Searching for a Black Hole in Interconnected Networks using Mobile
Agents and Tokens

Wei Shi

Faculty of Business and Information Technology
University of Ontario Institute of Technology

2000 Simcoe N. Street, Oshawa, Ontario, L1H 7K4, Canada
Joaquin Garcia-Alfaro
Institut Mines-Télécom, Télécom Bretagne
CS 17607, 85576 Cesson-Sévigné, France
Jean-Pierre Corriveau

School of Computer Science
Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

Abstract

We study the impact of topological structure on the complexity of the Black hole search (Bhs)
problem using mobile agents that communicate via tokens. First, we show that the token model
can support the same cost as in the whiteboard model, despite the fact that communication between
mobile agents is considerably more restricted (and complex) in a token model than in a whiteboard
one. More precisely, in this paper, we focus on three specific topologies, namely: an asynchronous
i) hypercube, ii) torus and iii) complete network. With knowledge of which of these topologies is
being used, we present token-based solutions for Bhs where the number of moves executed by a
team of two co-located anonymous agents can be reduced to ©(n). These proposed solutions do
not require the availability of a map and do not assume FIFO on either nodes or links.

Second, we consider the use of scattered agents for Bhs in an asynchronous i) torus and ii)
complete network. We show that, using 3 scattered agents and 7 tokens in total, a black hole can be
located with ©(n) moves in an oriented asynchronous torus. Again, the solution does not assume
FIFO on the links and nodes. If the number of scattered agents in a torus increases, cost is reduced
but communication between these agents becomes significantly more complicated. We propose an
algorithm that solves Bhs using k (k > 3) scattered agents, with only 1 token per agent, with
O(k?n?) moves.

Beyond theoretical proofs, we also discuss simulations of an actual system in order to evaluate
our proposed solutions.

Key words: Black Hole, Mobile Agents, Tokens, Co-located, Scattered, Un-oriented, Simulation.

http://ees.elsevier.com/jpdc/viewRCResults.aspx?pdf=1&docID=3954&rev=1&fileID=189249&msid={2DDF6DDE-8C04-4169-A190-BB36E0DF660B}

1. Introduction

1.1. Motivation

In the past decade, agent technology has shown great potential for solving problems in large
scale distributed systems. A mobile agent is defined as abstract and autonomous software. Agents
are versatile and robust in changing environments, and can be programmed to work in cooperative
teams. Such team members may have different complementary specialties, or be duplicates of one
another [1]. Mobile agent technology has been increasingly studied and several researchers (e.g.,
[2, 3]) discuss its strengths, such as the ability to: i) reduce network load, ii) overcome network
latency, iii) support disconnected operations, iv) work in heterogeneous environments, v) allow
asynchronous interaction, vi) enable remote searching and filtering, and vii) deploy new software
components dynamically. For example, in recent years, a number of agent-based applications related
to traffic control and management in different modes of transportation (including roadway [4, 5, 6, 7],
railway [8, 9, 10], and air transportation [12, 13]) and healthcare [15, 16] have been reported.

Independently of such agent-based applications, recently there has been a significant increase in
the use of IPads, smart phones, PDAs, and other wireless computer devices. Allowing such devices
to communicate with each other and interact with other devices (such as vending machines, POS
terminals, messaging systems, cars, GPSs (Global Positioning System), networked systems, central
corporate data and applications, and the Internet) demands a highly efficient, dynamic wireless
network that allows asynchronous interaction and supports disconnected operations. Mobile agent
technology is a promising approach for addressing these challenges. In the same vein, Braz [14]
states that web sites and other Internet services are not able to efficiently provide the full range
of customization already desired by their clients (e.g., using the same information and organizing
tools across many sites). In contrast, a mobile agent is not bound to the system/site where it begins
execution. It has the unique ability to transport itself from one system of a network to another
one. The ability to travel allows a mobile agent to move to a system that contains an object with
which the agent wants to interact and then to take advantage of being in the same host or network
as that object [7].

Security has also been identified as a key criterion for the acceptance of mobile agent technology.
Computational and algorithmic research has started to consider security issues, mainly in regards
to the presence of a harmful host (i.e., a network node damaging incoming agents) (see [1, 11, 17]).
With respect to the computational issues related to the presence of a harmful host, the focus has
been on a black hole, a node that disposes of any incoming agent without leaving any observable
trace of this destruction [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. In this paper, we continue the
investigation of the Black hole search (Bhs) problem.

A black hole (or BH for brevity) models a network site in which a resident process (e.g., an
unknowingly-installed virus) deletes visiting agents or incoming data. In particular, any unde-
tectable crash failure of a site in an asynchronous network transforms that site into a BH. In the
presence of a BH, the most immediate goal is to determine its location. To this end, a team of
mobile agents is deployed; their task being completed if, within finite time, at least one agent sur-
vives and knows the links leading to the BH. The research concern here is to determine under what
conditions and at what cost mobile agents can successfully accomplish this task, called Black hole
search. The main complexity parameters are the size of the team (i.e., the number of agents used in
the search) and the total number of tokens used by the team of mobile agents. Another important
measure is the number of moves performed by the team of agents in their search.

The computability and complexity of Bhs depend on a variety of factors; first and foremost
on whether the system is asynchronous [21, 22, 23, 28] or synchronous [18, 19, 26]. Indeed, the
presence or absence of synchrony changes drastically the nature of the problem [24]. In this paper
we pursue the investigation of the asynchronous case.

Most of the existing investigations on Bhs have assumed the presence of a powerful inter-agent
communication mechanism, so-called whiteboards, at all nodes. In the whiteboard model, each node
has a local storage area where information can be written and read by the agents. Each such
whiteboard is accessible in fair mutual exclusion to all incoming agents (e.g. see [29]). In this
research, we instead investigate Bhs in a token model. In that model, each agent has available a
bounded number of tokens that can be carried, placed in a node and/or on a port of the node,
or removed from them. Also, all tokens are identical (i.e., indistinguishable) and no other form
of communication or coordination is available to the agents. We observe that the communication
between mobile agents is considerably more restricted (and complex) in a token model than in a
whiteboard one: information-rich messages written to and read from a whiteboard must instead
be represented using a limited number of tokens. The question then is whether this additional
constraint complicates significantly token-based solutions to Bhs. In this paper, we show that is
not the case for the following three topologies: hypercube, torus and complete network. Within
this specific context, we also answer the following question: under what conditions and at what
cost is Bhs solvable? Notice that the use of tokens introduces another complexity measure: the
number of tokens. Indeed, if the number of tokens is unlimited, each information-rich message of
a whiteboard-based algorithm can be mapped to a specific configuration of tokens and thus it is
possible to simulate a whiteboard environment. Using tokens, the question then is how few agents
are truly required by a solution to Bhs?

The problem of locating the BH using tokens has been examined for the ring topology in both
cases of co-located agents (in which all the agents start from the same node) [21, 28] and of scattered
agents (in which the agents start from different unknown nodes) [24]. In this paper, we first consider
the use of a group of co-located agents to solve Bhs for a hypercube, a torus and a complete network.
We then study Bhs in a torus and in a complete network for a group of scattered agents, which
significantly complicates the solution.

Our decision to consider the hypercube network topology proceeds from the fact that such
graphs are very versatile networks. For example, they have been used extensively to interconnect
the processors of several parallel computers. Also, such an architecture allows for the emulation
of a multitude of networks. Similarly, we remark that one of the networks that MasPar efficiently
simulates is a torus, in part because of path diversity (i.e., there exists multiple minimum length
paths between a source and a destination) and also because of better load balancing [30]. Finally,
the complete network and /or mesh network topology is commonly used in Wireless Sensor Networks
(WSNs), that is, in a wireless network consisting of spatially distributed autonomous entities that
use sensors to monitor the condition of a particular environment or location. Such networks have
gained a lot of practical relevance recently. In particular, Agilla [38, 37] is a new mobile agent
middleware for wireless sensor networks that has received considerable researcher and industry
attention in recent years. For example, the authors of [15, 16] present a healthcare application that
allows the triage of victims in emergency scenarios to automatically update their medical condition.
The proposed multiagent architecture combines Wireless Sensor Networks, an Electronic Triage Tag
and a double multiagent system (Agilla-JADE) to achieve a low cost, infrastructure free, efficient
system. The reliability of this system, which is crucial in the context of emergency care, rests
entirely on the availability and correct working of all sensors and agents. In turn, this emphasizes

the need to be able to efficiently locate any compromised and/or malfunctioning sensor node that
disposes of agents.

1.2. Main Results

In the context of Bhs, Flocchini et al. [31] proved that in networks of arbitrary but known
topology, the pebble (or token) model of agent interaction is computationally as powerful as the
whiteboard model; the complexity being exactly the same. More specifically, a team of two asyn-
chronous agents, each endowed with a pebble and a map of the graph, can locate the BH with
O(nlogn) moves. In the same paper an open problem is pointed out: the topological structure
impact on the complexity of Bhs with tokens. Intuitively, we “suspect” that the number of moves
to locate the BH can be reduced in interconnected graphs in which multiple routes exist between
any pair of nodes in the network. Conceptually, this topological characteristic offers ‘shortcuts’
between nodes. But, as much as shortcuts may reduce the number of moves, they also create a
drawback: they complicate the communication and coordination between the agents. For example,
in a complete network, each node is linked to every other node by an edge. A solution to leave a
simple message (such as marking which links are explored by an agent) may require O(d) tokens
(where ¢ is the degree of the complete network). This clearly contradicts our goal of using O(1)
number of tokens (in contrast to using an unlimited number of tokens, which is equivalent to us-
ing a whiteboard, as previously mentioned) as the only means of communication between agents.
The same observation holds for the torus and hypercube topologies: in contrast to a ring, in these
topologies each node has more than two links adjacent to it, again leading to potentially more com-
plex communication between agents via tokens. Consequently, it becomes an interesting goal to
investigate whether there is a solution to Bhs when only a constant number of tokens are available
in these topologies.

Except for our previous work presented in [24], all existing solutions to Bhs in asynchronous
networks use co-located agents. In [32] and [33], Chalopin et al. did study Bhs using tokens with
initially scattered mobile agents, but in a synchronous network. When a synchronous network
is considered, the problem becomes much less complicated: each computation or movement of a
mobile agent takes a known (instead of an unknown but finite) quantum of time. In this case, we
can readily determine that an agent died in a BH if it does not resume its scheduled movement
pattern within a predefined quantum of time. In asynchronous networks, it is not possible for us to
distinguish the case of an agent stuck on a slow link /node (e.g., due to network traffic) from the case
where it died in a BH. Thus, in contrast to asynchronous networks, in synchronous networks we can
conclude that: a) we can detect whether there is a BH merely from an agent’s failure to move within
a given quantum of time; b) traversing the whole network in order to locate the BH is not necessary.
Furthermore, when scattered agents are used to locate the BH, the initial locations and the wake
up (i.e., being able to observe the environment, compute and move) time of these agents are not
known. Thus, there is no communication between the scattered agents upon waking up. Conversely,
when two or more agents start from the same node, namely agents are co-located, communication
between these agents upon waking up leads to guaranteed coordination. Such coordination between
the co-located agents can be achieved through whiteboard or tokens in asynchronous networks and
through time out [32] or whiteboard [23] or tokens [32][33] in synchronous networks. But in fact,
the ease with which agents can be synchronized makes the distribution of workload simpler and
more efficient in synchronous networks than in asynchronous ones. And solving Bhs using scattered
agents is a more general case of Bhs than using co-located agents. (Clearly, when the scattered

agents all happen to wake up from the same node, the problem becomes the co-located agents
case.)

In the rest of this paper, we first prove that, in the context of Bhs in an asynchronous network
with co-located agents, the token model can support the same cost as in the whiteboard model.
More specifically, we offer solutions to Bhs for an asynchronous torus, hypercube and complete
network using tokens. With specific knowledge of the network, the number of moves executed by a
team of two co-located anonymous agents can be reduced to ©(n). These solutions do not require
the availability of a map and do not assume FIFO on either nodes or links.

We then consider the use of scattered agents for Bhs in an asynchronous torus and a complete
network. We show that, using 3 scattered agents and 7 tokens in total, a BH can be located
with ©(n) moves in an oriented asynchronous torus. Again, the solution does not assume FIFO
on the links and nodes. If the number of scattered agents in a torus increases, cost is reduced
but communication between these agents becomes significantly more complicated. We propose an
algorithm that solves Bhs using k (k > 3) scattered agents, with only 1 token per agent, with
O(k*n?) moves.

Beyond proofs, in order to verify our solutions and evaluate their performance, we developed
simulations of an actual system using Java and Omnet 4++4, which we discuss last.

2. Model, Assumptions and Terminology

Let G = (V, E) denote a simple connected undirected graph, where V is the set of vertices or
nodes and E is the set of edges or links in G. At each node z € V, the incident edges are labeled
by an injective mapping A,. Hence, each edge (z,y) has two labels, A;(z,y) at =, and A\y(x,y) at
y. Az(z,y) and Ay(x,y) will be called the port identifiers. We say a graph is oriented, if there is
a globally consistency of such labeling (or sense of direction) of all the edges (links), un-oriented
otherwise [24, 25, 34].

Operating on G is a set of k agents aj,as,...,ax. The agents have limited computing capabil-
ities and bounded storage. They all obey an identical set of behavioral rules (referred to as the
“protocol”), and can move from node only to a neighboring node. We make no assumptions on the
amount of time required by an agent’s actions (e.g., computation, movement, etc.) except that it
is finite. Thus, the agents are asynchronous [23]. Also, these agents are anonymous (i.e., do not
have distinct identifiers) and autonomous (i.e., each has its own computing and bounded memory
capabilities). Co-located agents start at the same node, called homebase (H for brevity). Scattered
agents start at different Hs.

We postulate that, while executing a Bhs, the agents can interact with their environment and
with each other only through the means of tokens. A token is an atomic object that the agents
can see, carry, place or remove from the middle or a port of a node. Several tokens can be placed
at the same location. The agents can detect such multiplicity, but the tokens themselves are
undistinguishable from each other. Initially, there are no tokens in the network, and each agent
starts with O(1) number of tokens.

The basic computational behavior of an agent (executed either when an agent arrives at a node,
or upon wake-up) consists of three actions called steps. First an agent is to examine its current node
and evaluate (as a non-negative integer) the multiplicity of tokens at the middle of the node and/or
on its ports. Second, an agent may modify tokens (by placing/removing some of the tokens present
at the current node). Third, an agent may either become Passive (or equivalently, fall asleep) (i.e.,
temporarily stop participating to the Bhs) or leave the node through a port. Finally, an agent

may become DONE, in which case it stops executing the algorithm (and no longer participates
in the search). Each computational step is performed as a single atomic (i.e., none interruptable)
operation. We assume that there is fair scheduling of the steps of the operation at the nodes, so
that, at any node at any time, at most one computational step will take place, and every intended
step is performed within finite time. This computation is asynchronous: the time an agent sleeps
or is on transit is finite but unpredictable.

All the agents are aware of the presence of the BH, but, at the beginning of the search, the
location of the BH is unknown. The goal of this search is to locate the BH. At the end of the
search, there must be at least one agent that has survived (i.e., not entered the BH) and knows
the location of the BH.

3. Basic Tool and Technique

3.1. Cautious Walk with Token (CWWT)

During a CWWT, having a certain number of tokens on a port indicates that the link of this
port is currently being explored by an agent. The exact number and location of tokens required to
determine that a port is being explored may vary between the algorithms that use CWWT. Clearly,
a port under exploration may be dangerous, that is, one of its links may possibly lead to the BH.
Once a port is known to not lead to the BH, it is considered safe. To prevent unnecessary loss of
agents, we require that no two agents ever enter the BH through the same link.

3.2. Bypass Technique

The Bypass technique is used in the algorithms that we propose to solve Bhs for hypercube and
torus. For these two topologies, in contrast to a ring, each node has more than two links adjacent
to it. This significantly complicates the communication between agents using tokens. But we notice
the following key fact: both hypercube and torus topologies contain one or more non-intersecting
ring subgraphs. Thus it is impossible that the BH is in both ring a and ring b. We then call the
ring without the BH a safe ring; a dangerous ring otherwise.

The basic idea of the Bypass technique is to use the links and nodes on a safe ring to create a
bridge over an unknown node (possibly BH) on the dangerous ring that is under exploration by an
agent. This bridge will allow a second agent to continue exploring the rest of the dangerous ring.
This technique ensures that: a) two agents do not explore the same node at the same time; and b)
all the nodes in the network get traversed using O(n) moves, so that the total number of moves for
locating the BH stays linear.

Once in the “Bypass” procedure, an agent acts differently whether advancing in a safe ring or
in a dangerous ring. Let Ay denote the agent that is exploring a node I in the dangerous ring,
and A, denote the agent that is going to bypass node I through path J, K, L, M, N (see Figure
1). When A; arrives at node J , it moves the token(s) from port Jy to Js if Js is without token.
Otherwise, A, picks up the token(s) from port J;, then A, walks through Js to node K. A, then
walks to node M through node L. If port M, is with token, then A, moves the tokens from port
M, to port M,s, then walks to the next node on the safe ring. Otherwise, A, leaves a token at
port My, then it becomes ready to go back to the dangerous ring. From this point on, A; becomes
an agent exploring the dangerous ring M) in the next stage. If the old A4 does not die in node
I, then it becomes an agent trying to bypass node N that is under exploration by the other agent.
Namely, in the new stage, agent A4 will become a new A’,. These two agents keep changing roles
to bypass a node in the dangerous ring that is under exploration, until one dies in the BH.

ring K, / \K /
—_— }

Dangerous

Js
r-ing / N\ /. . / .
:\\ //', Jd \\\ / /,"

N\

J T N

Figure 1: Two agents executing Bypass on a dangerous ring using the safe ring

4. Bhs with co-located agents

4.1. Bhs in Hypercube — Algorithm Two Rings

4.1.1. Basic Idea
The following well-known property of a hypercube is the key to our solution to Bhs in this
topology:

Property 1. Qg consists of two (d — 1)-hypercubes connected by 29~ links labeled as d.

Given this property, we find a way for two mobile agents (given 2 is the minimum team size for
Bhs) to traverse the hypercube with tokens. The basic idea can be carried out using the following
four steps:

1. Both agents start from a common H. Each of them explore a Hamiltonian Cycle (i.e., a
ring) of each (d — 1)-hypercube according to a specific permutation (see below) with CWWT.
More specifically, one agent stays in the ring (i.e., the Hamiltonian Cycle of one of the two
(d — 1)-hypercubes) in which the common H lies, and the other agent moves to the other
ring through the connecting link using CWWT. After an agent has finished exploring its ring,
we call this ring a safe ring, and call the other ring, which has not been fully explored, a
dangerous ring.

2. Let the agent that finished exploring the safe ring go to the other ring through a connecting
link. This agent will help the other agent exploring the dangerous ring. It keeps walking on
the dangerous ring until it sees the marker of the other agent. The two agents then repeat
multiple stages of the bypass technique until one agent dies in the BH and the surviving agent
finishes exploring all nodes but one in the entire hypercube. The only node the surviving
agent has not visited is the BH.

3. When an agent notices that one node is marked by a CWWT, which means it is under
exploration by the other agent, that first agent will bypass through a safe ring to the next
node on the ring being currently explored.

4. The agent that explores n — 1 nodes will survive and report the location of the BH.

The bypass technique will be used and only be used after one of the two rings in the hypercube
is fully explored, that is, once a safe ring exists. The immediate detail we need to address is how
do we make the agents only walk on an appropriate Hamiltonian cycle and 2971 links labeled as d,
in a labeled Q4. The following technique makes it possible:

We define a permutation that can construct a unique Hamiltonian cycle when a starting node
is given. Let Py be a permutation of length n: {p1,p2, ..., prn/2, P1, P2, ..., Pny2}. The sequence is
constructed as follows:

1. whend =3, n=2%2=4, Py: {1,2,1,2};

2. when d =4, n =23 =8, P3: {1,2,3,2,1,2,3,2};

3. when d =5, n=2% =16, P;: {1,2,3,2,4,2,3,2,1,2,3,2,4,2,3,2};

4. when d = 6, n = 2° = 32, Ps:
{1,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,1,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2};
If we let P14 denote the sequence from the second digit to the gd—1th digit of Py, then:

5. whend=1i—1,n=2"1 P;_1: {1,Ptio,i—1,Pli_o,1,Pti_o,i—1,Pr,_5}

6. when d =i, n =2 P;: {1,Pt;_1,i,Pli_1,1, Pt 1,4, Pl;_1}

While d increases, each permutation Py can be constructed by executing the following two steps
on permutation Py_1:

a) replace the second occurrence of ‘1’ found in the sequence by ‘d’;

b) duplicate this modified sequence and append it to its own end (effectively creating a sequence
that consists of the modified sequence followed by itself).

Given all the agents know the size of the hypercube n = 2%, they can all come up with such
a permutation individually. All their permutations will be the same, because they construct it
according to the same rules. Each element in the permutation represents a label of a link. Every
such number indicates which link an agent is going to explore next.

Theorem 1. Permutation Pyq computed by an agent constructs a Hamiltonian cycle of Q.

PROOF. There is a Hamiltonian cycle in a d dimension hypercube, when d > 2. Hence we assume
we intend to construct a Hamiltonian cycle of a d (d > 2) dimensional hypercube. When d = 2, Py:
{1,2,1,2}, it is obvious a Hamiltonian cycle is constructed correctly. Now assume that when d = i,
following the order of links indicated in P;: {1,Pt;—1,4,Pli—1,1,Pti_1,i,Pt;_1}, a Hamiltonian
cycle is constructed correctly.

When d = ¢ + 1, we know there are two ¢ dimensional hypercubes in the ¢ + 1 dimensional
hypercube due to the characteristics of the hypercube topology. We also know each i dimensional
hypercube has a Hamiltonian cycle constructed according to P; as per our assumption. As we can
see, there are two links labeled 1 in the Hamiltonian cycle constructed according to P;. If we call
the two rings (i.e., Hamiltonian cycles) that have 2! nodes R — a and R — b, we can merge R — a
and R — b into one ring with 2°*! nodes by the following three steps:

1. Remove one of the two links labeled 1 in both R — a and R — b.

2. Link one of the two nodes currently adjacent to only i — 1 links in R — a to one of the two
nodes currently adjacent to only ¢ — 1 links in R — b with a link labeled ¢ + 1 in the i 4+ 1
dimensional hypercube.

3. Link the unique node currently adjacent to only ¢ — 1 links in R — a to the unique node
currently adjacent to only ¢ — 1 links in R — b with another link labeled ¢ + 1 in the i 4+ 1
dimensional hypercube.

If we call this merged ring R — (¢4 1), we can observe that this R — (¢4 1) includes all the nodes
in the ¢ + 1 dimensional hypercube, because it includes all the nodes of R — a and R — b which, in
turn, include all the nodes of two sub-hypercubes of the ¢ + 1 dimensional hypercube. Hence, when

d =i+ 1, following the order of links indicated in P;11: Piy1: {1, Pl i +1,Pr, 1, Plii+ 1, Pt}
a Hamiltonian cycle can also be constructed correctly. This concludes the proof that Permutation
P4 computed by an agent constructs a Hamiltonian cycle of Q4 (n = 2%).

4.1.2. Algorithm Two Rings: Details

Two mobile agents a; and as operate on Qg starting from the same H. The agent that first
wakes up, called ap, will explore the ring R, contained in the Q41 according to the Hamiltonian
cycle construction rule explained earlier. Before it starts exploring this sub-hypercube Q,, this
agent leaves a token in the middle of its H in order to inform the partner (we call it as) to go
to Ry and start exploring there. a; then explores its ring. When as wakes up, it will explore R,
immediately. Recall that when an agent finishes exploring its ring, this ring becomes a safe ring.
Once a; finishes exploring R, if as has not waken up yet, then a; will move the token that it left
in the middle of their H to the port that leads to the link labeled n. To do so, a1 informs as to
follow it to explore Ry together. Once as wakes up, it will notice the token in its H. Consequently
it will go (with CWWT) to the ring (R;) in the second sub-hypercube Qp through the link labeled
n, then start exploring R;. Each agent explores a ring using CWWT technique, until it notices its
CWWT token is moved by the partner.

Given the BH can only be in one of the Hamiltonian cycles, eventually one agent will finish
exploring its ring. Let us assume that agent as finishes exploring Ry first. Then as will go to ring
R, to help a; to finish its job. Agent as goes to look for a; in R, if there is no token in their common
‘H. Since, the Hamiltonian cycle constructed according to what we proposed is unique given the
same starting node, as is able to follow a; on R,, instead of going in the opposite direction. Once as
catches up with (that is, sees the token of) aq, the two of them will start using the bypass technique
until they locate the BH.

4.1.8. Correctness and Complexity Analysis

Property 2. Let R1 be one of the Hamiltonian cycle of a Q4—1 in a Qg constructed according to
Pa—1, and Ro be the Hamiltonian cycle of the other sub-hypercube of Qq. There is an isomorphism
between rings R1 and Rs.

PROOF. The hypercube has node and edge symmetry [35]. For any pair of edges (u,v) and (u/,v")
in a d-hypercube Qg there is an automorphism o of Q4 such that o(u) = v’ and o(v) = v'. Such
an automorphism can be found for any permutation 7 on 1,2, 3, ...,n such that (k') = k where k
and k’ are the respective dimensions of (u,v) and (u',v") [35, 36]. We call v the symmetric node
of v'. From Theorem 1, we know that the technique we use to construct a Hamiltonian cycle from
a label permutation of a (d — 1)-hypercube is unique. Let Q — A denote one of the two (d — 1)-
sub-hypercubes of Q4, and Q — B denote the other (d — 1)-sub-hypercube of Q4. Given there is a
automorphism between Q@ — A and Q — B, there is also an automorphism between the two rings
constructed out of the same permutation.

Since the two rings have no nodes in common, then:

Lemma 1. FEither Ry or Rs is a safe ring.

Lemma 2. Fach one of the two rings will be explored by at least one agent.

PROOF. Once the first agent wakes up, it will explore the ring of the d — 1-sub-hypercube that
contains the H. Before it starts, it will leave a token in the middle of the H to inform the second
agent to explore the other ring in order to prevent them from exploring the same ring. Only after
an agent finds a safe ring, does it go to the other ring to help the partner agent to finish exploring
the other ring. Hence each one of the two rings will be explored by at least one agent.

Lemma 3. One and only one agent dies in the BH.

PrOOF. Given:

1. Both agents construct a Hamiltonian cycle of a d — 1-sub-hypercube based on the same
permutation;
2. The two d — 1-sub-hypercubes that are connected by 2¢~! links labeled d, are automorphic.

We conclude that the two agents share the same sense of direction on both rings. Once an agent,
say a1 finds a safe ring, it will go to the other ring and explore the node of the ring in the same
order as its partner, say ao, did. Agent a; follows the route that as traversed until it sees the
CWWT token as left. Then the two agents will start exploring the dangerous ring using the bypass
technique. According to this bypass technique, two agents never explore the same node in that ring.
The algorithm terminates as soon as an agent has explored n — 1 nodes. Hence, only one agent dies
in the BH.

Theorem 2. The BH is correctly located by the surviving agent.

PROOF. According to Lemma 2, and Lemma 1, at least one agent will eventually finish exploring
a safe ring. As we mentioned in Lemma 3, this agent will go to help the other agent exploring the
second ring using the bypass technique. We know from Lemma 3, that there is one and only one
agent that survives. The algorithm terminates as soon as an agent explored n — 1 nodes. Hence
the BH is correctly located.

Lemma 4. Two tokens in total suffice to locate the BH in a labeled hypercube with co-located
agents.

Proor. First, when the algorithm starts, one token is needed for the agent that wakes up first.
Second, each agent needs one token to do CWWT in both exploring and bypass stages. Last, the
token used by the first agent in order to inform the second agent of its awakening can be reused
by the second agent (which is the one that wakes up later than the first agent). Hence, 2 tokens in
total suffice to locate the BH in a labeled hypercube with co-located agents.

Lemma 5. O(n) moves in total suffice using Algorithm Two Rings.

PROOF. If we break down this algorithm into “procedures”, then in procedure “Find a safe ring”,
each of the two agents requires a maximum of 3 * (n/2) moves to explore a Hamiltonian cycle of a
d — 1-sub-hypercube of Q4. So, O(n) moves is sufficient. In procedures “Bypass” and “Back to the
dangerous ring”, for every bypass, a linear number of moves is required. Therefore, even if there
are n/2 such bypass steps, a linear number of moves is still sufficient. Hence, the total number of
moves is linear.

According to the lemmas proved above, and following the lower bound from the whiteboard
model presented in [20], we can conclude:

Theorem 3. Using 2 co-located agents, 2 tokens in total and ©(n) moves, the BH can be success-
fully located in a edge labeled hypercube with n nodes.

10

4.2. Bhs in Torus — Algorithm Cross Rings

As in the ring topology, in a torus, the number of edges adjacent to each node is fixed regardless
of the number of dimensions or nodes. Informally, the torus is a mesh with “wrap-around” links
that transform it into a regular graph: every node has exactly four neighbors. The ports of each
node in the torus are consistently labeled: East, West, North, South. Given these specific topology
characteristics, we develop an algorithm Cross Rings, to locate the BH in a torus with co-located
agents.

4.2.1. Algorithm “Cross Rings”

Let R — NS denote a ring with only the links labeled South and North in a labeled torus and,
let R — EW denote a ring with only the links labeled East and West in a labeled torus. We also
call R — NS a north-south ring, R — EW an east-west ring. Starting from a node, there are two
obvious paths that allow an agent to traverse the torus and go back to the starting node. They are
(see Figure 2):

1. the east-west ring that includes the starting node, plus every north-south ring that starts with

a node in this east-west ring;

2. the north-south ring that includes the starting node, plus every east-west ring that starts with
a node in this north-south ring

Figure 2: Two paths that allow an agent to traverse all the nodes in a labeled 3 x 4 torus

It is clear that a north-south ring A and an east-west ring B share exactly one node, say v. If
node v is not the BH, we know the BH cannot be on both A and B. We then get the following
observation:

Observation 1. Let 2 agents start from v. If we let one agent traverse the north-south ring A,
and another agent traverse the east-west ring BB, then there is at least one agent that survives its
traversal.

If only one agent finishes traversing a ring (i.e., the other agent died in the BH), then we call
this ring a Base ring. If both agents finish traversing their rings, then we call the ring that is
traversed the earliest, a Base ring, which is also a safe ring.

11

Hereafter, we assume that the Base ring is a north-south ring. (The algorithm would be essen-
tially the same if the Base ring were an east-west ring). Now, we let the surviving agent(s) (either
one or two) explore all the east-west rings, each of which starts from a node on the Base ring. In
order to prevent the two agents from both dying in the BH, we let both agents explore a dangerous
node using CWWT with 1 token on a port.

Before one agent starts exploring an east-west ring R — EW, it puts 1 token in the middle of
its homebase u. u is a node on both the Base ring and the east-west ring R — EW. We call the
east-west ring with 1 token in the middle of v an RUFE (Ring Under Exploration), the 1 token in the
middle of u, an UET (a token to indicate the ring is under exploration). This agent then explores
this east-west ring R — EW. When this agent finishes exploring R — EW, it will move the UET
(the single token it left in «) to the middle of the node next to the North of w on the Base ring and,
explore this east-west ring. This agent continues exploring the east-west rings one by one, until it
sees a token in the next node. It then puts a second token in the next node to the north, comes
back to pick up the token it left in the previous node, goes to the next node to the north again and
starts exploring a new east-west ring. Given there is only one BH, and there is no common node(s)
shared by any two east-west rings, we obtain Lemma 6. Given one agent a; will finish exploring all
but one east-west ring. The other agent as is either exploring the RUFE or died in the BH in the
last RUE. Then a; will go and help as to explore the last east-west ring. Because we assumed that
one of the north-south rings is the Base ring, we say that an agent finishes a stage as soon as it
finishes exploring an east-west ring. An agent a; will not visit a RUE (by az) until this is the only
east-west ring left. Also, a; follows the path that as took on this last east-west ring, until it sees
the CWWT token of as. Now a; and as will execute the procedure “Bypass” sketched out earlier.
Eventually the algorithm terminates when there is only one node left unexplored in the last RUE.
The only node left unexplored is the BH.

Lemma 6. Eventually all but one east-west rings are explored.

After a, finishes exploring all but one east-west rings, it will go and help as to explore the ring
ao currently explores. When one agent finishes exploring a ring (e.g. a north-south ring), it will
know the number of nodes z of this ring. It can calculate the number of nodes y in an east-west
ring, given n is known. If a north-south is the Base ring, we say that an agent finishes a stage once
it finishes exploring a non-Base ring.

An agent a; will not visit an RUF until it has finished y—1 stages. Also, a; follows the path that
as took on the RUFE until it sees the CWWT token of as. Now a; and as will execute procedure
“Bypass”. Eventually the algorithm terminates when there is only one node that is not explored in
the last RUE. The only node left unexplored is the BH.

The meaning of token(s) at different locations can be found in Table 1.

12

| Token(s) position | Meaning ‘

One token in the middle of a node | the east-west ring starts from this node
is under exploration (the north-south
ring is the Base ring)

Two tokens in the middle of the H | the Base ring is found

One token on a port an agent is exploring the next node in this
Two tokens on the north ring (CWWT token) the first agent is
port of the H exploring the north-south ring

Table 1: Token positions and their explanation in Algorithm Cross Rings

4.2.2. Correctness and Complezity Analysis
According to Observation 1 and Lemma 6, we can obtain the following Lemma:

Lemma 7. At least one agent will find a Base ring in the torus.

If we assume there are y nodes on an east-west ring, and x = n/y nodes on a north-south ring,
then:

Lemma 8. = — 1 east-west rings will be explored eventually.

PROOF. According to Lemma 6, all but one east-west rings will be explored eventually. Given there
are x nodes on each north-south ring, x — 1 east-west rings will be explored eventually.

Lemma 9. The UET advances on the north-south ring correctly.
Lemma 10. None of the east-west rings will be explored more than once.

Lemma 11. At most 1 agent dies in the BH. And within finite time at least 1 agent will determine
the location of the BH.

PrOOF. From Lemmas 7 and 8 we know that two agents will sooner or later find a Base ring.
Then both agents keep exploring the east-west rings along the north-south ring (the Base ring)
until eventually one agent explores x — 1 east-west ring. According to Lemma 10, there are at
most x — 1 such explorations before the two agents start to bypass each other on the last dangerous
east-west ring left using a safe east-west ring. We also observe that from Lemma 11 at most one
agent dies in the BH. Eventually the surviving agent will stop the algorithm when it explored and
bypassed y — 1 nodes on the last dangerous east-west ring.

Lemma 12. Two co-located agents with 5 tokens in total suffice to locate the BH in a labeled torus.

PROOF. According to Lemma 11, 2 agents suffice to locate the BH. We now prove that a total of
5 tokens is sufficient for both agents to locate the BH.

e When the algorithm starts, two tokens are needed for the agent that wakes up first in order

to determine what is the Base ring. But once the second agent sees the Base ring is known,
it can pick up the 2 tokens and eventually reuse them.

13

e Each agent needs one token to do CWWT for exploring and for bypassing (including the
“Back to the Dangerous Ring” procedure). As we just mentioned in the previous bullet, the
second agent can reuse the 2 tokens in the middle of their H once the Base ring is decided.

e As we explained in Lemma 9, before one agent picks up the UET (one token) in the Base
ring from node wu, it goes to the next node v to the north to put a second UET. Only after
putting the second UET, does the agent go back to node u to pick up the first UET. Then
it starts exploring the east-west ring from node v. We observe that: a) an agent can use the
CWWT token to put this second UET in node v and b) an agent can reuse the picked up
UET in u to continue the exploration with CWWT. Hence, only one extra token is used as a
UET.

Lemma 13. O(n) moves is sufficient using algorithm Cross Rings.

PROOF. In procedure “Find a Base ring”, a Base ring is established after agent a; explored the
north-south ring that includes the H or ay explored the east-west ring that includes the H. If the
number of nodes on a north-south ring is x, the number of nodes on a east-west ring is y, then
x*xy =n. So, (x +y) <n moves will be executed. Hence, O(n) moves suffice.

In procedure “Bypass” in a torus, an agent a; walks from the dangerous ring, through 1 link
connecting to the morth port, to the safe ring. a; is going to take y; steps before it executes
procedure “Back to the Dangerous Ring”. Then, a1 executes yo steps before it walks back to the
dangerous ring through 1 link. y; 4+ y2 < y such links are going to be traversed given there is a
maximum of y nodes on each east-west ring. So, it takes an agent O(n) moves, even when using
CWWT. Hence, on both a safe east-west ring and the dangerous east-west ring on its north, n links
in total are going to be traversed in order to finish traversing the whole east-west ring. So, O(n)
moves are required for an agent during procedures “Bypass” and “Back to the Dangerous Ring”.
Hence, O(n) moves in total are sufficient for two agents to locate the BH.

According to the lemmas listed above, and following the lower bound from the whiteboard model
presented in [20], we can conclude:

Theorem 4. Using 2 co-located agents and 5 tokens in total, the BH can be successfully located
within ©(n) moves in a labeled torus with n nodes.

4.3. Bhs in a Complete Network — algorithm Take Turn

In this subsection, we present the solution to Bhs in a complete network without using sense of
direction, that is, no ports of any node is labeled. However, it is important to note that, even without
a common labeling, the co-located agents share a common reference (e.g., indexing) mechanism for
the n — 1 links of their H and thus can share a common order of traversal of these links. For
simplicity, we will say that the links are traversed ‘clockwise’ when going from the lowest to the
highest index, ‘counterclockwise’ otherwise (This is merely a convention and the actual order of
traversal could be defined differently, as long as it is shared by the co-located agents.) A team of
two co-located agents is used to solve the problem. We can imagine the complete network as a
star-shape network with a node (which we will take to be the H of this pair of co-located agents)
in the middle.

The idea is very simple: once an agent a; wakes up, it puts one token on a port of its node,
which it views as its H. aq then explores the node reachable from this port. When a; comes back

14

to its ‘H after exploring a node, if the token of a; is still at the port where it was left, then a; will
move this token to the next port clockwise, and repeat this exploration step. Once the second agent
as wakes up, it moves the token of a; to the port of the next node clockwise, and explores the node
accessible through this port. When an agent comes back from the exploration of a node, if it sees
the token it left is missing, then this agent searches clockwise until it finds the port with one token.
It moves this token to the next port clockwise and starts exploring another node through this port.
During this process, an agent keeps counting the number of ports it visited (i.e., ports it used to
access nodes to explore) or passed (i.e., ports that are between the port this agent just visited and
the port that currently has a token). As soon as one agent notices that this total (of ports being
counted) reaches n — 1, it terminates the algorithm immediately. It is important to know that we
use a variable bhlocation to record the location of the BH. Each time an agent a; moves the token
used by partner a; to the next port, a; resets the variable bhlocation to 0, then keeps increasing it
by one each time it explores a new node. Also, a variable nC'ount is incremented as ports are used.
a; terminates the algorithm as soon as it realizes nCount reaches n — 1, at which point bhlocation
indicates the location of the BH: the bhlocation!™ port counter clockwise leads to the BH.

4.4. Correctness and Complexity
It is trivial to prove that any complete network has a subgraph that allows one node connection

to all the other nodes in a complete network. Let S, denote such a subgraph of complete graph
K. We will get:

Lemma 14. FEach link in S, will be traversed only once.

Lemma 14 and the fact that there is only one link in this subgraph that leads to a BH, clearly
leads to Lemma 15.

Lemma 15. There is at most one agent that dies in the BH wusing Algorithm Take Turn. The
surviving agent will locate the BH correctly.

Lemma 16. Two agents can locate the BH within ©(n) moves.

According to the above Lemmas, and following the lower bound from the whiteboard model
presented in [20], we conclude:

Theorem 5. Using two (2) co-located agents and one (1) token in total, the BH can be successfully
located in a complete network of n nodes, with ©(n) moves in total.

5. Bhs with Scattered Agents

5.1. In a Complete Network

The algorithm for locating the BH with scattered agents follows: upon one agent waking up, it
leaves a token in the middle of its H and waits. This agent starts executing algorithm Take Turn as
soon as its token is moved to a port of its H. If an agent wakes up in a node that has a token in the
middle, then this agent starts executing algorithm Take Turn immediately. Once an agent wakes
up in a node that has a token on a port of its H, it becomes Passive immediately. Eventually, a
maximum of n/2 pairs of agents will execute algorithm Take Turn and finally locate the BH. Given
algorithm Take Turn requires n moves, n/2 * n = n? moves in total suffice with n scattered agents.
One token per agent for n agents suffice to correctly locate the BH. Hence we get the following
theorem:

15

Theorem 6. Using n scattered agents, 1 token per agent and O(n?) moves, the BH can be suc-
cessfully located in an un-oriented complete network IC,,.

5.2. In a Torus with Minimum Number of Agents — Algorithm Modified ‘Cross Rings’

Again in this subsection, we assume the torus under investigation is oriented. We also assume
no agent wakes up in the BH. It is possible that 4 agents could die immediately after the first move:
one enters the BH through the North port, one through the South port, one through the Fast port,
and one through the West port. In order to minimize team size, we program each mobile agent to
enter each node through only the South or West ports', and thus a maximum of two agents die
after the first move. Hence, we conclude:

Lemma 17. At least 3 scattered agents are needed to locate the BH in an oriented torus.

The basic idea for solving BHs with scattered agents is to let two of the three agents form a
pair that executes algorithm Cross Rings starting from the node where they formed this pair (i.e.,
their H). We will now explain how the agents form a pair and how a pair of agents finds a Base
ring. Then, the rest of the algorithm is almost the same as algorithm Cross Rings. In algorithm
Cross Rings, there are only two agents working on the Bhs. But in the scattered agents case, we
need to find out a way to eliminate the third scattered agent. Consequently, we work out a way
for the third agent to become DONE (i.e., stop working) in order to simplify the communication
between the working pair: as soon as an agent goes into a node with 2 tokens on any of a port (the
indication of a single agent), it will pick up all the tokens and then continue.

Procedures “Initialization” and “Single Agent Explores a north-south Ring”: Upon
waking up, an agent becomes a single agent and it immediately executes procedure “Single Agent
Explores a north-south Ring” to the nmorth. In procedure “Single Agent Explores a north-south
Ring”, an agent a; explores the north-south ring starting from node w (H), with CWWT (two
tokens on the port). a; keeps counting the number of nodes in this north-south ring.

Case 1: When a; goes into a node with one token in the middle of a node, a; becomes DONFE
immediately.

Case 2: When a; goes into a node with two tokens on the east port, it executes “Paired agent
finds a Base ring” (see below) to the north.

Case 3: a; goes into a node with two tokens on the north port, it leaves one extra token in the
middle of the node. It then executes “Paired agent finds a Base ring” to the east.

Case 4: When a; comes back to the node where it left its CWWT tokens, if two tokens are in the
middle and at least one token on the east port of the node, it then executes “Paired agent finds a
Base ring” to the north.

Case 5: When a; goes into a node, if any of the following three situations happens, a; will become
Passive immediately. All three situations indicate that a pair was formed. The situations are:
either there is at least one token in the middle of the node (there may be also token(s) on a port of
that node), or there is a token on the north port, or there is a token on the east port.

Case 6: When a; finishes exploring the north-south ring, it then executes procedure “Single Agent
Explores an east-west Ring”.

n order for an agent to traverse an oriented torus, each agent must visit at least two ports of each node.

16

Case 7: When a; comes back to the node where it left its CWWT tokens, if all the CWWT tokens
are no longer there, it becomes DONE.

Case 8: When a; finishes exploring one east-west ring, it immediately explores the next east-west
ring that starts from the next node to the north on the north-south ring. a; then executes procedure
“Single Agent Explores an east-west Ring” again.

Procedure “Paired Agent Finds a Base Ring”: As a single agent, as soon as a; sees two
tokens on a port of a node (the CWWT) of another single agent as, it modifies the token configu-
ration in this node and becomes a paired agent immediately. After a; becomes a paired agent, it
executes procedure “Paired Agent Finds a Base Ring”. Once an agent as becomes a paired agent
(after seeing the modified token configuration a; left to it) it also executes procedure “Paired Agent
Finds a Base Ring”. We call this node with the modified token configuration the homebase (H for
brevity as used earlier) of these two paired agents. It is worth repeating that if a; executes “Paired
Agent Finds a Base Ring” to the north, then as will execute “Paired Agent Finds a Base Ring” to
the east, or vice versa.

Upon starting “Paired Agent Finds a Base Ring” to the north. A paired agent a; keeps walking
to the north with CWWT, until it goes back to the H of this pair. It is possible to have the following
token configurations in this node:

1. There is 1 token on the north port and two tokens in the middle of their H (and maybe
another token on the east port if the other paired agent as is exploring the node to the east
after being a paired agent). In this case, the north-south ring becomes the Base ring. a;
informs as of this result by picking up the token on the north port.

2. There are 2 or 3 tokens in the middle of the node. In this case, 2 tokens in the middle of
the H shows that the second agent as finished exploring the east-west ring before a; finished
exploring the north-south ring. So, the east-west ring becomes the Base ring.

In either case, a; then keeps walking to the east until it sees 1 token in the middle of a node.
It then executes algorithm Cross Rings to the east port. If there are 3 tokens in the middle (as
is exploring the first east-west ring as a paired agent), a; executes algorithm Cross Rings to the
east port immediately. When agent as walks back to the H of this paired agent after exploring an
east-west ring, there are either:

— 1 token on the north port of the pair’s H, then as makes the east-west ring a Base ring by
picking up the token on the north port of the pair’s H. as then executes algorithm Cross Rings to
the east.

— 2 tokens in the middle of the H (a; informed ay that the north-south ring is the Base ring).
So as keeps walking to the north until it arrives in the node with a token in the middle. It then
executes algorithm Cross Rings to the north; or

— 3 tokens in the middle of the H or 1 token on the north port and 2 tokens in the middle
of their H (this means that not only a; informed as that the north-south ring becomes the Base
ring, but also that ay is exploring the east-west ring that as just finished). Then as will execute
algorithm Cross Rings to the north.

During the execution of procedure “Paired Agent Finds a Base Ring”, there are two other
possible scenarios: 1) as soon as aj or as goes into a node with 2 tokens on any of a port, it will
pick up all the tokens then continue. 2) as soon as aj or ag notices its CWWT token is moved, it
will continue using the Bypass technique as a paired agent.

17

5.2.1. Correctness and Complexity Analysis
Lemma 18. One pair will be formed within finite time.

PROOF. According to the algorithm, as long as one single agent sees the tokens of another single
agent, it will be able to modify the tokens immediately and become a paired agent consequently. If
the other agent has already died in the BH and thus never comes back, we still say a pair is formed.
Otherwise, the other agent will come back to pick up its CWWT token sooner or later. Eventually
it will see the modified token configuration and, in turn, become a paired agent consequently. Now
we only need to prove that at least one single agent will see the tokens of another single agent.

Assume there is no such single agent that will see the tokens of another single agent before the
algorithm terminates. According to procedure “Paired Agent Explores a north-south Ring”, once
an agent wakes up, it is a single agent, and it will try to explore the north-south ring starting from
the node in which it wakes up. If this single agent finishes exploring the north-south ring without
dying in the BH; or seeing the token(s) of another agent (if it sees two tokens on a port then it
forms a pair with that agent, if it sees one token on a port or one token in the middle of a node,
then it becomes passive); or being eliminated by a paired agent (having its CWWT tokens stolen),
it is going to explore all the east-west rings until it:

e cither dies in the BH; or
e forms a pair with another single agent upon seeing the tokens of it; or

e becomes Passive upon seeing one token on a port or one token in the middle of a node or,
noticing its CWWT tokens were stolen; or

e terminates the algorithm upon finishing exploring n — 1 nodes (n — 2 links).

We know that all three (minimum team size) agents execute the same algorithm and, all single
agents walk with CWWT. According to the assumption: if no single agent sees the token of another
single agent before the algorithm terminates, these agents must have died in the BH. We also know
that if a single agent only leaves through the north and/or east ports of a node, it can only go into
a BH through a link connecting to the south and/or west ports of the BH.

Consequently, one single agent will see the CWWT token of another single agent that died in
the BH either in the node to the west of the BH or to the south of the BH. This contradicts the
assumption we made at the beginning of this proof: “there is no such single agent that will see the
tokens of another single agent before the algorithm terminates”. So, the assumption is wrong. We
therefore conclude that sooner or later at least one single agent will see the tokens of another single
agent before the algorithm terminates. We also already proved that as long as one single agent sees
the tokens of another single agent, they can form a pair correctly. Hence, eventually there will be
a pair formed within finite time.

Lemma 19. At least one agent will find a Base ring in the torus.
Lemma 20. A single agent will not interfere with the progress of any paired agent.

PrOOF. In procedures “Single Agent Explores a north-south ring” and “Single Agent Explores an
east-west ring”, as soon as a single agent sees one of the following token configurations, it will
immediately become Passive:

18

e Case 1: there is only one token on a port.
e Case 2: as long as there is one token in the middle of a node.
o Case 3: its CWWT tokens were stolen. Namely, it no longer has 2 tokens on a port.

The above token configurations cover all the token configurations relevant to a pair agent.

Then, in all the procedures that a paired agent executes, we have added “eliminate single agent”
steps. Such steps ensure that when either a paired agent encounters a single agent, or a single agent
encounters a paired agent, the single agent will become Passive eventually. Hence, a single agent
will not interfere with the progress of any paired agent.

Lemma 21. Bypass can be correctly executed by a pair of agents.

PROOF. The only modification we do to procedure “Bypass in Torus” in algorithm Cross Rings is
that we add one token in the middle of a node when one agent notifies the other agent to bypass.
This extra token is used to eliminate the single agent (once the single agent sees a token in the
middle, it will become Passive immediately), and it is used every time one agent bypasses another
agent.

As we mentioned above, a paired agent uses one token on the port to continue its CWWT.
When a single agent sees a token on a port, it immediately becomes Passive. When a paired agent
sees there is only one token in a node and it is in the middle of this node, it will pick up the token
before it continues exploring the next node. Hence, there is no possibility of having a token in the
middle and a token on the port of a node, except for a paired agent trying to bypass another paired
agent.

Lemma 22. At most 2 agents die in the BH.

PROOF. Assume a single agent died in the BH first, and had its CWWT token left in the neighbor
node of the BH. Normally no agent can go through a port with CWWT token(s), according to
the CWWT rules defined in section 3. But according to algorithm Modified ‘Cross Rings’, when
a paired agent encounters the 2 CWWT tokens that a single agent left, it will pick them up and
continue executing the algorithm. If this happens, this paired agent will leave its CWWT token on
the port where the CWWT tokens of that single agent were picked up, and this paired agent will
die in the BH. According to Lemma 11 in algorithm Cross Rings at most 1 agent dies in the BH
when there are two co-located agents. Hence, at most one of the two paired agent will die in the
BH, and thus at most 2 agents die in the BH during Algorithm Modified ‘Cross Rings’.

Lemma 23. Within finite time 1 agent will determine the BH location.

PRrROOF. As shown in Lemma 19, a pair will be formed within finite time. After a pair is formed, its
agents execute the procedures in algorithm Cross Rings with a little modification, namely: eliminate
the single agents. It is obvious that this step takes O(1) time. And recall that we proved in Lemma
11 that within finite time one agent will determine the location of the BH using algorithm Cross
Rings. Hence, within finite time, an agent will determine the location of the BH using algorithm
Modified ‘Cross Rings’.

Lemma 24. Three agents with a maximum of seven (7) tokens in total are sufficient to locate the
BH in a labeled torus with scattered agents.

19

PROOF. According to Lemmas 22 and 23, 3 agents are sufficient to locate the BH. We now prove
that a maximum of 7 tokens are sufficient in order for three agents to locate the BH. Before all, we
must make a difference between the CWWT tokens of a single agent and those of a paired agent,
because of the following two facts:

1. We have to have at least 3 agents in the torus when these are scattered in order to have one
agent survive and eventually locate the BH.

2. Algorithm Cross Rings locates the BH correctly with 2 co-located agents.

We can either use 2 tokens on a port as the CWWT tokens of a single agent and 1 token on
a port as the CWWT token of a paired agent, or vice versa. We arbitrarily decided to choose the
first of these two alternatives for our algorithm. The tokens are used in the following situations:

e When the algorithm starts, two tokens are needed for a single agent to explore the north-south
ring then all the east-west rings. Hence, 3 x 2 = 6 tokens are required in total for three single
agents.

e Two tokens are used to form a pair. The agent a; that initiates forming a pair will use the
2 CWWT tokens of the other single agent. The fact is that as soon as an agent becomes a
paired agent, it only uses 1 token as its CWWT token. So, beyond the 1 token a; is going to
use for CWWT as a paired agent, there will be one extra token that can be reused in other
situations. When the other single agent as comes back from its CWWT, it becomes a paired
agent upon seeing the modified token configuration. One token (the CWWT token) is needed
for as to continue as a paired agent. Given the 2 CWWT tokens of ay are used for finding a
Base ring, 1 additional token is required by as. It is also possible that by the time a; formed
a pair with ag, as has already died in the BH. In this case, the extra token is not required.

e One token is used as a UET. This is because an agent can always use temporarily the CWWT
token as the second UET (see Lemma 12). Given a; has an extra token and leaves it in the
middle of the new H, this extra token can be used as a UET.

e One token is used for the “Bypass” (including step “Back to the Dangerous Ring”) procedure.
This bypassing is only going to happen once all but one north-south/east-west ring has been
explored. So, there is no need for keeping the UET. The UET will be reused for bypassing.

Hence we conclude: seven (7) tokens in total are sufficient to locate the BH in a labeled torus with
3 scattered agents.

Lemma 25. O(n) move suffice using algorithm Modified ‘Cross Rings’.

PrOOF. We know from Lemma 18 that within finite time 1 pair will be formed before the algorithm
terminates. In the worst case, each single agent traverses the whole torus before it either dies in the
BH or forms a pair with another single agent. So, it takes at most 3n moves for an agent to traverse
the torus using CWWT. For three single agents, it costs 3 * 3n moves in total. It is important to
observe that none of the modifications we introduced to algorithm Modified ‘Cross Rings’ affect
the number of moves. And we know that once an agent becomes a paired agent, O(n) move suffice
to locate the BH, according to Theorem 4 in algorithm Cross Rings. Hence, O(n) moves in total is
sufficient for the three agents to locate the BH.

20

According to the lemmas above, and following the lower bound from the whiteboard model
presented in [28], we can conclude:

Theorem 7. Using 3 scattered agents and 7 tokens in total, the BH can be successfully located
using ©(n) moves in a labeled torus with n nodes.

5.8. In a Torus with k Scattered Agents — Algorithm Single Forward

In this section, we study BHs in a labeled torus with k (k > 3) scattered mobile agents. Here,
k is not known to any of the agents. The number of nodes n in this torus and the dimension of the
torus x X y are known to all the scattered agents. In this section, we do require that all the links
and nodes obey the FIFO rule.

5.8.1. General Description

The agents are in three basic states: single, forward and checking. Each agent tries to explore
the whole torus on its own. An (either single or forward or checking) agent always goes for an
unexplored node reachable from its current location using only north and east links. An agent
will never go through a west or south port unless it knows that port is safe. This (together with
CWWT) ensures that at most two agents enter the BH. An agent is able to remember the number
of nodes that it explored.

Every agent as wakes up as a single agent. It becomes a forward agent, only when it finds
a token on the port that as intent to go through. In other words, when an agent arrives at a
node, if further progress is blocked (i.e., at least one of the unsafe north/east ports is blocked (with
token)), that port becomes a Check Point for agent as. If there is no other unsafe north or east
port available (without token), single agent a, remains as is and waits in the node after putting
one token in the middle. as continues as a single agent if the port it wants to use becomes without
token.

A forward agent ay continues exploring the torus until it goes into a node w, with at least
one token in the middle. We say this node is the second Check Point of this forward agent. aj
immediately becomes a checking agent a. that checks the availability (at least one port is without
token) of these two Check Points. If both are unavailable then a. chooses one Check Point to wait.
When either of the two Check Point becomes without token, a. continues as either a forward agent
or a single agent. Eventually an agent that explored n — 1 nodes will terminate the algorithm and
locate the BH. The whole algorithm can be summarized as follows:

1. single agent: has no Check Point, explores and becomes forward if blocked;

2. forward agent: has one Check Point, explores and becomes checker if blocked again;

3. checking agent: has two Check Points, sits at one Check Point and upon any change checks
the other Check Point. Becomes a forward agent when one of the Check Points unblocks
without token, a single agent if both of them become unblocked.

5.8.2. Correctness and Complexity Analysis

Lemma 26. Within finite time at least one agent will survive and determine the location of the
BH.

Lemma 27. One token per agent suffices using algorithm Single Forward to locate the BH.

21

Lemma 28. k (k > 3) scattered agents can locate the BH after ezecuting O(k*n?) moves using
Algorithm Single Forward.

PROOF. During the entire lifespan of an agent a1, a; can explore no more than n — 1 nodes. a; can
also be blocked in a node by another agent (that may have died in the BH). Once a4 is blocked, it
will either continue its exploration or go back to the previous Check Point to check the availability
of that node (i.e., whether it still has tokens in it). Each such check takes at most n moves. Only a
change in the number of tokens can possibly trigger such a check. And only the entry or exit of a
single or forward agent will trigger a change in the number of tokens, because no token is used for
a checking agent to execute a check. In each node, there is a constant number of entry and exists
preceeding the visit of a single or forward agent. So there are at most & such checks, because there
are k agents in total. Hence, O(k*n?) moves in total are executed by k agents.

Theorem 8. Using k (k > 3) scattered agents and one token per agent, the BH can be successfully
located using O(k*n?) moves in a labeled torus.

6. Simulation Results

We present in this section the experimental results obtained from a series of Java simulations of
algorithms Cross Rings, Modified Cross-Rings, and Single Forward. Each simulation is inspired by
middleware platforms such as Agilla [37, 38] and implements a given population of mobile agents
(from a population size of 2 up to 7). Mobile agents execute the algorithms within a network
of interconnected nodes that follows a torus topology. The implementation consists of a simple
discrete event, time-step based simulation engine, in which every agent executes the aforementioned
algorithms at every step of simulated time. The simulation engine implements a discrete event
scheduler, a graphical view, a data-collection system, and the simulated objects themselves, that
is, network nodes and mobile agents. The simulation system consists of more than 4,600 lines of
Java code. A sample simulation video is available online at http://goo.gl/bJ3Ky/.

For the sake of comparison, we simulated as well a random case, hereinafter denoted as Random
Walk algorithm. An agent running the Random Walk case simply chooses the next port in a torus
at random. Instead of using tokens, this algorithm is based on a whiteboard model: the agent keeps
track of the map using the local memory allocated in each node. Every agent running the random
walk algorithm also knows the total number of nodes in the system. Contrarily to algorithms
Cross Rings, Modified Cross-Rings, and Single Forward, the Random Walk algorithm considers
failures, i.e., the algorithm does not guarantee successful termination of a simulation with at least
one agent alive and reporting the BH. Therefore, a simulation based on the random walk algorithm
a) successfully terminates when at least an agent realizes that there is just one node that has not
been visited (this node being the BH) or b) ends with a failure if all the agents die at the BH.
Finally, given the random nature of the process, agents can visit the same node more than once.

Our simulation sets consist of 30 to 100-node networks. Agents start as co-located agents for
the simulations associated with the Cross Rings algorithm and Random Walk with two agents, and
as scattered agents for the remaining simulations. We consider that the execution of a simulation
is successful if the BH is discovered by at least one surviving agent. Otherwise, the simulation
is counted as a failure. For each successful simulation, we compute the percentage of moves that
are necessary to discover the BH. All data is calculated from 100 independent successful runs of
each setting with random initial agent and BH placement. Algorithms Cross Rings, Modified Cross
Rings, and Single Forward guarantee that only 100 executions are necessary in order to obtain

22

100 independent successful runs. However, the random walk simulations require a higher number
of runs to obtain the required data, given the possibility of failures. Table 2 summarizes the
number of independent runs that were required during our experiments to obtain 100 successful
tests in the random walk case. Figure 3 illustrates the average move results and the 95% confidence
intervals obtained during the initial experimental series, in which populations of two co-located
agents and populations of three scattered agents executed, respectively, algorithms Cross Ring,
Random Walk and Modified Cross Ring. Results confirm that O(n) moves suffice to locate the BH
in all simulations. Notice that those simulations executing algorithm Cross Rings with populations
of two co-located agents and 5 tokens in total obtained the lowest number of moves; while simulations
executing algorithm Modified Cross Rings with populations of three scattered agents and 7 tokens
in total reported the highest number of moves. Simulations executing the Random Walk algorithm,
with zero tokens but requiring the allocated memory of each node to map the system, provide
intermediate results in terms of moves. However, they present a very high rate of failures (cf. Table
2) in comparison with algorithms Cross Rings and Modified Cross Rings — which guarantee the
termination process with zero failures. Figure 4 compares the results obtained with the execution of
the Modified Cross Ring algorithm with the average move results and the 95% confidence intervals
obtained during the execution of algorithm Random Walk with populations ranging from 4 to 7
agents over the 30 to 100-node networks. Results confirm that O(n) moves suffice to locate the BH
in all Random Walk simulations, but at the cost of O(n) memory on each node (i.e. Whiteboard
model) and failures, as reported in Table 2. Finally, Figure 5 shows the same comparison with
the last experimental series, where a population from 4 to 7 agents with a single token per agent
execute algorithm Single Forward over the 30 to 100-node networks. Results confirm that O(k*n?)
moves suffice to locate the BH in all those simulations based on the execution of the algorithm
Single Forward.

Discussion

Both theoretical analysis and simulation results show that, a BH can be located with ©(n)
moves in an oriented asynchronous torus using only 3 scattered agents. And such solution does
not assume FIFO on the links and nodes. Contrary to our intuition that the moving cost maybe
reduced by using more agents, we observe from the theoretical analysis that, when the number of
scattered agents in a torus increases, communication between these agents becomes significantly
more complicated. It consequently leads to a more expensive move cost, that is to O(k?n?). There-
fore, we did experiments to compare the move costs of algorithm Modified Cross Ring (using 3
scattered agents) and algorithm Single-Forward that uses 4, 5, 6 and 7 agents respectfully. The
result is presented in Figure 5. This result confirms our observation that with more (than 3) agents
the number of moves increases from liner to quadratic.

of nodes

#ofagents | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
2 (co-located) | 861 | 1281 | 1267 | 1789 | 1697 | 2004 | 1846 | 2265
3 (scattered) | 372 | 418 | 597 | 589 | 628 | 681 | 690 | 582
4 (scattered) 206 | 237 243 286 288 360 283 321
5 (scattered) | 142 | 172 194 181 185 | 204 | 208 | 212
6 (scattered) | 121 | 123 139 142 153 149 162 165
7 (scattered) | 111 | 116 120 123 111 143 142 129

Table 2: Number of independent runs required to obtain 100 successful tests with algorithm Random Walk.

23

400

Cross Ring with 2 co-located agents e=zz=a
Random Walk with 2 co-located agents ———
350 Random Walk with 3 scattered agents ===
Modified Cross Ring with 3 scattered agents rzzzz

Number of moves

30 40 50 60 70 80 90 100
Number of nodes

Figure 3: Cross Ring and Modified Cross Ring vs. Random Walk Algorithm with 2 and 3 agents

900 } Modified Cross Ring with 3 scattered agents rzzza |
Random Walk with 4 scattered agents ———
Random Walk with 5 scattered agents C——
800 [Random Walk with 6 scattered agents == 1
Random Walk with 7 scattered agents

700 1

600 1

Number of moves

30 40 50 60 70 80 90 100
Number of nodes

Figure 4: Modified Cross Ring with exactly three agents vs. Random Walk with more than 3 agents

900 Modified Cross Ring with 3 scattered agents £zzza |
Single Forward with 4 scattered agents ———1
Single Forward with 5 scattered agents ———
800 [Single Forward with 6 scattered agents == 1
Single Forward with 7 scattered agents

Number of moves

30 40 50 60 70 80 90 100
Number of nodes

Figure 5: Modified Cross Ring with exactly three agents vs. Single Forward with more than 3 agents

24

7. Conclusion

In this paper, we have developed a set of token-based algorithms for locating a BH in three
interconnected network topologies: hypercube, torus and complete network. We presented solutions
with both co-located agents and scattered agents. In Table 3, we list the six algorithms discussed in
this paper. We have shown that the complexity of the general algorithm for an arbitrary network
can be considerably improved using instead an algorithm designed for a specific network topology.
We compare the similarities and differences between the results obtained for these specific topologies
and analyze the impact of topology and other performance factors on Bhs.

Complete Network Hypercube Torus
Co-located | Scattered Agents Co-located Co-located Scattered Agents
Agents Agents Agents
Algorithm | Take Turn Modified Two Rings Cross Rings Modified Single Forward
Name ‘Take Turn’ ‘Cross Rings’
Orientation No No No No Yes Yes
FIFO No No No No No Yes
Team Size 2 n 2 2 3 3 or more
Token Cost 1 in total 1 per agent 1 per agent 5 in total 7 in total 1 per agent
Move Cost O(n) O(n?) 0(n) 0(n) 0(n) O(k?n?)

Table 3: Comparative Evaluation Table — Complete Network, Hypercube and Torus.

From this table and the conclusions drawn in [24, 28] we can make the following observations:

1. When we use co-located agents to solve Bhs:
e minimum team size (2 agents) is achieved on all three topologies.

e one more token is sufficient to eliminate all the extra agents when there are more than
2 (i.e., minimum team size) agents in the network.

e the token cost is proportional to the connectivity for the three studied interconnected
topologies, namely: Torus, Hypercube and Complete Network.

e being the sparsest bi-connected graph and the one for which the cost (in terms of number
of moves) for Bhs using whiteboards is the worst, the ring topology still has the highest
cost (both for number of tokens and number of moves).

2. Within one topology, using scattered agents always requires more agents than using co-located
agents.

3. For co-located agents, the cost of solving Bhs in the Ring topology is the worst.

4. Unlike when using co-located agents, for scattered agents, the cost of solving Bhs worsens as
connectivity increases.

Clearly, our algorithms need to be further investigated in order to be improved towards the
lower bound associated with each of their parameters. This should be feasible in the short term.

Moreover, in section 5, we demonstrate that Bhs with a team of scattered agents (a problem
not addressed in whiteboard models) is rather complex but solvable in some dense graphs. We are
now exploring an optimal solution for Bhs in a hypercube using scattered agents.

Finally, in this paper we have considered Bhs with only one BH. We would like to study the
problem with multiple black holes. But, clearly, in such a case, agents may be isolated into segments

25

of the topology unreachable from the majority of the nodes. In other words, the solvability of Bhs
in the case of multiple black holes appears to depend directly on connectivity in a specific network.
We believe this complex problem must be tackled once, and only once we have carried out the
previously suggested future work.

References

1]

2]

[3]

[10]

[11]

[12]

M. Greenberg and J. Byington and D. G. Harper, “Mobile agents and security,” IFEE Com-
mun. Mag. (1998) 36(7): 76-85.

D. B. Lange and M. Oshima, “Seven Good Reasons for Mobile Agents”, Communication.
ACM.(1999) 42(3): 88-89.

R. S. Gray and G. Cybenko and D. Kotz and R. A. Peterson and D. Rus, “D’Agents: Applica-
tions and performance of a mobile-agent system”, Software - Practice and Ezxperience. (2002)
32(6): 543-573.

J.Z., Hernandez and S., Ossowski and A., Garcia-Serrano, “Multiagent architectures for intel-
ligent traffic management systems”, Transportation Research Part C.(2002) 10(56): 473506.

F. Logi and S. G. Ritchie, “A multi-agent architecture for cooperative inter-jurisdictional traffic
congestion management”, Transportation Research Part C (2002) 10(56): 507527.

J. L. Adler and G. Satapathy and V. Manikonda and B. Bowles and V. J. Blue, “A multi-agent
approach to cooperative traffic management and route guidance”, Transportation Research
Part B (2005) 39(4): 297318.

B. Chena and H. H. Chengb and J. Palen, “Integrating mobile agent technology with multi-
agent systems for distributed traffic detection and management systems”, Transportation Re-
search Part C: Emerging Technologies. (2009) 17(1):110.

C. Bel and W. van Stokkum, “A model for distributed multi-agent traffic control”, Multiple
Approaches to Intelligent Systems, Proceedings 1611, 1999, pp: 480489.

J. Blum and A. Eskandarian, “Enhancing intelligent agent collaboration for flow optimization
of railroad traffic”, Transportation Research Part A (2002) 36(10): 919930.

H. Proenca and E. Oliveira, “MARCS: Multi-agent railway control system”, Advances in Ar-
tificial Intelligence (2004) 3315: 1221.

D.M. Chess, “Security issues in mobile code systems”, Proc. of 1998 Conf. on Mobile Agent
Security (MAS’98), (1998) LNCS 1419: 1-14.

W. Glover and J. Lygeros, “A stochastic hybrid model for air traffic control simulation”, Hybrid
Systems, Computation and Control, Proceedings 2993: 372386.

W. G. Li and M.V. Pinheiro, “Method to balance the communication among multi-agents in
real time traffic synchronization”, Fuzzy Systems and Knowledge Discovery, Part 1, Proceed-
ings 3613: 10531062.

26

[14]

[15]

[26]

[27]

C. Braz, “Mobile Agents for Wireless E-Commerce Applications”, Master Thesis. (February
2003), Universit de Montral.

J. Herbert and J. O’'Donoghue and G. Ling and K. Fei and C.L. Fok, “Mobile agent architecture
integration for a wireless sensor medical application”, Proc. of the 2006 IEEE/WIC/ACM
international conference on Web Intelligence and Intelligent Agent Technology, 2006, pp. 235—
238.

E. Mercadal and S. Robles and R. Marti and C. Sreenan and J. Borrell, “Heterogeneous
Multiagent Architecture for Dynamic Triage of Victims in Emergency Scenarios”, Advances on
Practical Applications of Agents and Multiagent Systems, 2011, pp. 237—-246.

R. Oppliger, “Security issues related to mobile code and agent-based systems,” Computer
Communications. (1999) 22(12): 1165-1170.

C. Cooper and R. Klasing and T. Radzik, “Searching for black-hole faults in a network using
multiple agents”, in LNCS 4305 (M. Momenzadeh and A. Shvartsman eds.), Proc. of 104" Int.
Conf. on Principles of Distributed Systems (OPODIS’06), 2006, pp. 320-332.

J. Czyzowicz and D. Kowalski and E. Markou and A. Pelc, “Complexity of searching for a
black hole”, Fundamenta Informatica. (2006) 71(2-3): 229-242.

S. Dobrev and P. Flocchini and R. Kralovic and G. Prencipe and P. Ruzicka and N. Santoro,
“Optimal search for a black hole in common interconnection networks,” Networks. (2006)
47:61-71.

S. Dobrev and P. Flocchini, R. Kralovic and N. Santoro, “Exploring an unknown dangerous
graph using tokens”, Theoretical Computer Science, Volume 472, February 2013, pp. 28-45.

S. Dobrev and P. Flocchini and G. Prencipe and N. Santoro, “Searching for a black hole in
arbitrary networks: Optimal mobile agent protocols,” Distributed Computing. (2006) 19(1):
1-9.

S. Dobrev and P. Flocchini and G. Prencipe and N. Santoro, “Mobile search for a black hole
in an anonymous ring,” Algorithmica.(2007) 48(1): 67-90.

S. Dobrev, N. Santoro and W. Shi, “Scattered Mobile Agents Searching for a Black Hole
in an Unoriented Ring Using Tokens,” International Journal of Foundations of Computer
Science(IJFCS). (2008) 19(6): 1355-1372.

S. Dobrev and N. Santoro and W. Shi, “Scattered black hole search in an oriented ring using
tokens” in Proc. of 9" Workshop on Advances in Parallel and Distributed Computational
Models (APDCM’07), 2007, IEEE International Volume , Issue: 26-30 pp. 1-8.

R. Klasing and E. Markou and T. Radzik and F. Sarracco, “Hardness and approximation results
for black hole search in arbitrary networks”, Theoretical Computer Science. (2007) 384(2-3):
201-221.

W. Shi, “Black Hole Search with Tokens in Interconnected Networks”, Proc. of 11*" Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (555°09). 2009,
pp. to 670-682.

27

[28]

[29]

S. Dobrev and R. Kralovic and N. Santoro and W. Shi, “Black hole search in asynchronous
rings using tokens” in Proc. of 6" Conference on Algorithms and Complexity (CIAC’06), 2006,
pp. 139-150.

P. Fraigniaud and D. Ilcinkas, “Digraph exploration with little memory”, in LNCS 2996 (V.
Diekert and M. Habib eds.), Proc. of 215¢ Symp. on Theoretical Aspects of Computer Science
(STACS’04), 2004, pp. 246-257.

T.A. El-Ghazawi, “Characteristics of the MasPar parallel 1/O system”, Proc. of the 5'h Sym-
posium on the Frontiers of Massively Parallel Computation (Frontiers’95). 1995, pp. 265—.

P. Flocchini and D. Ilcinkas and N. Santoro, “Ping Pong in Dangerous Graphs: Optimal Black
Hole Search with Pebbles”, Algorithmica. (11 February 2011), pp. 1-28

J. Chalopin and S. Das and A. Labourel and E. Markou, “Black Hole Search with Finite
Automata Scattered in a Synchronous Torus” in Proc. of 25th International Symposium on
Distributed Computing (DISC’11), 2011, pp. 432-446.

J. Chalopin and S. Das and A. Labourel and E. Markou, “Tight Bounds for Scattered Black
Hole Search in a Ring” in Proc. of 18h International Colloquium on Structural Information

and Communication Complexity (SIROCCO’11), 2011, pp. 186-197.

L. Barrire, P. Flocchini, P. Fraigniaud, and N. Santoro, “Rendezvous and Election of Mobile
Agents: Impact of Sense of Direction”, Theory Computing Systems (2007) 40(2): 143-162.

P. Flocchini and B. Mans, “Optimal election in labeled hypercubes”, Journal of Parallel and
Distributed Computing. (1996) 33(1): 76-83.

T. Leighton, “Introduction to parallel algorithms and architectures: arrays, trees, hypercubes”,
M.I.T. Press (1992).

C.L. Fok, G.C. Roman and C. Lu. (2009). Agilla: A mobile agent middleware for self-adaptive
wireless sensor networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(3): 26 pages.

Agilla: A Mobile Agent Middleware for Wireless Sensor Networks.
http://mobilab.cse.wustl.edu/projects/agilla/

28

