings from the node in which

they form the pair. Following this idea, we develop Algorithm Modified ‘Cross Rings’

that allows us to form a pair with two agents and let them locate the Bh according

to Algorithm Cross Rings, to which some modification is required.

In algorithm Modified ‘Cross Rings’, an agent starts as a single agent. A single

agent tries to explore a north-south ring and all the east-west rings that start from

the nodes that are on the north-south ring, if it does not die in the Bh or become

Passive before succeeding. Sooner or later, an agent will either explore the entire

torus except for the Bh (when the Bh is located in the node that is to the south-west

side of this agent) or die in the Bh or will meet (i.e., see the token of another agent,

as we explained in the previous chapter) another agent or become Passive. Once

two agents meet, they form a pair immediately. A paired agent will execute some of

the procedures we modify in Algorithm Cross Rings and eventually locate the Bh.

We will describe all the necessary modifications to the algorithm Cross Rings in the

coming subsections.

From this point on, we assume that the Base ring is a north-south ring. All the

descriptions and procedures are based on this “assumption”. Importantly, if in fact

the Base ring is an east-west ring, the description and procedures can be obtained by

exchanging all the key works according to Table 5.1.
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Figure 5.13: Token positions and their meanings.
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The meaning of token(s) at different locations can be found in Figure 5.13.

The details of each procedure are given in the following subsections.

5.3.2 Procedures “Initialization” and “Single Agent Explores a north-

south Ring”

Algorithm Description

Upon waking up, an agent becomes a single agent and it immediately executes proce-

dure “Single Agent Explores a north-south Ring” to the north. In procedure “Single

Agent Explores a north-south Ring”, an agent a1 initializes xCount, which is used

to record the size of the explored region on a north-south ring. Then it explores the

north-south ring starting from node u where it woke up (we called it a homebase(HB)

as we explained in the previous chapters), with CWWT (two tokens on the port).

While a1 explores on the north-south ring, each time it explores one more node, it

increases xCount by one. As Figure 5.14 shows, during the exploration there are

eight possible Cases/Senarios that can happen:

• a1 goes into a node with one token in the middle of a node. According to Figure

5.13, it is a UET (defined in Subsection 5.2.1). This indicates that a pair is

formed and the paired agents are executing algorithm Modified ‘Cross Rings’

as paired agents. So, a1 becomes Passive immediately.

• a1 goes into a node with two tokens on the east port. This means that a single

agent is exploring an east-west ring to the east. So, a1 moves one token to the

north port, one token to the middle of the node. Most importantly, it leaves

one extra token in the middle of the node. Then it executes “Paired agent finds

a Base ring” to the north.

• a1 goes into a node with two tokens on the north port. This means that a single
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Figure 5.14: Token configurations and their resulting actions in procedure “Single Agent
Explores a north-south Ring”.
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agent is exploring a north-south ring to the north. So, a1 moves one token

to the east port, one token to the middle of the node. And again, it is very

important that a1 leaves one extra token in the middle of the node. It then

executes “Paired agent finds a Base ring” to the east.

• When a1 comes back to the node where it left its CWWT tokens (two tokens

on the north port), if there are two tokens in the middle and at least one token

on the east port of the node, it means that another single agent a2 encountered

a1, and it formed a pair with a1. When there are two tokens on the east port,

that means a2 is exploring the node to the east of the current node through the

east port. a1 then executes “Paired agent finds a Base ring” to the north.

• When a1 goes into a node, if any of the following three situations happens, a1

will become Passive immediately. All three situations indicate that a pair was

formed. The situations are:

1. there is at least one token in the middle of the node (there may be also

token(s) on a port of that node).

2. there is a token on the north port.

3. there is a token on the east port.

• When xCount = x happens, while a1 explores the north-south ring, it means

that a1 finished exploring the north-south ring. a1 initializes nCount in order

to keep tract of the number of nodes explored, then executes procedure “Single

Agent Explores an east-west Ring”.

• When a1 comes back to the node where it left its CWWT tokens (two tokens

on the north port), if all the CWWT tokens are stolen, it means that a paired

agent eliminated a1. Hence, a1 becomes Passive.
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• When nCount is non zero, and none of the previous cases occur while a1 explores

the north-south ring, it means that a1 is intending to explore the next east-west

ring that starts from the next node to the north on the north-south ring. a1

then executes procedure “Single Agent Explores an east-west Ring” again and

increases nCount by one.

Pseudo Code

The pseudo code of procedures “Initialization” and “Single Agent Explores a north-

south Ring” are in Algorithm 33.

5.3.3 Procedure “Single Agent Explores an east-west Ring”

Algorithm Description

As a single agent, there are only two scenarios (Cases 6 and 8 in Figure 5.14) that

can trigger a1 to execute procedure “Single Agent Explores an east-west Ring”. In

this procedure, a1 sets yCount to zero and then keeps exploring on an east-west ring

starting from a node that is on the only north-south ring that a1 finished exploring.

While a1 explores the east-west ring, it walks with CWWT. Each time a1 explores

one more node, it increases yCount and nCount by one.

As Figure 5.15 shows: during the exploration there are eight possible Cases/Senarios

that may occur. Cases 1, 2, 3, 5, 7 are the same as Cases 1, 2, 3, 5, 7 in procedure

“Single Agent Explores a north-south Ring”. Consequently we now only explain Cases

4, 6 and 8, which are different from the cases in procedure “Single Agent Explores a

north-south Ring”:

• When a1 comes back to the node where it left its CWWT tokens (two tokens on

the east port), if there are two tokens in the middle and at least one token on
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Algorithm 33 Algorithm Modified ‘Cross Rings’ — Procedure “Initialization” and
“Single Agent Explores a north-south Ring”
1: Initialization:(upon initial wake-up in the HB)
2: xCount = 0, execute Single Agent Explores a north-south Ring(nCount)

3: procedure Single Agent Explores a north-south Ring(nCount)
4: repeat
5: keep exploring to north with CWWT and increases xCount
6: until A or B or C or D or E or F or G or H happens
7: if A: into a node with one token in the middle of a node then
8: become Passive immediately
9: else if B: into a node with two tokens on the east port then

10: move one token to the north port, one token to the middle of the node
11: add one more token to the middle of the node
12: execute Paired agent finds a Base ring(north)
13: else if C: into a node with two tokens on the north port then
14: move one token to the east port, one token to the middle of the node
15: add one more token to the middle of the node
16: execute Paired agent finds a Base ring(east)
17: else if D: go back to the node where you left your CWWT tokens and notice that

there is a token in the middle and at least one token on the east port of the node then
18: execute Paired agent find a Base ring(north)
19: else if E: into a node that either one token in the middle of the node and there are

also token(s) on a port of that node, or there is only one token on a port then
20: become Passive immediately
21: else if F: xCount = x then
22: nCount = 0
23: execute Single Agent Explores an east-west Ring(nCount)
24: else if G: noticing CWWT tokens are stolen then
25: become Passive
26: else if H: nCount 6= null and none of A to G is true then
27: execute Single Agent Explores an east-westRing(nCount)
28: nCount = nCount + 1
29: end if
30: end procedure
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Figure 5.15: Token configurations and their resulting actions in procedure “Single Agent
Explores an east-west Ring”.
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the north port of the node, it means that another single agent a2 encountered

a1, and it formed a pair with a1. When there are two tokens on the north port,

that means a2 is exploring the node to the north of the current node through

the north port. a1 then executes “Paired agent find a Base ring” to the east.

• When a1 notices nCount = n, it means that the only node that a1 did not

explore is the Bh. a1 then terminates the algorithm.

• When a1 comes back to the node where it left its CWWT tokens, if all the

CWWT tokens are stolen, it means that a paired agent eliminated a1. Hence,

a1 becomes Passive.

• When yCount = y happens, while a1 explores the east-west ring, it means that

a1 finished exploring this east-west ring. a1 then executes procedure “Single

agent exploring a north-south ring” for one node. If nCount is not empty and

none of Cases 1, 2, 3, 4, 5, 6, 7 happen, then a1 executes Case 8 in procedure

“Single agent exploring a north-south ring”.

Pseudo Code

The pseudo code of procedure “Single Agent Explores an east-west Ring” is in Algo-

rithm 34.

5.3.4 Procedure “Paired Agent Finds a Base Ring”

Procedure Description

In this subsection we explain procedure “Paired agent finds a Base ring”. The basic

idea and general description of this procedure is the same as procedure “Find a

Base Ring” in algorithm Cross Rings. There are two differences between the two

procedures:
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Algorithm 34 Algorithm Modified ‘Cross Rings’ — Procedure “Single Agent Ex-
plores an east-west Ring”
1: procedure Single Agent Explores an east-west Ring(nCount)
2: repeat
3: keep exploring to east with CWWT and increase yCount and nCount
4: until A or B or C or E or I or J or K or L happens
5: if A: into a node with one token in the middle of a node then
6: become Passive immediately
7: else if B: into a node with two tokens on the east port then
8: move one token to the north port, one token to the middle of the node
9: add one more token to the middle of the node

10: execute Paired agent finds a Base ring(north)
11: else if C: into a node with two tokens on the north port then
12: move one token to the east port, one token to the middle of the node
13: add one more token to the middle of the node
14: execute Paired agent finds a Base ring(east)
15: else if I: back to the node where you left your CWWT tokens and notice that there

is a token in the middle and at least one token on the north port of the node then
16: execute Paired agent find a Base ring(east)
17: else if E: into a node that either one token in the middle of the node and there are

also token(s) on a port of that node, or there is only one token on a port then
18: become Passive immediately
19: else if J: yCount = y then
20: execute Single Agent Explores a north-south Ring(nCount)
21: else if K: noticing CWWT tokens are stolen then
22: become Passive
23: else if L: nCount = n− 1 then
24: become DONE
25: end if
26: end procedure
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• The token(s) representation when the procedure starts are different. All the

differences between the two procedures are shown in Figure 5.16.

• Any time during this procedure, as long as an agent sees that there are two

tokens on the east port or north port of a node, it picks up the tokens. This is

because two tokens on a port represents a single agent. Hence, we let a paired

agent eliminate a single agent by stealing its CWWT tokens.

Once an agent a1 sees two tokens on a port of a node (the CWWT) of another

single agent a2, it modifies the token configuration in this node and becomes a paired

agent immediately. After a1 becomes a paired agent, it executes procedure “Paired

Agent Finds a Base Ring”. Once an agent a2 becomes a paired agent (after seeing the

modified token configuration a1 left to it) it also executes procedure “Paired Agent

Finds a Base Ring”. We call this node with the modified token configuration the

homebase (HB for brevity as used earlier) of these two paired agents. It is worth

repeating that if a1 executes “Paired Agent Finds a Base Ring” to the north, then a2

will execute “Paired Agent Finds a Base Ring” to the east, or vice versa.

Upon starting procedure “Paired Agent Finds a Base Ring” to the north (the

description and pseudo code for executing the procedure to the east can be converted

according to Table 5.1 in Subsection 5.4.1) a paired agent a1 keeps walking to the

north with CWWT, until it goes back to the HB of this pair. It is possible to have

the following two token configurations in this node:

• there is 1 token on the north port and two tokens in the middle of their HB (and

maybe another token on the east port if the other paired agent a2 is exploring

the node to the east after being a paired agent)

• there are 2/3 (2 or 3) tokens in the middle of the node.
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Figure 5.16: The comparison table of procedures “Find a Base Ring” in algorithm Cross
Rings and procedures “Paired Agent Finds a Base Ring” in algorithm Modified ‘Cross
Rings’.
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In the former case, the north-south ring becomes the Base ring. a1 informs a2

of this result by picking up the token on the north port. It is very important to

know that a1 is going to reuse this token as a UET in the procedure it then executes:

“Paired Agent Explores the east-west Rings”. In the latter case, 2 tokens in the

middle of the HB shows that the second agent a2 finished exploring the east-west

ring before a1 finished exploring the north-south ring. So, the east-west ring becomes

the Base ring. a1 then keeps walking to the east until it sees 1 token (the UET as

defined earlier) in the middle of a node. It then executes procedure “Paired Agent

Advances in the Base ring” to the east port. If there are 3 tokens in the middle, the

third token in the middle is a UET. This means a2 is exploring the first east-west ring

as a paired agent. Hence, a1 executes procedure “Paired Agent Advances in the Base

ring” to the east port immediately.

When the second agent a2 walks back to theHB of this paired agent after exploring

the east-west ring, there are either 2 tokens in the middle of the HB or 3 tokens in

the middle of the HB or 1 token on the north port and 2 tokens in the middle of their

HB. In the first case, a1 informed a2 that the north-south ring is the Base ring. a2

keeps walking to the north until it arrives in the node with a UET in the middle. It

then executes procedure“Paired Agent Advances in the Base Ring” to the north. In

the second case, a2 sees 3 tokens in the middle. This means that not only a1 informed

a2 that the north-south ring becomes the Base ring, but also that a1 is exploring the

east-west ring that a2 just finished. Then a2 will execute procedure “Paired Agent

Advances in the Base Ring” to the north. In the third case, a2 decides that the

east-west ring is the Base ring and picks up the token on the north port of the pair’s

HB. a2 then executes procedure “Paired Agent Explores the east-west Rings” to the

east.

During the execution of this procedure, there are two other possible scenarios:
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• as soon as a1 or a2 goes into a node with 2 tokens on any of a port (the indication

of a single agent), it will pick up all the tokens then continue.

• as soon as a1 or a2 notice its CWWT token is moved, it will execute procedure

“Paired Agent Bypasses”.

Pseudo Code

The pseudocode of procedure “Paired Agent Finds a Base Ring” in algorithm Modi-

fied ‘Cross Rings’ is in Algorithm 35.

5.3.5 The Rest of the Algorithm

As we mentioned in Subsection 5.4.1, the idea of solving the Bhs problem with

scattered agents is to let two of the three agents to form pairs, then let the paired

agents execute algorithm Cross Rings starting from the node (their HB) where they

formed a pair. In the previous three subsections, we explained how do the agents form

a pair and how a pair of agents finds a Base ring. From this point on, the procedures:

“Paired Agent Explores the north-south/east-west Rings”, “Paired Agent Advances

In the Base Ring”, “Paired Agent Bypasses on Torus” and “Paired Agent Goes back

to the Dangerous Ring — Torus” used by this pair of agents are almost the same as

the procedures: “Explore the north-south/east-west Rings”, “Advance In the Base

Ring”, “ Bypass on Torus” and “Back to the Dangerous Ring — Torus” of algorithm

Cross Rings.

Beyond the scenarios already discussed in these four procedures in algorithm Cross

Rings, there is one extra scenario that occurs in each of these four procedures in

Algorithm Modified ‘Cross Rings’:

• as soon as an agent goes into a node with 2 tokens on any of a port (the
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Algorithm 35 Algorithm Modified ‘Cross Rings’ — Procedure “Paired Agent Finds
a Base Ring”
1: procedure Paired Agent Finds a Base Ring(ForS)
2: if ForS = F then
3: repeat
4: keep walking to the north with CWWT
5: if there are 2 tokens on a port then
6: pick up the two tokens
7: end if
8: until M or N or P happens
9: if M: there is 1 token on the north port and 2 tokens in the middle then

// north-south ring becomes the Base ring
10: pick up the token on the north port
11: execute Paired Agent Explores the east-west Rings(x,yCount) to the

east
12: else if N: there are 2 tokens in the middle of the node then // east-west ring

becomes the Base ring
13: keep walking to the east until going into the node with a UET
14: execute Paired Agent Advances In the Base Ring(east)
15: else if P: there are 3 tokens in the middle then
16: execute Paired Agent Advances In the Base Ring(east)
17: end if
18: else if

then
19: repeat
20: keep walking to the east with CWWT
21: if there are 2 tokens on a port then
22: pick up the two tokens
23: end if
24: until M or N or P happens
25: if M: there is 1 token on the north port and 2 tokens in the middle then

// east-west ring becomes the Base ring
26: pick up the token on the north port
27: execute Paired Agent Explores the north-south Rings(y,xCount) to

the north
28: else if N: there are 2 tokens in the middle of the node then // north-south

ring becomes the Base ring
29: keep walking to the north until going into the node with a UET
30: execute Paired Agent Advances In the Base Ring(north)
31: else if P: there are 3 tokens in the middle then
32: execute Paired Agent Advances In the Base Ring(north)
33: end if
34: end if
35: end procedure
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indication of a single agent), it will pick up all the tokens and then continue.

Beyond the scenario mentioned above and the scenarios in procedure “Bypass

on Torus” and “Back to the Dangerous Ring — Torus” in algorithm Cross Rings,

we emphasize one little detail in procedures “Paired Agent Bypasses on Torus” and

“Paired Agent Goes back to the Dangerous Ring — Torus” in algorithm Modified

‘Cross Rings’:

• Each time one of the paired agent initiates a Bypass, one extra token will be

put in the middle of the node in which a CWWT token also needs to be moved.

We obtain the four procedures: “Paired Agent Explores the north-south/east-

west Rings”, “Paired Agent Advances In the Base Ring”, “Paired Agent Bypasses on

Torus” and “Paired Agent Goes back to the Dangerous Ring — Torus” by

• First, adding the following lines into each of the four procedures mentioned

above in algorithm Cross Rings:

Algorithm 36 Algorithm Modified ‘Cross Rings’ — Extra Lines
1: if there are 2 tokens on a port then

2: pick up the two tokens

3: end if

• Second, adding the following line after lines 5 and 10, in the pseudo code of

procedure “Bypass on Torus”, and after line 25, in the pseudo code of procedure

“Back to the Dangerous Ring — Torus” in algorithm Cross Rings: Algorithm

31:

Algorithm 37 Algorithm Modified ‘Cross Rings’ — Another Extra Line
1: put 1 token in the middle of this node
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5.3.6 Correctness and Complexity Analysis

Correctness

Lemma 42 One pair will be formed within finite time.

Proof: According to the algorithm, as long as one single agent sees the tokens of

another single agent, it will be able to modify the tokens immediately and become a

paired agent consequently. If the other agent has already died in the Bh and thus

never comes back, we still say a pair is formed. Otherwise, the other agent will come

back to pick up its CWWT token sooner or later. Eventually it will see the modified

token configuration and, in turn, become a paired agent consequently. Now we only

need to prove that at least one single agent will see the tokens of another single agent.

Assume there is no such single agent that will see the tokens of another single agent

before the algorithm terminates. According to procedure “Paired Agent Explores a

north-south Ring”, once an agent wakes up, it is a single agent, and it will try to

explore the north-south ring starting from the node in which it wakes up. If this

single agent finishes exploring the north-south ring without:

1. dying in the Bh; or

2. seeing the token(s) of another agent (if it sees two tokens on a port then it forms

a pair with that agent, if it sees one token on a port or one token in the middle

of a node, then it becomes passive); or

3. being eliminated by a paired agent (having its CWWT tokens stolen).

this single agent is going to explore all the east-west rings until it:

• either dies in the Bh; or

• forms a pair with another single agent upon seeing the tokens of it; or
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• becomes Passive upon seeing one token on a port or one token in the middle of

a node or, noticing its CWWT tokens were stolen; or

• terminates the algorithm upon finishing exploring n− 1 nodes (n− 2 links).

We know the following facts:

1. All three (minimum team size) agents execute the same algorithm.

2. All single agents walk with CWWT.

3. According to the assumption: if no single agent sees the token of another single

agent before the algorithm terminates, these agents must have died in the Bh.

4. Any single agent only leaves through the north and/or east ports of a node,

then, a single agent can only go into a Bh through a link connecting to the

south and/or west ports of the Bh.

Consequently, one single agent will see the CWWT token of another single agent

that died in the Bh either in the node to the west of the Bh or to the south of the

Bh. This contradicts the assumption we made at the beginning of this proof: “there

is no such a single agent that will see the tokens of another single agent before the

algorithm terminates”. So, the assumption is wrong. We therefore conclude that

sooner or later at least one single agent will see the tokens of another single agent

before the algorithm terminates. We also already proved that as long as one single

agent sees the tokens of another single agent, they can form a pair correctly. Hence,

eventually there will be a pair formed within finite time.

2

According to Lemma 42 that we proved in Subsubsection 5.2.5, we can obtain the

following lemma:
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Lemma 43 At least one agent will find a Base ring in the torus.

Proof: As we explained in Subsubsection 5.3.4, there are only two small changes

being made to procedure “Find a Base Ring” in order to adapt it to the Bhs with

scattered agents. The comparison between the two procedures “Paired Agent Finds

a Base Ring” and “Find a Base Ring” is given in detail in Figure 5.16. We can see

from the columns: “co-located agent” and “scattered agent, case 1”, that once we

give the same meaning to the token configurations of procedures “Paired Agent Finds

a Base Ring” as those of procedure “Find a Base Ring”, then the triggers for the

same meaning will get the same action.

Beyond all the functions in procedure “Find a Base Ring”, procedure “Paired

Agent Finds a Base Ring” makes a paired agent pick up all the CWWT tokens of a

single agent. According to the token configurations and their meanings explained in

Figure 5.13, 2 tokens on a port has one and only one meaning, namely, the CWWT

tokens of a single agent. So, a paired agent will pick up the tokens without causing

any problem.

Finally according to Lemma 42, at least one agent will find a Base ring in the

torus using Algorithm Cross Rings. Hence, at least one agent will find a Base ring in

the torus using algorithm Modified ‘Cross Rings’.

2

Lemma 44 A single agent will not interfere with the progress of any paired agent.

Proof: In procedure “Single Agent Explores a north-south ring” and “Single Agent

Explores an east-west ring”, as soon as a single agent sees one of the following token

configurations, it will immediately become Passive:

• Case 1: there is only one token on a port.
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• Case 2: as long as there is one token in the middle of a node.

• Case 3: its CWWT tokens were stolen. Namely, it no longer has 2 tokens on

the port.

The above token configurations cover all the token configurations relevant to a

pair agent.

In all the procedures that a paired agent executes, we added “eliminate single

agent” steps, as shown in Algorithm 37 in Subsection 5.3.5. Such steps ensure that

when either a paired agent encounters a single agent, or a single agent encounters a

paired agent, the single agent will become Passive eventually. Hence, a single agent

will not interfere with the progress of any paired agent.

2

Lemma 45 The Bypass technique can be correctly executed by a pair of agents.

Proof: The only modification we did to procedure “Bypass on Torus” in algorithm

Cross Rings is that we add one token in the middle of a node when one agent notifies

the other agent to bypass. This extra token is used to eliminate the single agent (once

the single agent sees a token in the middle, it will become Passive immediately), and

it is used every time one agent bypasses another agent.

As we mentioned in the previous section, a paired agent uses one token on the port

to continue its CWWT. When a single agent sees a token on a port, it immediately

becomes Passive. When a paired agent sees there is only one token in a node and it

is in the middle of this node, it will pick up the token before it continues exploring

the next node. Hence, there is no possibility of having a token in the middle and a

token on the port of a node, except for a paired agent trying to bypass another paired

agent.

2
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Lemma 46 At most 2 agents die in the Bh.

Proof:

Assume a single agent died in the Bh first, and had its CWWT token left in the

neighbor node of the Bh. Normally no agent can go through a port with CWWT

token(s), according to the CWWT rules defined in chapter 3. But according to algo-

rithm Modified ‘Cross Rings’, when a paired agent encounters the 2 CWWT tokens

that a single agent left, it will pick them up and continue executing the algorithm.

If this happens, this paired agent will leave its CWWT token on the port where the

CWWT tokens of that single agent were picked up, and this paired agent will die in

the Bh. According to Lemma 37 in algorithm Cross Rings at most 1 agent dies in

the Bh when there are two co-located agents. Hence, at mosts one of the two paired

agent will die in the Bh, and thus at most 2 agent die in the Bh during Algorithm

Modified ‘Cross Rings’.

2

Lemma 47 Within finite time one agent will determine the location of the Bh.

Proof:

As we proved in Lemma 43, a pair will be formed within finite time. After a pair

is formed, its agents execute the procedures in algorithm Cross Rings with a little

modification, namely: eliminate the single agents. It is obvious that this step takes

O(1) time. And recall that we proved in Lemma 38 that within finite time one agent

will determine the location of the Bh using algorithm Cross Rings. Hence, within

finite time, an agent will determine the location of the Bh using algorithm Modified

‘Cross Rings’.

2
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Complexity Analysis

Lemma 48 Three agents with a maximum of seven (7) tokens in total are sufficient

to locate the Bh in a labeled torus with scattered agents.

Proof:

According to Lemma 46 and 47, 3 agents are sufficient to locate the Bh.

We now prove that maximum 7 tokens are sufficient in order for three agents to

locate the Bh.

We have to make a difference between the CWWT tokens of a single agent and

to a paired agent, because of the following two facts:

• we have to have at least 3 agents in the torus when these are scattered in order

to have one agent survive and eventually locate the Bh, see Lemma 41.

• Algorithm Cross Rings locates the Bh correctly with 2 co-located agents.

We can either use 2 tokens on port as the CWWT tokens of a single agent and

1 token on the port as the CWWT token of a paired agent, or vice versa. After

analyzing these two choices, we conclude that both use the same number of tokens in

total (7 or less). We arbitrarily decided to choose the first of these two alternatives

for our algorithm. Now we are going to prove that 7 tokens in total is sufficient.

• When the algorithm starts, two tokens are needed for a single agent to explore

the north-south ring then all the east-west rings. Hence, 3 ∗ 2 = 6 tokens are

required in total for three single agents.

• Two tokens are used to form a pair. The agent a1 that initiates forming a pair

will use the 2 CWWT tokens of the other single agent. The fact is that as soon

as an agent becomes a paired agent, it only uses 1 token as its CWWT token.

So, beyond the 1 token a1 is going to use for CWWT as a paired agent, there
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will be one extra token that can be reused in other situations. When the other

single agent a2 comes back from its CWWT, it becomes a paired agent upon

seeing the modified token configuration. One token (CWWT token) is needed

for a2 to continue as a paired agent. Given the 2 CWWT tokens of a2 are used

for finding a Base ring, 1 additional token is required by a2. It is also possible

that by the time a1 formed a pair with a2, a2 has already died in the Bh. In

this case, the extra token is not required.

• One token is used as a UET. This is because an agent can always use temporarily

the CWWT token as the second UET (see Lemma 39). Given a1 has an extra

token and leaves it in the middle of the new HB, this extra token can be used

as a UET.

• One token is used for the “Bypass” (including step “Back to the Dangerous

Ring”) procedure. This bypass ing is only going to happen once all but one

north-south/east-west ring has been explored. So, there is no need for keeping

the UET. The UET will be reused for bypass ing.

Hence, seven (7) tokens in total are sufficient to locate the Bh in a labeled torus with

scattered agent.

2

Lemma 49 O(n) moves is sufficient using algorithm Modified ‘Cross Rings’.

Proof: We proved in Lemma 42 that within finite time there will be one pair formed

before the algorithm terminates. In the worst case, each single agent traverses the

whole torus before it either dies in the Bh or forms a pair with another single agents.

So, it takes at most 3n moves for an agent to traverse the torus using CWWT. For

three single agents, it costs 3 ∗ 3n moves in total.
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It is important to observe that none of the modifications we introduced to algo-

rithm Modified ‘Cross Rings’ affects the number of moves. And we know that once

an agent becomes a paired agent, O(n) moves is sufficient to locate the Bh, according

to Theorem 15 in algorithm Cross Rings.

Hence, O(n) moves in total is sufficient for the three agents to locate the Bh.

2

According to the lemmas proved above, and following the lower bound from the

whiteboard model presented in [42], we can conclude:

Theorem 16 Using three (3) scattered agents and seven (7) tokens in total, the Bh

can be successfully located using Θ(n) moves in a labeled torus with n nodes.

5.4 Algorithm Single Forward — The Case of k Scattered Agents

5.4.1 Assumptions

In this section, we study the Bhs problem in a labeled torus (labeled the same as

described in Subsection 5.2.1) with k (k > 3) scattered mobile agents. Here, k is not

known to any of the agents. The number of nodes n and the dimension of the torus

x×y in this torus are known to all the scattered agents. In this section, we do require

that all the links and nodes obey the FIFO rule. Also, the CWWT technique is used

through out this section.

We develop a simple algorithm Single Forward that can locate the Bh with 1

token per agent and O(k2n2) moves in total using k scattered agents. The general

idea is explained in the following subsection.
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5.4.2 General Description

The agents are in three basic states: single, forward and checking. Each agent tries to

explore the whole torus on its own. An (either single or forward or checking) agent

always goes for an unexplored node reachable from its current location using only

north and east links. An agent will never go through a west or south port unless it

knows that port is safe. This (together with CWWT ) ensures that at most two agents

enter the Bh. An agent is able to remember the number of nodes that it explored.

Once an agent wakes up, it is a single agent. A single agent as becomes a forward

agent, when it finds a token on a port which as wants to go and it has to go through

another unsafe port (east port). In other words, when an agent arrives to a node,

if further progress is blocked (at least one of the unsafe north/east ports is blocked

(with token)), that port becomes a Check Point for that agent. If there is no other

unsafe north or east port available (without token), a single agent remains its state

and wait in the node after putting one token in the middle. as continues as a single

agent if the port it wants to go becomes without token.

A forward agent af continues exploring the torus, until it goes into a node u,

with at least one token in the middle. We say this node is the second Check Point

of this forward agent. af immediately becomes a checking agent ac that checks the

availability of these two Check Points. If both are unavailable then ac chooses one

Check Point to wait. When either of the two Check Point becomes without token,

ac continues as either a forward agent or a single agent. Eventually an agent that

explored n− 1 nodes will terminate the algorithm and locate the Bh.

The whole algorithm can be summarized as follows:

• single agent — has no Check Point, explores and becomes forward if blocked;

• forward agent — has one Check Points, explores and becomes checker if blocked
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again;

• checking agent — has two Check Points, sits at one Check Point and upon any

change checks the other Check Point. Becomes a forward agent when one of the

Check Points unblocks without token, a single agent if both of them unblocked.

Beyond this high-level description, there are some details for each procedure.

Procedures “Single Agent” and “Forward Agent” are described in the following two

subsections.

5.4.3 Procedures “Initialization” and “Single Agent”

Detailed Description

Upon waking up, an agent a1 executes procedure “Single Agent” of the algorithm.

In procedure “Single Agent” a1 explores the north-south ring starting from its HB,

using CWWT with one token on a port. a1 always goes for an unexplored node

reachable from its current location using only north and east links. If we call ‘first

choice’ the port that a1 attempts to go through during its normal exploration, we will

call ‘second choice’ the other port that eventually leads to another unexplored node.

During the exploration, a1 keeps counting the number of nodes it explored so that a1

can terminate the algorithm once it explored n− 1 nodes.

The exploration continues until a1 goes into a node with one token on the ‘first

choice’ port. If there is also a token on the ‘second choice’ port, then a1 waits in the

node as a single agent. Once the ‘first choice’ port becomes without token, then a1

continues its exploration through that port as a single agent. Once the ‘first choice’

port becomes without token, then a1 puts a token on that port and becomes a forward

agent.
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Pseudo Code

The pseudo code of procedures “Initialization” and “Single Agent” is given in Algo-

rithm 38.

Algorithm 38 Algorithm Single Forward — Procedure “Initialization” and “Single
Agent”
1: Initialization:(upon initial wake-up in the HB)
2: execute Single Agent(nCount)

3: procedure Single Agent(nCount)
4: repeat
5: keep exploring the next unexplored node reachable from its current location using

only north and east links, keep counting the nodes explored in nCount
6: until A: arrive in a node with the ‘first choice’ port blocked; or B: nCount = n− 1

happens
7: if A happens then
8: if there is also a token on the ‘second choice’ port then
9: repeatwait in the node

10: until either the ‘first choice’ or ‘second choice’ port becomes unblocked
11: if the ‘first choice’ port becomes unblocked then
12: execute Single Agent(nCount)
13: else
14: puts a token on that port, remember it as a Check Point and execute

Forward Agent(nCount)
15: end if
16: else
17: puts a token on that port, remember it as a Check Point and execute For-

ward Agent(nCount)
18: end if
19: else if B happens then
20: become DONE, the last node without being explored is the Bh
21: end if
22: end procedure
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5.4.4 Procedures “Forward Agent” and “Checking Agent”

Algorithm Description

A forward agent af continues exploring the next unexplored node reachable from its

current location using only north and east links until it goes into its next Check Point

u. If the ‘second choice’ port is without token, af remembers this second Check Point,

then put a token on the ‘second choice’ port and continues its exploration through

this port as a forward agent. Otherwise, if both north and east ports are blocked, af

becomes a checking agent immediately.

If a checking agent ac notices that there is no token in the middle of u, then ac

waits in the node until either the ‘first choice’ or the ‘second choice’ port become

without token or the number of tokens in the middle changes. When a ‘Choice’ port

becomes without token, then ac continues accordingly. When there is a change in

the number of tokens in the middle of the node, then ac goes back to the previous

Check Point to check the availability. If there is at least one token in the middle of

u, it then immediately goes back to its previous Check Point v. If v is empty, then

ac becomes a single agent if v is the first Check Point. Otherwise, ac continues as

a forward agent. In either case, it keeps exploring the torus accordingly. If v is not

empty, then ac leaves a token in the middle of the node and goes back to u. If now u

still has at least one token in the middle, then ac goes back to v and waits there. But

if there is no token in the middle of u any more, then ac goes back to v to pick up its

token from the middle and return to u. Once both Check Point become unblocked,

ac will become a single agent immediately and continue the exploration. If only one

of the Check Point is unblocked, ac will continue the exploration as a forward agent.
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Pseudo Code

The pseudo code of procedures “Forward Agent” and “Checking Agent” is in Algo-

rithm 39 and 40.

Algorithm 39 Algorithm Single Forward — Procedure “Forward Agent”
1: procedure Forward Agent(nCount)
2: repeat
3: keep exploring to the next unexplored node from the current node through either

the north port of the east with CWWT and increase nCount
4: until see another Check Point v
5: if the ‘second choice’ port is not blocked then
6: put a token on that port, remember this Check Point, then execute Forwar

Agent(nCount)
7: else if the ‘second choice’ port is also blocked then
8: if there is no token in the middle of the node then
9: repeat

10: wait in the node
11: until either E or F happens
12: if E: there is a change in the number of tokens in the middle then
13: execute Checking Agent(nCount)
14: else if F: a port is unblocked then
15: remember this node as another Check Point ; execute Forward

Agent(nCount)
16: end if
17: else
18: execute Checking Agent(nCount)
19: end if
20: end if
21: end procedure

5.4.5 Correctness and Complexity Analysis

Lemma 50 The algorithm progresses correctly.

Proof: According to the definition of single agent and forward agent, an agent is a

single agent as long as it continues its exploration without meeting any other agent

in its normal exploration route. Once a single agent has to give up the current

exploration route and choose another unexplored node, it becomes a forward agent.
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Algorithm 40 Algorithm Single Forward — Procedure “Checking Agent”
1: procedure Checking Agent(nCount)
2: go back to your previous Check Point v
3: if there is a token on the ‘first choice’ port in v then
4: leave a token in the middle of the node and go back to u
5: if u still has at least one token in the middle then
6: go back to v and waits there
7: else if there is no token in the middle of u then
8: if both north and east ports are with token then
9: goes back to v to pick up your token from the middle and return to u

10: execute Forward Agent(nCount)
11: else if the ‘first choice’ port is without token then
12: execute Forward Agent(nCount)
13: else
14: remember this node as another Check Point ; execute Forward

Agent(nCount)
15: end if
16: end if
17: else if there is no token in v then
18: execute Single Agent(nCount)
19: end if
20: end procedure

This change of route is caused by being blocked (i.e., stops exploring and after seeing

a token on the port it wants to take) by another agent. A forward agent will either

wait in a blocked (with token) node or continue its exploration when a ‘choice’ port

becomes without token.

From procedure “Check the Previous Check Point”, we can see that it is impossible

to have all the forward agents being blocked in one node. When there are two or more

agents being blocked, at least two Check Points must each have a forward agent in it.

Given there is only one Bh, either Check Point will eventually be empty. The agent

in it will be able to continue its exploration. In finite time, at least one node will be

explored by one agent. Hence, the algorithm progresses correctly.

2
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Lemma 51 Within finite time at least one agent will survive and determine the lo-

cation of the Bh.

Proof:

Lemma 50 proves that, in finite time, at least one node will be explored by one

agent. According to our algorithm, such exploration continues until one agent explores

n− 1 nodes. Given there is only one Bh, and an agent can only go through a north

or east unsafe port, so, at most 2 agents will die in the Bh. Also, we assumed that

there are k (k > 3) agents in this torus. Hence at least one agent survives. The

surviving agent keeps exploring until one of the surviving agent explored n−1 nodes.

This agent then terminates the algorithm immediately. The only node left without

being explored is the Bh.

2

Lemma 52 One token per agent suffices using algorithm Single Forward to locate

the Bh.

Proof: In algorithm Single Forward, there is no communication (message exchanging)

between the agents. The only use for tokens is to complete the CWWT. There is no

need to differentiat a single agent and a forward agent. So, one token per agent allows

the agents to finish the task correctly.

2

Lemma 53 k (k > 3) scattered agents can locate the Bh after executing O(k2n2)

moves using Algorithm Single Forward.

Proof: During the entire lifespan of an agent a1, a1 can explore no more than n− 1

nodes. a1 can also be blocked in a node by another agent (that may have died in

the Bh). Once a1 is blocked, it will either continue its exploration or go back to the
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previous Check Point to check the availability (i.e., whether it still has tokens in it)

of that node. Each such check takes at most n moves. Only a change in the number

of tokens can possibly trigger such a check. And only the entry or exit of a single or

forward agent will trigger a change in the number of tokens, because no token is used

for a checking agent to execute a check. In each node, there is a constant number

of entry and exists preceeding the visit of a single or forward agent. So there are at

most k such checks, because there are k agents in total. Hence, O(k2n2) moves in

total are executed by k agents.

2

According to the above lemmas, the following theorem follows:

Theorem 17 Using k (k > 3) scattered agents and one token per agent, the Bh can

be successfully located using O(k2n2) moves in a labeled torus with n nodes.



Chapter 6

Black Hole Search in Complete Networks

6.1 Topological Characteristics

A complete graph is an undirected graph with an edge between every pair of vertices.

This means every node has a direct connection (i.e., there is only 1 link between the

two nodes) to any other node in the graph. Let Kn denote the complete network with

n nodes. Then Kn has n(n− 1)/2 edges and is a regular graph of degree ∆ = n− 1.

A complete graph/network is maximally connected because the only vertex cut that

disconnects the graph is the complete set of vertices. The positive consequence of

this observation is that an agent can traverse the whole graph using a very simple

algorithm with only Θ(n) moves (see the figure on the left of Figure 6.1).

HB

Figure 6.1: Left: The simplest way for an agent to traverse a unlabeled complete network.
Right: n− 1 agents wander into the Bh once they wake up.
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Unfortunately, if the agents are scattered, even if there are n − 1 agents, one in

each non-Bh node, it is possible that they all walk to the Bh as soon as they wake

up (see the figure on the right of Figure 6.1). According to Observation 1, at least n

scattered mobile agents are needed to locate the Bh.

6.2 Assumption, Basic Technique and Observations

In this chapter, we are going to study the Bhs problem in a complete network. A

team of anonymous co-located agents is used to solve the problem in Section 6.3. A

team of anonymous scattered agents is used to solve the problem in Section 6.4. In

both cases, the complete network is anonymous and the FIFO rule is not required on

links or on nodes. We will assume n is known to all the agents. Unlike most of the

algorithms in this dissertation, the two algorithms we develop in this chapter do not

use the CWWT introduced in Chapter 3.

We remark that a complete graph is a loop graph [105]. Any complete graph

with more than two vertices is Hamiltonian. We know we can locate the Bh with

O(n log n) moves, according to the Bhs with tokens on the ring topology. Since a

complete network has full connectivity, clearly it has a chordal ring 8and thus that we

can solve Bhs in Θ(n) moves with an algorithm using 2 agents and one token in total

if the agents are co-located. Indeed, we develop a very simple algorithm called Take

Turn to locate the Bh using co-located agents in a complete network. Algorithm

Take Turn is presented in Section 6.3. For the scattered agents case, we prove later

that n or more scattered agents can locate the Bh in an unoriented complete network

with 1 token per agent and maximum of n2 moves in total.

8A chordal ring is an augmented ring, or a circulant graph with a chord of length 1 [6].
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6.3 Bhs in a Complete Network with Co-located Agents

In this section, we are going to study the Bhs problem in a un-oriented complete

network, that is, one in which the links are assumed to be undirected. However,

it is important to note that, even without orientation, co-located agents may agree

on an order of traversal for the links of their HB. More precisely, when agents are

co-located, they share a common reference (e.g., indexing) mechanism for the n − 1

links of their HB and thus can share a common order of traversal of these links. For

simplicity, we will say the links are traverse ’clockwise’ when going from the lowest

to the highest index, ’counterclockwise’ otherwise (This is merely a convention and

the actual order of traversal could be defined differently, as long as it is shared by

co-located agents.). A team of two anonymous co-located agents is used to solve the

problem. We can imagine the complete network as a star shape network with a node

(which we will take to be the HB of a pair of co-located agents) in the middle, see

Figure 6.2.

The idea is very simple: once an agent a1 wakes up, it puts one token on a port

of its node, which it views as its HB. a1 then explores the node reachable from this

port. When a1 comes back (we assume that a1 is able to remember the port that it

just visited.) to its HB after exploring a node, if the token of a1 is still at the port

where it was left, then a1 will move this token to the next port clockwise, and repeat

this exploration step. Once the second agent a2 wakes up, it moves the token of a1

to the next clockwise, and explores the node accessible through this port. When an

agent comes back from the exploration of a node, if it sees the token it left is missing,

then this agent finds the port with one token, moves this token to the next port

clockwise (we assumed that the orientation can be agreed between all the co-located

agents) and starts exploring another node through this port. During this process,

an agent keeps counting (using variable nCount) the number of ports it visited (i.e.,
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Homebase

Figure 6.2: The Star Shape Complete Network of 24 nodes with the HB of a pair of
co-located agents in the middle

ports it used to access nodes to explore) or passed (i.e., ports that are between the

port this agent just visited and the port that currently has a token). As soon as one

agent notices that this total (of ports being counted) reaches n− 1, it terminates the

algorithm immediately. It is important to know that we use another variable bhCount

to record the location of the Bh.

When an agent ai (i=1 or 2) takes over the token from the other agent aj (when

i = 1, j = 2, when i = 2, j = 1) that is exploring a new node, it is not clear whether

aj died in the Bh or is just exploring a node through a slow link. So, each time an

agent ai moves the token used by partner aj to the next port, ai resets the variable

bhCount to 0, then keeps increasing it by one each time it explores a new node. Recall

that variable nCount is incremented as ports are used. ai terminates the algorithm

as soon as it realizes nCount reaches n − 1, at which point bhCount indicates the

location of the Bh: the bhCountth port counter clockwise leads to the Bh.
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6.3.1 Algorithm Take Turn

Algorithm 41 Algorithm Take Turn — Procedure “Initialization” and “Take Turn”
1: procedure Initialization
2: wake up, bhCount = 0, nCount = 0
3: execute Take Turn(bhCount,nCount) clockwise
4: end procedure
5: procedure Take Turn(bhCount,nCount)
6: if there is no token on any port in the node then
7: choose a port randomly, put a token on it
8: else
9: move the token to the next port clockwise, bhCount + +, nCount + +

10: end if
11: repeat
12: go to the next node via this port then come back through the same link
13: if there is no token on that port then
14: bhCount = 0
15: count the number of ports clockwise and increase nCount until you see a

token
16: move this token to the next port clockwise, bhCount + +, nCount + +
17: execute Take Turn(bhCount,nCount) clockwise
18: else
19: move the token to the next port clockwise, nCount + +
20: bhCount + + if bhCount 6= 0
21: execute Take Turn(nCount,bhCount) clockwise
22: end if
23: until nCount = n− 1
24: become DONE, the bhCountth port counter clockwise leads to the Bh.
25: end procedure

6.3.2 Correctness and Complexity

The left figure in Figure 6.1 shows that any complete network has a subgraph [69]

that allows one node connection to all the other nodes in a complete network. Figure

6.3 shows that there are n−1 links connected to the HB of these 2 co-located agents.

Let Sn denote such a subgraph of complete graph Kn.

Lemma 54 Each link in Sn will be traversed once and by one and only one agent.
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n−1 links connecting to n−1 nodes

Figure 6.3: The Star Shape Complete Network with the HB of a pair of co-located agents
in the middle

Proof:

From algorithm Take Turn we observe:

• An agent does not leave a token unless there is no token in its HB.

• An agent does not go to explore a node before it leaves a token on the port

leading to that node.

• An agent only moves a token to another port if there is a token in the node and

the token is on a port.

• An agent increases variable nCount by one after visiting a port or passing every

port between the last visited port and the port with a token clockwise.

• An agent terminates the algorithm as soon as the variable nCount reaches n−1.

So, no link will be traversed more than once. Hence, each link in Sn will be traversed

once by one and only one agent.

2

Lemma 54 and the fact that there is only one link in this subgraph that leads to

a Bh, clearly leads to Lemma 55, which is trivial to prove.

Lemma 55 There is at most one agent that dies in the Bh using Algorithm Take

Turn.
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Lemma 56 The surviving agent will locate the Bh correctly.

Proof: From Lemma 56, we know that one agent survives. Once an agent a1 dies in

the Bh, the other agent a2 will move the token to the next port clockwise. Variable

bhCount is reset to 0 and is used by a2 to record the location of the port that leads

to the Bh. Each time a2 moves the token to another port, it increases both nCount

and bhCount by one. a2 continues until nCount reaches n − 1. a2 terminates the

algorithm immediately. The bhCountth port counter clockwise is the port that leads

to the Bh. Hence, the surviving agent will locate the Bh correctly.

2

Lemma 57 Two agents can locate the Bh within n moves.

Proof: Given the size of the complete network is n, there are n− 1 nodes (including

the Bh) connecting to the HB of the two co-located agents. According to Lemma

54, each link will be explored once and only once. So, at most 2(n − 1) moves are

required to locate the Bh. Hence O(n) moves suffice for the two agents to locate the

Bh.

2

According to the above Lemmas, and following the lower bound from the white-

board model presented in [42], we conclude:

Theorem 18 Using two (2) co-located agents and one (1) token in total, the Bh can

be successfully located in a complete network of n nodes, with Θ(n) moves in total.

6.4 Bhs in a Complete Network with Scattered Agents

.
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6.4.1 Some Basic Observations, Assumptions and Conclusions

According to Observation 1, in this section we use:

• a team of n scattered agents for Bhs in a complete network.

Our immediate question is: are n scattered agents enough to locate the Bh? If

so, how many tokens do they need?

We remark that, in order to locate the Bh, there is a simple solution:

Upon one agent wakeing up, it leaves a token in the middle of its HB and waits.

This agent start executing algorithm Take Turn as soon as its token is moved to a

port of its HB. If an agent wakes up in a node that has a token in the middle, then

this agent starts executing algorithm Take Turn immediately. Once an agent wakes

up in a node that has a token on a port of its HB, it becomes Passive immediately.

Eventually, maximum of n/2 pair of agents will execute algorithm Take Turn and

finally locate the Bh. Given algorithm Take Turn requires n moves, n/2 ∗ n = n2

moves in total suffice with n scattered agents. 1 token per agent for n agents suffice

to correctly locate the Bh. Hence we get the following theorem:

Theorem 19 Using n or more scattered agents, one (1) token per agent and O(n2)

moves, the Bh can be successfully located in an un-oriented complete network Kn.

Proof: According to the above description, only the agents that have at least two

agents will execute algorithm Take Turn. We know that an agent that executes

algorithm Take Turn will go back to its HB as soon as it explores a non-Bh. So,

whether a node is with or without token(s) will not affect the behavor of this agent.

It will executing algorithm Take Turn, ignoring the tokens in any other nodes but

its HB. Eventually at least one agent will locate the Bh correctly. Given a pair of

agent execute n moves during the algorithm, and there are maximum n/2 such pairs,
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O(n2) moves are executed during the entire algorithm. Hence after O(n2) moves, n

scattered agents with one token each will locate the Bh in a unoriented complete

network.

2



Chapter 7

Conclusion

7.1 Recapitulation

A Black Hole is a highly harmful host that disposes of visiting agents upon their

arrival. It is known that it is possible to locate a Bh with co-located agents in an

anonymous network using a whiteboard in each node. Also, in the same model (using

whiteboards) a solution that uses scattered agents has been presented only for the

ring topology.

In this dissertation, we have developed a set of token-based algorithms for locating

a Bh in four kinds of networks: ring, hypercube, torus and complete network. For

these four topologies we obtained solutions not only for co-located agents, but also for

scattered ones as well. We believe that this set of algorithms constitute a significant

improvement to the state of the art for this problem. Let us elaborate:

First, we observe that it is rather unrealistic to have at least O(log n) bits of local

storage available all the time to agents to access through fair mutual exclusion, but

this is the basic assumption of whiteboard model. Also, several such algorithms rely

on face-to-face recognition, which is not easily realizable in practice. Consequently,

obtaining a solution to the Bh search problem that requires neither local storage nor

face-to-face recognition constitutes, in our opinion, a significant improvement to the

state of the art for this problem. We present such a solution, which is based on the

token model. It is important to note that this token model imposes more constraints

on the Bh search problem than the whiteboard model does, since it requires that

199
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both local storage and face-to-face recognition be avoided.

Our second contribution is two-fold. On the one hand, we claim that, costwise (in

terms of memory and number of moves), the algorithms we developed show the token

model to be as efficient as the whiteboard model [45, 46, 49]. This is important given

the fact that the token model is more constrained than the whiteboard one. On the

other hand, we contend that investigating the token model separately for each of the

four-abovementioned topologies results in algorithms that are more efficient than a

general, topology-independent, one.

Indeed, we proved that the algorithms we designed for co-located agents achieve

a better number of moves than:

1. the generic (i.e., topology-independent) algorithm for an arbitrary network using

a whiteboard model, published in [46]. The following results were presented in

[46]: with topological ignorance ∆ + 1 agents are needed and suffice, and the

cost is Θn2, where ∆ is the maximal degree of a node and n is the number

of nodes in the network; with topological ignorance but in presence of sense

of direction, only two agents suffice and the cost is Θn2; and with complete

topological knowledge only two agents suffice and the cost is Θn log n. All the

upper-bound proofs are constructive.

2. a general solution for an unknown graph using the token model presented in [44]

(A general solution for an unknown graph with ∆+1 mobile agents, O(∆2M2n7)

moves is presented (where, M is the number of edges in the graph, n is the

number of nodes in the graph, and ∆ is the maximum number of degree of the

graph) .

In other words, we conclude that, for the Bhs problem, topology-specific solutions

outperform a topology-independent one. Thus, our second contribution is to suggest
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that, for Bhs, topology-specific token-based algorithms are as powerful (i.e., able to

solve the problem) and efficient as those based on a whiteboard model.

Third, we generalize our results by considering two flavors of the Bh search prob-

lem, namely: using either co-located or scattered agents. In the latter case, since

scattered agents start from different homebases, they may not agree on a same sense

of direction when the network is unoriented. Also, contrary to co-located agents,

the scattered agents cannot immediately participate in an extensive exploration of

the topology at hand (since they first must be paired). This greatly increases the

difficulty of the Bhs problem. Indeed, even if using a whiteboard model, Bhs with

scattered agents has only been considered in the ring topology [44]. Thus solving the

Bh search problem in several topologies using scattered agents constitutes, in our

opinion, a significant contribution.

Last, we have studied several factors that affect performance (namely: team size,

token cost, knowledge of team size, sense of direction and connectivity of the network

topology) and we have briefly discussed the trade-offs between them. Further investi-

gation of these performance factors should considerably help the researcher to choose

the best strategy to solve the Bhs problem under different environment constraints.

In this dissertation we believe our contributions directly addressed three open

problems:

1. solving the Bh search problem while avoiding whiteboards.

2. establishing whether known bounds for the Bhs problem can be improved by

considering specific network topologies (as opposed to not making assumptions

about topology).

3. solving the Bhs problem with scattered mobile agents.

We now present a more detailed summary of our contributions.
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In the co-located agents case, Bhs is indeed solvable in the token model [44, 49].

In particular, in [49] we showed that a team of two or more co-located agents can

solve Bhs with O(n log n) moves and two (2) tokens per agent in a ring network.

Without requiring the FIFO rule, we proved that:

• using two (2) co-located agents, two (2) tokens in total and Θ(n) moves, the

Bh can be successfully located in a labeled hypercube.

• using two (2) co-located agents and five (5) tokens in total, the Bh can be

successfully located with Θ(n) moves in a labeled torus.

• using two (2) co-located agents and one (1) token in total, the Bh can be

successfully located in a complete network without sense of direction, with Θ(n)

moves in total.

The problem became considerably more difficult when the agents are scattered. In

particular, with scattered agents, the presence (or lack) of orientation in the network

topology and knowledge of the team size were observed to be important factors. Here,

an “oriented” network topology is taken to be one in which all the agents are able to

agree on a common sense of direction. Conversely, an “unoriented network topology”

means the agents may not be able to agree on a common sense of direction. In the

ring topology, the following results were obtained: in [52], we showed that a team of

two or more scattered agents can solve Bhs with O(n log n) moves and five (5) tokens

per agent in a ring network when the orientation is known. Furthermore, in [53], we

showed that a team of three or more scattered agents can solve Bhs with O(n2) moves

and four (4) tokens per agent in a ring network when the orientation is unknown. But

given one more agent (4 scattered agents in total), Bhs can be solved with O(n log n)

moves and four (4) tokens per agent when the orientation is still unknown. For the

three other network topologies, still without requiring the FIFO rule, we proved that:
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• using three (3) scattered agents and seven (7) tokens in total, the Bh can be

successfully located using Θ(n) moves in a labeled torus.

• using k scattered agents and 1 token per agent, the Bh can be successfully

located using O(k2n2) moves in a labeled torus.

• using n scattered agents and one (1) token per agent, the Bh can be successfully

located in a complete network with O(n2) moves without requiring the sense of

direction.

7.2 Comparative Evaluation

We have showed that by taking into account the specific properties of each topology in

a token model, the complexity of the general algorithm (for an arbitrary network) can

be considerably improved in an algorithm designed for a specific network topology.

Here, we will compare the similarities and differences between the results obtained

for the specific topologies and analyze the impact of topology and other performance

factors on the Bhs problem.

In Figure 7.1 and 7.2, we listed the fourteen algorithms presented in this disser-

tation. From these two figures we can make the following observations:

1. when we use co-located agents to solve Bhs problem:

• minimum team size (2 agents) is achieved on all four topologies.

• the token cost is inversely proportional to the connectivity of the topology.

• one more token is sufficient to eliminate all the extra agents when there

are more than 2 (i.e., minimum team size) agents in the network.

• as the sparsest bi-connected graph and the one for which the cost (in

terms of number of moves) for Bhs using whiteboards is the worst, the
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Figure 7.1: Comparative evaluation table — Ring.
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Figure 7.2: Comparative evaluation table — Complete Network, Hypercube and Torus.
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ring topology still has the highest cost (both for number of tokens and

number of moves).

2. when we use scattered agents to solve the Bhs problem:

• under the same assumptions (see Figure 7.1 columns 5 and 6), the move

cost is improved with sense of direction and bigger token cost.

• under the same assumptions (see Figure 7.1 columns 8 and 9), the move

cost is improved with a larger team size.

• under the same assumptions (see Figure 7.1 columns 7 and 8), the FIFO

constraint can be removed at the cost of using more tokens.

• the token cost is proportional to the connectivity among the following three

interconnected topologies: Torus, Hypercube and Complete Network.

3. within one topology, using scattered agents always requires more agents than

using co-located agents.

4. for co-located agents, the cost of solving the Bhs problem in the Ring topology

is the worst.

5. unlike using co-located agents, for scattered agents agents, the cost of solving

the Bhs problem become even worth, then the connectivity is stronger.

7.3 Future Work

Before we sketch out a research plan, it is essential that we emphasize the difficulies

inherent to complex distributed algorithms. For the purpose of illustration, let us

now describe briefy what could appear to be an improved solution to the case of

scattereds agents for torus. Despite an apparent possible correctness, we want to

focus on a specific situation in which this algorithm does not work correctly.
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The basic idea is to have agents in one of two basic states: “Single” or “Forward”.

Each agent tries to explore the whole torus on its own, with occasional help from the

agents it bypasses. An agent explores the torus using CWWT. It explores a north-

south ring going north, then it moves one step east and repeats this process. Once an

agent wakes up, it is a single, and each single agent knows that all the nodes from its

HB to its current location are safe. A single agent a1 becomes a forward agent when

it finds a token of another single agent a2 (which, according to CWWT, blocks a1’s

further progress). In such a case, a1 leaves a message for a2 indicating that a2 now has

an associated forward agent, and a1 continues to explore the rest of the north-south

rings after bypass ing a2 (and the possibly dangerous node it is visiting).

This message from a1 to a2 essentially forms a virtual bond (or partnership) be-

tween these agents. The goal of a1, as a forward agent, is to explore as much as

possible, while having one and only one ‘partner’ a2 (which was exploring a possibly

dangerous node). If a1 finds that the next edge it wants to use is blocked (i.e., with

token) by another agent a3, then a1 will wait until either the edge becomes unblocked

(i.e., without token), or a2 comes to inform a1 that the node a1 bypassed was not the

Bh after all. Agent a1 remains a forward unless either of these situations occurs.

Also, here, a3 can be just a single agent, or a single agent that has an associated

forward agent, or a forward agent.

Given this high level description, two immediate questions were raised:

1. how does a single agent a2, that has an associated forward agent a1, know how

to find a1?

2. how to ensure that the agent that a2 finds is indeed the agent a1 that bypassed

a2 (as opposed to some other agent)?

In order to address these questions, we invented a technique to ensure that no
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other agent can ‘cut in’ on a segment between a pair of agents. But upon verifica-

tion, we found that, while this technique could handle most scenarios, one infrequent

situation created a problem. Without going in details, because pairs could be created

anywhere in the torus, interactions between such pairs could alter the token protocol

and invalidate our would-be solution. As is often the case in complex distributed al-

gorithms (especially using tokens), it is the coordination between co-occurrent token

protocols that presents a significant challenge.

Consequently, the point to be grasped is that the verification of complex dis-

tributed algorithms largely remains, in our opinion, an open problem. It is this

observation that is at the root of the future research we will now propose.

Our most immediate and obvious goal is to find a solution to the use of scattered

agents in a hypercube (if any is possible). At this point in time we have in fact

explored several possible solutions. But we have found that all conceal hard to find

special cases that invalidate our current ideas. Regardless, we hope to find a solution

in the medium term. We also want to improve our solution for scattered agents for

the torus. Assuming these two goals are achievable, we could then conduct an in-

depth analysis of the similarities and differences between this ‘family’ of algorithms.

Once, and only once such an analysis has been carried out, we would like to address

eventually the following issues:

• First, the FIFO requirement epitomizes the difficulty of simulating complex

distributed algorithms. It would have been highly desirable to include several

simulations as a verification mechanism in this dissertation. However, the more

complex cases (e.g., in which enforcing FIFO is essential) would require consid-

erable effort to create. Put another way, placing a set of concurrent agents each

in a specific state is highly challenging in any topology. More generally, it is

widely accepted that controllability and observability remain challenges for the
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verification of distributed algorithms. (Hence in this dissertation, our verifica-

tion method has consisted in proofs based on the numerous pencil and paper

examples we have developed.) We intend to tackle the challenge of simulating

our algorithms in the medium term (though we expect this will first require the

selection of an appropriate simulation environment, as well as the development

of some method for generating tests for our proposed algorithms).

• Second, we studied lower bounds only for the ring topology. Clearly, the lower

bounds of our algorithms for Complete Network, Hypercube and Torus need to

be eventually researched. This should be feasible in the short term.

• Finally, in this dissertation we have considered the Bhs problem with only

one Bh. We would like to study the problem with multiple black holes. But,

clearly, in such a case, agents may be isolated into segments of the topology

unreachable from the majority of the nodes. In other words, the solvability of

the Bhs in the case of multiple black holes appears to depend directly on the

connectivity in a specific network. We believe this complex problem must be

tackled once, and only once we have carried out the previously suggested future

work (as a solution will likely depend on a deep understanding of the result of

this dissertation).
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