Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2014, Article ID 138596, 18 pages
http://dx.doi.org/10.1155/2014/138596

Research Article

Hindawi

Dead Reckoning Using Play Patterns in a Simple 2D

Multiplayer Online Game

Wei Shi,! Jean-Pierre Corriveau,” and Jacob Agar2

! Faculty of Business and 1.T., University of Ontario Institute of Technology, Oshawa, ON, Canada LIH 7K4
2 School of Computer Science, Carleton University, Ottawa, ON, Canada KIS 5B6

Correspondence should be addressed to Wei Shi; wei.shi@uoit.ca

Received 5 January 2014; Revised 27 March 2014; Accepted 1 April 2014; Published 12 May 2014

Academic Editor: Abdennour El Rhalibi

Copyright © 2014 Wei Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In today’s gaming world, a player expects the same play experience whether playing on a local network or online with many
geographically distant players on congested networks. Because of delay and loss, there may be discrepancies in the simulated
environment from player to player, likely resulting in incorrect perception of events. It is desirable to develop methods that minimize
this problem. Dead reckoning is one such method. Traditional dead reckoning schemes typically predict a player’s position linearly
by assuming players move with constant force or velocity. In this paper, we consider team-based 2D online action games. In such
games, player movement is rarely linear. Consequently, we implemented such a game to act as a test harness we used to collect a
large amount of data from playing sessions involving a large number of experienced players. From analyzing this data, we identified
play patterns, which we used to create three dead reckoning algorithms. We then used an extensive set of simulations to compare
our algorithms with the IEEE standard dead reckoning algorithm and with the recent “Interest Scheme” algorithm. Our results are

promising especially with respect to the average export error and the number of hits.

1. Introduction

Consumers have spent 20.77 billion US dollars on video
games in the United States alone in 2012 [1]. 36% of gamers
play games on their smart phones and 25% of gamers play
on their wireless device. 62% of gamers play games with
others, either in-person or online [2]. Multiplayer online
games (MOGs) make up a huge portion of one of the
largest entertainment industries on the planet. Consequently,
maximizing a player’s play experience while playing a MOG
is key for the success of such games.

MOGs are a kind of distributed interactive simulation
(DIS), which is defined by the IEEE standard 1278.1 as
an infrastructure that links simulations of various types at
multiple locations to create realistic, complex, and virtual
worlds for the simulation of highly interactive activities.
DISs are intended to support a mixture of virtual entities
with computer controlled behaviour (computer generated
forces), virtual entities with live operators (human in-the-
loop simulators), live entities (operational platforms and test

and evaluation systems), and constructive entities (war games
and other automated simulations) [3]. Data messages, known
as protocol data units (PDUs), are exchanged on a network
between simulation applications. Delay and loss of PDUs
are the two major issues facing DISs. Delay (or equivalently,
network latency) refers to the time it takes for packets of
PDUs to travel from sender to receiver. This delay is usually
taken to be caused by the time it takes for a signal to propagate
through a given medium, plus the time it takes to route the
signal through routers. Jitter is a term used as a measure of
the variability over time of delay across the network [4]. Loss
(often higher when delay is higher) refers to lost network
packets as a result of signal degradation over a network
medium, as well as rejected packets and congestion at a given
network node. Delay and loss cause a DIS to suffer from
a lack of consistency between remote participants, jittery
movement of various entities, and a general loss of accuracy
in the simulation. Consequently, MOGs are inherently more
difficult to design and produce than a traditional locally
played video game: the distributed nature of the former

http://dx.doi.org/10.1155/2014/138596

entails finding solutions to many architectural problems
irrelevant for the latter. In particular, players playing in
geographical locations thousands of kilometers away from
each other need to have their actions appear to be executed
in the same virtual space.

Thus, the main objective when designing the architecture
of a networked video game is to maximize the user’s playing
experience by minimizing the appearance of the adverse
effects of the network during play. When a network message
(packet) is sent, there is a time delay called lag between
the sending of the packet and the reception of the packet.
Late or lost packet transmission has the effect of objects in
a scene being rendered at out-of-date or incorrect locations.
If objects are simply rendered at their latest known position,
their movement is, as a result, jittery and sporadic. This is
because they are being drawn at a location where they actually
are not, and this looks unnatural.

Dead reckoning algorithms predict where an object
should be based on past information. They can be used to
estimate a rendering position more accurate to the true path
of the object. This ensures that once the player receives the
true position of the object, the positional jump to the correct
location is either nonexistent or much smaller, creating the
illusion that this object is behaving normally.

Lag compensation techniques are not restricted to MOGs
but in fact apply to any distributed interactive simulation
(DIS) application. DISs are used by military, space explo-
ration, and medical organizations amongst others. In such
contexts, improving the “user experience” ultimately entails
improving the quality of such applications.

The key idea behind dead reckoning is that predicting
the position of an object makes it unnecessary to receive an
update for that object’s motion every time it moves. Such
updates are required only when there is a change in the
motion. This allows for a greater degree of network lag and
loss and lowers the number of update messages that are
required to be sent over the network.

Traditional prediction schemes predict player position by
assuming that each player moves with a constant force or
velocity. Because player movement is rarely linear in nature,
using linear prediction cannot maintain an accurate result.
However, few of the dead reckoning methods that have
been proposed focus on improving prediction accuracy by
introducing new methods of predicting the path of a player.
The “Interest Scheme” presented in [5] is one such innovative
approach. It specifically focuses on improving prediction
accuracy in a 2D tank game. The key contribution of the
“Interest Scheme” is that it does so by assuming that a player’s
surrounding objects will have some anticipative effect on the
player’s path. An important restriction however is that a tank
cannot “strafe” to the left and right of the forward vector but
has to rotate to change direction. In this paper, we instead
consider traditional team-based 2D action games (e.g., first-
person, third-person, or top-down shooters) wherein players
can move freely in all directions, making a player’s movement
highly unpredictable, and thus highly prone to inaccuracies.
We propose a prediction scheme that takes user play patterns
into account. In order to determine such patterns, we first
implemented a 2D top-down multiplayer online game titled

International Journal of Computer Games Technology

®---------- > ®----- >

P Player B trajectory ’\ Player B trajectory

".,_Bullet trajectory ."._.Bullet trajectory
Player A Player A

(a) Time N at client (b) Time N + latency at server

FIGURE 1: Inconsistency without time warping.

“Ethereal,” which serves as our test environment. Ethereal is
a 2D multiplayer competitive game of 2 opposing teams in
which players have freedom to move in all directions without
gravity. A key facet of Ethereal is that it records not only all
keyboard and mouse input of all players, but also all game
world variables (such as game object and item positioning,
world geometry information, and game events). We then
conducted multiple play testing sessions, each involving
numerous experienced players. From observing these players
playing Ethereal and from subsequently analyzing half of the
collected large dataset, we identified a set of typical player
behaviours (i.e., play patterns). We used these patterns to
create a new dead reckoning algorithm (and its associated
parameters) called EKB (for Experience knows best). Another
key facet of Ethereal is its ability to play back the recorded
input data while simulating different network conditions.
This allowed us to use the other half of our dataset to compare,
under different network conditions, different versions of
our path prediction algorithm with two well-known dead
reckoning algorithms.

In the rest of this paper, we first discuss existing work on
path prediction in the next section. Then, we introduce in
Section 3 our initial EKB algorithm. In Section 4, we discuss
two enhancements to this algorithm. Then, in Section 5, we
present our experimental framework and compare our three
versions of the EKB algorithm. Our experiments comparing
the different versions of EKB with two well-known dead
reckoning algorithms are summarized in Section 6. Finally,
the generalization of our results, as well as other future work,
is briefly discussed in the last section of the paper.

2. Related Work

2.1. Effects of Delay, Jitter, and Loss on Users. In [6], qualitative
studies were conducted to determine the effects of adverse
network states on the player. Participants were asked to
comment on the quality of play at different levels of lag and
jitter. Figures 1 and 2 of that paper show the mean opinion
score (MOS) versus the amount of lag (ping) and jitter,
respectively. Their findings clearly show that higher quantities
of lag and jitter are correlated with a lower player experience.

In [7], the mean scores of players (the players’ perfor-
mance based on kills made and deaths suffered) were studied
in Unreal Tournament 2003 (a typical first person shooter
video game). Through a series of 20 different scenarios of lag,

International Journal of Computer Games Technology

Current Current

rendering client

time time

Snapshot Interpolation
interval time 0.1s
0.05s
Snapshots: | | | |
10.15 10.20 10.25 10.30
338 340 342 344

Time

FIGURE 2: Object interpolation [17, 18].

with different players experiencing different amounts of lag,
it was shown that high lag has a substantial negative effect on
player performance. These findings are outlined in Figure 1
of that paper: it shows the scores of players unimpaired by
bad network conditions versus those players experiencing
bad network conditions.

A player’s score in a shooting based game is a common
metric used when measuring the effects of unfavourable
network conditions on the player experience. Findings have
been consistent that a higher degree of network loss, delay,
and/or jitter results in fewer successful shots or kills made
and a lower player score [6, 7, 9, 10]. For example, Aggarwal
et al. [9] ran tests in a fast-paced tank shooting game called
BZFlag, Wattimena et al. [6] gathered data from the popular
shooting game Quake IV, and Ishibashi et al. [11] developed
a distributed version of Quake III to test in. The performance
of a player in these types of video games is based highly on
reflexes and instant user input, and as a result, even fraction of
second delays in the network can affect player performance.
But these metrics should only be considered for a select genre
or type of game. For example, in [12], running tests in the
popular real-time strategy (RTS) PC Game Warcraft I11, it was
found that latency of up to 3 seconds has only marginal effects
on the performances of players. This is a result of the strategic
nature of the RTS genre, wherein strategic planning (as
opposed to split second decision making) is more important
to good performance. However, under high network lag or
loss scenarios, a player’s perception of the quality of the game
can be hindered. As shown in [6], the adverse effects of the
network will yield a perception of poor gaming quality. This
is a result of either sporadic or jumpy positioning of game
objects, or of a delay between the issuing a command for an
action and the execution of that action.

2.2. Consistency. Action games use a client-server architec-
ture to keep client-side computation to a minimum and allow
for a scalable amount of players within the game world.
This architecture also minimizes cheating by maintaining the
game server as the single authority on all game events. In a
client-server model action game, the server is the authority
on game events and sends the clients game events, including
the actions of other players. Client machines take input from
the user and send this information to the server.

A MOG must achieve the illusion that players are playing
in the same game world, when in reality they are geograph-
ically in different locations. In fact, in a MOG, players do
not technically play in the same game space and are all
only receiving a best-guess approximation of the game world.
Given that the server is the authority on all game events, the
clients must perform some form of time synchronization with
the server. There are many ways to do this, each method with
their own strengths and weaknesses. A discussion of these
methods lies outside the focus of this paper. In summary,
these distributed time synchronization techniques involve
time-stamps and/or estimating lag times between machines.
The time synchronization method used in our simulations
is similar to the method described by Simpson in [13]: to
ensure time is still synchronized, a client periodically sends
a packet to the server time-stamped with the current time
of the client. The server, on reception of this, immediately
time-stamps the packet with its own current time and sends
it back to the client. The client, from this, can determine
how long it took the packet to get to the server and back
again (round trip time or RTT) because of the time stamp.
The client can also determine the exact time of the server,
assuming it takes the same amount of time to get to and
from the server (RTT/2). From here, the client will adjust its
time delta between simulation ticks until its time matches
the server. The client adjusts its time over several updates
of the simulation because a large time jump all at once
would cause objects in the scene to jump as well. If the time
discrepancy is smoothed out over several frames, then there is
no time-jump and the movements of the player are perceived
as normal. Furthermore, because out-of-date packets and
events are not important and we only need to know about the
latest information regarding any given object, it is possible to
employ proactive queue management techniques to drop old
obsolete events in the face of arriving fresher event packets
(14].

Local lag as proposed in [10, 15] refers to a network
lag hiding technique wherein a delay is introduced between
when an input is given and when its execution takes place.
This hides lag and improves simulation accuracy because it
effectively allows some time for the input packet to reach the
server and subsequently to reach the other clients. Local lag
allows all parties involved to receive a given event before its
execution. Without local lag, in order to stay perfectly time-
synchronized, a client or server would have to simulate the
object or event forward to the current time, as it will have
been received after its execution was supposed to take place.
While this method is very effective at ensuring the time-
synchronization of distributed events, it introduces a delay
between when a player issues a command and when it is
executed. This can be a problem, depending on what type of
input the player gives. A player is more likely to notice delay
regarding player movement or mouse movement input than
delay regarding firing or shooting. The common method in
most popular action games, for this reason, is to introduce
a delay when dealing with firing or shooting, but to have
no delay in regard to player movement or mouse movement
input. For this reason, in our research simulation, we decided
to employ no local lag for player movement but to introduce

a small amount of delay for weapons firing. This allows us
to benefit from local lag, without causing the annoyance of
having player movement delay.

In [10], Liang and Boustead go on to propose a method
to further reduce the negative effects of lag. Since a packet,
due to jitter and different lag between players, can arrive
at odd intervals, and even out of order, events need to be
sorted in such a way to maintain temporal accuracy. To
account for this, the common method used in the video
game industry is a technique called time warp. Time warp
refers to the “rewinding” of the simulation to execute events
at the appropriate time. This ensures that events happen
the way they are supposed to, as well ensuring consistency
between different parties geographically. In [16], a variation
of a time-warp system is proposed that features a trailing
state synchronization method wherein instead of rewinding
to time stamps when detecting a change, whole game states
are simulated that are slightly behind the current time as
to allow more time for late information to arrive. When an
inconsistency is detected, the leading state need only roll back
to a previous state.

As illustrated in Figure 1, assume player A has a network
delay of 150 ms to the server and player A shoots a bullet at
player B. According to player As view (left side of Figure 1,
Figure 1(a)), it looks like the bullet hit player B. But since the
network message took 150 ms to reach the server, according
to the lag of player B, the hit is not registered because player B
has moved out of the way in the time it took for the message to
arrive at the server (right side of Figure 1, Figure 1(b)). Time
warp ensures this does not occur, by rewinding player A to its
position 150 ms ago when the bullet was fired to check for the
collision (that is, to make the server side looks like the left side
of this figure Figure 1(a)). The simulation testbed used for our
research includes this time warping technique, to help secure
against the ill effects of lag.

2.3. Object Interpolation. A common solution to reduce the
jittery movement of rendered objects, as outlined by the
popular video game development community Valve, is to
draw game objects in the past, allowing the receiver to
smoothly interpolate positional data between two recently
received packets [17, 18]. The method works because time is
rewound for that object, allowing current or past information
about an object to represent the future information of that
object. Then to draw the object, a position is interpolated
from information ahead of and behind the new current
position (which is actually in the past), as shown in Figure 2.
Without information ahead of when rendering occurs, we
can at best draw it at its current known position, which, as
mentioned before, yields jittery rendering. As long as the
rewind time (or interpolation time) is greater than lag, it
should be possible to interpolate the position of the object.
Interpolation times are traditionally a constant value or equal
to the amount of lag to the server at any given time. The
method used in our work is a constant interpolation value
of 100 ms, as is used in the popular action game Half-Life
2 [17, 18]. It is a value sufficient enough to cover a large
percentage of the lag or loss that will occur.

International Journal of Computer Games Technology

2.4. Dead Reckoning. As previously mentioned, the main
goal of network compensation methods is to minimize the
perceived influence of adverse network conditions on the
player. Dead reckoning is a widely used method to achieve
this goal. Dead reckoning is defined as any process to deduce
the approximate current position of an object based on past
information. In a MOG, this is done so that during high lag
and loss conditions in the network, the client can approximate
an object’s position more accurately. That is, when data is
lost or lost beyond what interpolation can solve, the current
position of an object needs to be predicted. Without predic-
tion, an object would only be rendered at the latest known
position, causing discrepancies in simulation state and great
jitter in object motion. When relying on dead reckoning,
an assumption is made about the nature of game objects,
such as adherence to certain forces or likelihoods. With small
amounts of lag and loss, dead reckoning does a great job
concealing the fact that there was missing information about
an object.

The most common and traditional method of dead
reckoning involves doing a linear projection of information
received from the server about this object. An IEEE standard
dead reckoning formula [3] is given by

1
P =P, +V,At + EAOAtz,)

where P, At, Py, V,,, and A, represent the newly predicted
position, elapsed time, original position, original velocity, and
original acceleration, respectively. This equation works well
to accurately predict an object, assuming that the object does
not change direction. This method of prediction can become
inaccurate after a time, especially for a player object, whose
movement is very unpredictable.

When the receiver finally receives the actual current
position from the server, after having predicted its position up
until now, there will be some deviation between the predicted
position and the actual position. This error difference is
known as the export error [5, 8, 9]. Minimizing the export
error has the effect of lowering the appearance of lag in the
simulation.

In [9], the difference between a time-stamped and a
nontime-stamped dead reckoning packet is explored. With-
out time-stamping a dead-reckoning packet, the receiver
cannot be entirely sure when the packet was generated, and as
aresult, discrepancies between the sender and receiver’s view
of the world will exist. Time synchronization between players
and time-stamping dead reckoning packets means that the
receiving user can execute a received packet in proper order
and in the exact same conditions as they were when gener-
ated. It is widely acknowledged that time synchronization,
while adding network traffic, greatly improves simulation
accuracy and reduces the export error [9, 10, 19-22].

As previously mentioned, traditional prediction schemes
forecast a player’s position by assuming each player moves
using constant force or velocity. However, because player
movement is rarely linear in nature, using linear prediction
fails to maintain an accurate result. Furthermore, Wolf
and Pantel explore and discuss the suitability of different
prediction methods within the context of different types

International Journal of Computer Games Technology

of video games [23]. They conclude that some prediction
schemes are better suited to some types of games than
to others. More specifically, they look at five traditional
prediction schemes: constant velocity, constant acceleration,
constant input position, constant input velocity, and constant
input acceleration. Each prediction scheme is compared to
the others in the context of a sports game, a racing game,
and an action game. As a result of the evaluation of these
different prediction methods in each game, these authors
demonstrate that different prediction schemes are better
suited to different types of games. For example, it is shown
that predicting with a constant input velocity is best suited to
sports games; a constant input acceleration is best for action
games; predicting with constant acceleration is best suited to
racing games, and for action games, constant velocity and
constant input position predictions also offer a relatively low
prediction error.

Among existing dead reckoning methods, few focus
on improving prediction accuracy via genuinely new (i.e.,
nontraditional) methods for predicting the path of a player.
We discuss below some of these innovative approaches.

Traditionally, dead reckoning algorithms dictate that the
server should send a positional update to clients when an
object strays from its predicted path by some threshold. Thus,
a dead reckoning algorithm that successfully improves path
prediction does not only minimize the appearance of lag but
also minimizes network traffic as well. Duncan and Gracanin
[24] propose a method, called the Pre-Reckoning scheme,
that sends an update just before it is anticipated that an
object will exceed some threshold. To anticipate a threshold
change, the angle between the current movement and the
last movement is analyzed. If this angle is large enough, it is
assumed that the threshold will be crossed very soon, and a
dead reckoning packet is sent. The Pre-Reckoning algorithm
yields better results when variability in player movement is
low.

Cai et al. [25] present an autoadaptive dead reckoning
algorithm that uses a dynamic threshold to control the
extrapolation errors in order to reduce the number of update
packets. The results suggest a considerable reduction in
(the number of) update packets without sacrificing accuracy
in extrapolation. While having a dynamic threshold for
predicting objects does result in less data needing to be
sent over the network, it does not eliminate the requirement
for increasingly accurate prediction schemes. A dynamic
threshold allows farther away objects to not require a high
a degree of accuracy, but regardless, closer objects still need
to be predicted accurately. Furthermore, the method outlined
in [25] assumes a perspective view on the world, such that
farther away objects are smaller and less visible. However, in
a 2D video game, in which an orthographic view is utilized,
all objects in view are of normal size, and therefore almost all
of the objects are of interest to the user.

Work has also been done in using neural networks to
enhance the accuracy of dead reckoning [26, 27]. In [26],
McCoy et al. propose an approach that requires each con-
trolling host to rely on a bank of neural network predictors
trained to predict future changes in an object’s velocity.
Conversely, the approach proposed by Hakiri et al. in [27]

is based on a fuzzy inference system trained by a learning
algorithm derived from neural networks. This method does
reduce network loads. While these methods have been shown
to improve performance of dead reckoning, they impose
extra computation on each host prior to the launching
of a game and, more importantly, ultimately depend on
extensive training. That is, the statistical nature of such
predictors entails they must learn from very large datasets.
Our proposed solution rests on the notion of play patterns.
Machine learning could have been used to learn such play
patterns from the large datasets we have gathered, but we
have relied on our ability to initially recognize such patterns
manually. Thus, we will not discuss further, in the context of
this paper, techniques that require statistical learning.

Delaney et al. [28] describe a hybrid predictive technique
that chooses either the deterministic dead reckoning model
or a statistically based model. The claim of these authors is
that their approach results in a more accurate representation
of the movement of an entity and a consequent reduction
in the number of packets that must be communicated to
track that movement remotely. The statistical model rests on
repeatedly observing players race to a same goal location in
order to determine the most common path used. In turn, this
path is used to predict the path of a player towards the same
goal location. The difficulty with such an approach is that
it rests on the notion of shared goal locations, which is not
readily applicable to most genres of games. However, the idea
of a hybrid approach to path prediction is an interesting one
to which we will return later.

Finally, Li et al. propose a method called the “Interest
Scheme” [5, 8] for predicting the location of a player-
controlled object. That approach shows an increased accuracy
of path prediction beyond traditional dead reckoning models
specifically in a 2D tank game, with levels of lag up to
3000 ms. The strength of the Interest Scheme lies in the
way it uses the surrounding entities of a given player-
controlled entity to better predict what actions the user will
take. The method works on the assumption that a player’s
directional input is affected by its surroundings, such as
items and enemy players. Due to the introduction of an extra
computational burden, especially when network conditions
are adequate for play, a hybrid method is introduced into
the “Interest Scheme.” This method involves using traditional
dead reckoning algorithms up until a fixed threshold of
prediction time. However, “Interest Scheme” is designed for
one very specific type of game. Thus, as previously mentioned,
the success of the “Interest Scheme” is not reproducible in a
traditional team-based action game.

While all the prediction methods referred to above are
capable of predicting player movement relatively accurate,
more elaborate methods should be considered to han-
dle high amounts of lag. This is required by the non-
deterministic manner in which players typically move in
any given video game. Once there is a high amount
of network delay, traditional methods of dead reckon-
ing become too inaccurate, and the export error starts
to become too large. Ultimately players start to notice
a loss of consistency [6, 7, 18, 23, 29]. Some work, in
particular the Interest Scheme outlined by Li et al. [5, 8],

has been done from this standpoint. The algorithms that we
will now introduce are in the same vein. Methodologically,
our proposed solutions will be compared with the IEEE
standard dead reckoning algorithm [3] (hereafter referred to
as TDM for “traditional dead reckoning method”) and the
“Interest Scheme” (hereafter IS) algorithm [5, 8].

3. The EKB Algorithm

In this section, we introduce our proposed method of pre-
diction algorithm: experience knows best (EKB). We start by
describing our movement prediction algorithm, which rests
on the combined use of different velocities. Next, each of these
velocities is discussed. We then describe some enhancements
to our algorithm, followed by a discussion of its parameter
space. In order to clarify the algorithm description, hereafter
we use TPlayer to refer to the target player for prediction. The
last known position is the latest position data that was received
over the network. The last known position time (LKPT) refers
to the time stamp associated with the last known position. The
last known velocity is the velocity associated with the LKPT.

3.1. Combination of Velocities. Our approach involves pre-
dicting a player’s position by predicting the potential
behaviours that a player may adopt. To do so, using half of
the data collected during the play sessions of Ethereal, we
identified behaviours that are assumed to affect the player’s
next movement. These behaviours each take the form of a
velocity that is exerted on the players, affecting where they
will be located next. These behaviour velocities are applied at
different strength levels depending on what is occurring in
the game from the point of view of the player at hand. These
velocities are based on the positions and states of other objects
in the scene. Velocities are applied as either an attraction or
repulsion towards or away from a given position in space. The
magnitude of these velocities depends on several factors such
as the distance to the object and the strength or weakness of
the player.

The following velocities are employed in our work: the fol-
low velocity, the bravery velocity, and the alignment velocity.
They will be explained at length in the next subsection. Here
we first describe how they are combined to act on a player.

Each velocity takes into account other players in the game
world in order to determine direction and magnitude. They
do so only if a given player is within a specified static distance
threshold. In our current experiments, we set this distance
to the size of the screen. Any player outside of such a region
of interest is not considered in the computing of a behaviour
velocity.

In order to simplify how the velocities interact with
each other, we separate player behaviour into two categories:
in battle behaviours and out of battle behaviours. When
the player is in battle, the player’s position is calculated by
combining the follow and the align velocities. When out of
battle, the player’s position is calculated by combining the
follow and the align velocities. Let us elaborate.

Whether the TPlayer is in battle or not is chosen as a
simple distance check to the closest enemy, as outlined in

International Journal of Computer Games Technology

(1) if the player is in battle then
(2) ‘/r = (\/follow X q) + (Vbravery X (1 - q))

(3) else
(4) er = (‘_}follow X 1") + (‘_}align X (1 - 1"))
(5) end if

AvrGoriTHM L: Apply velocities.

(4). If there exists an enemy within the battle threshold W,
then the player is said to be in battle. Equation (2) calculates
the distance from the current player position (C) to a given
enemy player (B,). For our results, we used a threshold of
W = 800 as this seemed to accurately represent when a player
was engaged in combat or not in the context of our game.
Consider

Dei = |}3@i - C_.| (2)
closestEnemyDist = min {Del sDeys oo Den} (3)

true if closestEnemyDist <W

InBattle = { (4)

false otherwise.

Algorithm 1 shows how the velocities are handled. V, is
the final resultant velocity that is used to predict a player’s
position. Coeflicients g and r are static values that are less
than 1 and greater than 0 (the values of q and r will be
explained shortly). They dictate how much of each velocity
is used.

In summary, we first separate a player’s behaviour into
two states: in battle and out of battle. We then exert different
velocities based on a player’s current state. Finally, these
velocities are combined into a resultant velocity V, as outlined
in Algorithm1 to calculate the players predicted position
épred at the next simulation tick from this player’s current
position C (as shown in (5)). Consider

Corea =C+V,. (5)

We use g = 0.5 and r = 0.6. This is the result of trial and
error tests to see what works best.

Finally, for convenience, we now give in Tablel an
explanation of each parameter that is used in the descriptions
of our algorithms. The Nomenclature section lists lists these
parameters, as well as all variables used in our algorithms.

3.2. Main Theoretical Component: Velocities. We now elabo-
rate on each of the proposed velocities.

3.2.1. Follow. The follow velocity arises from our observation
that the player moves towards friendly players and the player
groups with these friendly players (e.g., other teammates).
It is computed by taking the average position of all friendly
players within a specified radius and having the player move
towards that location. Furthermore, the speed of differentia-
tion of this velocity does not depend on the distance of other

International Journal of Computer Games Technology

TABLE 1: Parameter space.

Parameter Value Description

Static distance threshold to differentiate
between a player in battle or out of battle

w 800

Coeflicient used in (14) to determine how
much smaller we scale the strength of the
friendly team

k 0.4

Maximum distance a player will aim to run
towards or away from the friend epicenter
depending on how strong each team is

u 200

Coefficient used to modify m (introduced
below and defined in Nomenclature) so that
it is in the correct range

Upper bound on m that ensures that there is
always some transition that occurs from the
old velocity V, to the new velocity

Sets how much of each follow and bravery
velocity is used to create the resultant
movement velocity if in battle

Sets how much of each follow and alignment
velocity is used to create the resultant
movement velocity if out of battle

Threshold angle used to determine the angle
above which the change in velocity needs to
be before a change in direction is registered

Minimum threshold of lag below which the

350
~ EKB method is always used

players, but it is instead always set to the maximum speed
of the TPlayer. From our observations, the follow velocity is
the most important behaviour velocity to exert on a player.
This is because, in multiplayer online games, a player’s actions
generally proceed from a team-based strategy:

i=ng 2
D Y-
E= i P (6)
n
f
N Ef - C
Veoliow = m xS. 7)
-

Equation (6) calculates the averaged position of all
friendly (f) players within a given threshold, where ﬁf is
the position of a friend and n, is the number of players
of that type within the predefined region of interest (ROI).
Equation (7) represents the velocity from the TPlayer current
position C to the average position of all friendly players. S
is the maximum speed of the TPlayer. The follow velocity is
illustrated in Figure 3.

To gather friendly and enemy player data, we impose
a maximum distance that a player can be before it is not
considered in any calculations. The game window is 1280
pixels wide and 960 pixels tall, and so the maximum distance
for considering players is 1280 pixels in the x-axis and 960 in
the y-axis.

3.2.2. Align. The alignment velocity arises from a player’s
tendency to travel in a group with friendly players. The

o
Player'."'-.,. ‘

.. Follow velocity Friend [7,7]
riend [7,

o

averaged friend position [6.3, 5.3] ‘
. Friend [9, 5]
Friend [3, 4]

FIGURE 3: Follow velocity.

alignment velocity takes into account all friendly players’
velocities within a specified radius. The closer a friendly
player is, the more weight it carries in affecting the direction
of the alignment velocity. The alignment velocity’s magnitude
is a function of how many friendly players are within the
specified radius and how close they are. Consider

D if D, >D
sz{fMAX fo M)

Dy if Dy <D gy

=y D¢ - Dy,

=4 7 Si SimiN

Dalign = § (Vf,i X (1 - —>> (9)
i=1 Df>iMAx - Df’iMIN

Dalign if |Dalign <S$
Viien = 1 D 10
align 8% S otherwise. (10)
'Dalign|

Equations (9) and (10) outline the alignment velocity.
Dy, Vf, D vy and Dyyax represent the distance to the
friendly player, the velocity of the friendly player, the mini-
mum distance to consider for friendly players, and the max-
imum distance to consider for friendly players, respectively.
If the result of (9) is greater than the player’s speed S, then
Vahgn is set to S. Dy and Dpyax are each a predefined
threshold. D s = 60 pixels because a player’s diameter is
approximatef;l this amount, and a player within this distance
is likely not be distinguished by the TPlayer. D s\j5x = 1000
pixels because the friendly player in question is certainly
visible at this distance. Though a player may be visible up
to 1600 pixels (the diagonal distance of the screen space), an
object outside of 1000 pixels is unlikely to affect the alignment
of the TPlayer.

3.2.3. Bravery. 'The bravery velocity arises from the observed
behaviour of a player’s tendency to fall back when outnum-
bered by the enemy and the tendency to advance on the
enemy while winning. To obtain the bravery velocity, the
total strength of all nearby friends and the total strength of
all nearby enemies are calculated. The strength of each team
is calculated by adding up the health and ammo values of
each player. The relative strength of the friendly army versus
the enemy army determines the direction of the resulting
velocity. If the friendly army is stronger, the bravery velocity is

positive, namely, towards the enemy. Otherwise, it is negative,
consequently, away from the enemy forces. The higher the
magnitude of the velocity is, the farther the TPlayer will move
away or towards the enemy:

Ee _ ZZTE pe,i E'f _ Z:ff ﬁfﬂ‘ (11)
ne T’lf
H A
I,= 2 +_2 (12)
P MH, Ma,
i:"f i=n,
Zf = ZIf’i Ze = Ie,i (13)
i=1 i=1
; . ((E-E))
Dbravery = <Ef + <f>
E,-E
(5] .
><<u>< (kz;+1,) -z, >> 6
max ((ka + Ic) , Ze)
Py = (22 S, (15
| bravery

In (12), I, is the influence of given player (whether a
friendly player, enemy player, or the current player) in terms
of its strength. H, MH, A, and MA are the health, maximum
health, ammo value, and maximum ammo of the player,
respectively. This influence value is then combined into either
the enemy or friendly team influence value, depending on
which team the TPlayer is, represented by Z or Z, in (13).
Z; and Z, are each made up of all the players on the given

team that are within a predefined threshold. ﬁbmery in (14)
is the direction vector used for the bravery velocity. u is a
coeflicient, that is, the maximum distance that a player will
run away or towards the enemy and k is a coeflicient that
modifies the strength of the friendly influence. This is to
model the fact that a player will consider his/her own strength
over his/her allies’ strength in a combat situation. The TPlayer
is either moving towards or away from the enemy, in relation
to the averaged friend position. This is illustrated in Figure 4.
Equation (15) is the actual velocity used for bravery.

k is a coeflicient used in (14) to determine how much
smaller we scale the strength of the friendly team. This is done
for two reasons. First, a player will tend to consider his own
strength when in combat and will not adjust her behaviour if
their friends are strong or weak. Second, since enemy players
are more often far away than friendly players, they often
fall outside the maximum distance for considering players.
Thus, many enemy players that the player may be aware of
are not considered in the strength calculations because they
are simply too far away. This is easily adjusted by using k.
In our simulations, we set k = 0.4. We found through trial
and error that this yielded the best results and behaviour that
best reflected reality. u is the maximum distance a player
will aim to run towards or away from the friend epicenter
depending on how strong each team is. We set u to 200 pixels,

International Journal of Computer Games Technology

Player .
Bravery"-_ Friend (7, 7]
velocity ™

averaged friend position [6.3, 5.3]

h O

. Friend [9, 5]
Friend [3, 4] ’

A
Enemy [2, —5] ><
A

Enemy [8, -7]

FIGURE 4: Bravery velocity when friendly team is stronger.

as, through trial and error, this is the value that resulted in the
best prediction accuracy.

4. Algorithm Enhancements

4.1. Smooth Transition. In Algorithm 1, V, is the final resul-
tant velocity that is used to predict the player’s position.
After extensive experiments, we notice the following: if the
player’s velocity is immediately set to V,, the result is most
often an inaccurate account of the player’s movement. This
is due to ignoring the player’s last known velocity. The last
known velocity is the last velocity information received in
the last received position packet. (We use “position packet”
synonymously with “dead reckoning packet,” which refers
to the information received from the server describing
player information.) To alleviate this, we perform a smooth
transition of the player from the last known velocity to the
one determined by the combined velocities (see (16)). Vj is
the velocity that should be used as the velocity of the player
and j is the number of updates that have occurred since the
last known velocity V. The more updates that have passed
since the last known velocity was received (i.e., the larger the
value of j), the larger the value of V, is and the smaller the
value V, is. Once j reaches the size of m (discussed below),
then we exclusively use V, to determine _/"J as follows:

m-j

N
N L <
A V0+m(Vr) ifj<m (16)
V. otherwise
I min {closest EnemyDist,
m = closestFriendDist} if m < R 17)
R otherwise.

The calculations for m are shown in (17). m is proportional
to the distance between the player and the closer of the
closest friendly or enemy player. This is due to the following

International Journal of Computer Games Technology

(1) if the desired A" end destination location has changed since the last update then
(2 recalculate an A* path to the desired location for V;,,,, and Vbravew'

(3) endif

(4) if the next A" node in the path is reached then

(5) increment the desired node location to the next node in the A* path.

~

(6) end if

(8) if the player is in battle then

.

(10) else

o

(12) end if

(7) Use the next desired node location to calculate the vectors for V;,,, and mevery.
(9) ‘/r = (_}follow x q) + (Vbravery x (1 - q))

(11) er = (‘7follow X 1’) + (Vvalign x(1- 1’))

ALGORITHM 2: A*.

(2) predict the player’s position using the EKB

(4) predict the player’s position using the TDM
(5) else

(6) predict the player’s position using the EKB
(7) end if

(1) if the amount of time since the last position packet was received (Q) is less than or equal to x ms then

(3) else if the player has not changed direction since LKPT — Q time then

AvrGoriTHM 3: Hybrid approach.

observation: a player is more likely to react to a player that is
close to it and is less likely to continue at the current velocity.
lis a coefficient used to modify m so that it is in the right scale
(we found that I = 0.1 works best). R is the upper bounds on
m.

We used I = 0.1 because it allows for the best
transition from the old velocity V, to the new velocity
calculated by EKB. We used R = 60. This value repre-
sents a maximum allowable time to still consider the old
velocity Vj, in the calculations. An R of 60 corresponds to
1 second.

4.2. Incorporation of A*. We employ the A* path finding
algorithm [30] to further improve the accuracy of our
initial algorithm. The use of the A* algorithm proceeds
from observing a player’s tendency to avoid walls and find
an efficient path through space to a desired location. This
ensures that the TPlayer’s predicted path avoids wall objects
and looks more realistic. The implementation of the A* path
finding algorithm in our scheme involves modification to the
follow and bravery velocities, whereas the alignment velocity
remains the same. Vi, and Vbravery now point towards
a desired position that is along the A" path, rather than
pointing towards only the final destination. For Vi, this
desired location is the average position of all nearby friendly
players. For meery, this desired location is ﬁbmery +C. A
shortest path to this desired location avoiding all obstacles is
then calculated. Algorithm 2 outlines how A™ is incorporated
into our prediction scheme.

4.3. Hybrid Approach. In order to further improve the predic-
tion accuracy and reduce the number of packets transmitted
across the network, we develop a hybrid scheme as follows.

(i) Below x ms of lag, EKB is always used. This is because
according to our experiment results EKB performs
best under this lag range.

(ii) If a player has been moving in the same direction
for less than or equal to the same amount of time
as the network delay, then we assume the player will
continue to move in this direction and thus we use
TDM for the prediction.

(iii) Otherwise, EKB is used.

The hybrid method is detailed in Algorithm 3. We use
x = 350, because below this threshold the EKB method
performs significantly better than TDM and IS (as will be
discussed later). The amount of time between the current time
and the LKPT is how long we have not received a position
packet from the server, that is, how long we have not known
the true position of the TPlayer. We call this Q time. Equation
(18) describes its calculation:

Q = currentTime — LKPT. (18)

LKPT is the time stamp of the last received positional
information received with regard to the TPlayer. We use Q
as the amount of time before the LKPT to check to see if the
player has changed direction. If the TPlayer has not changed
direction since LKPT — Q, then it is assumed that the player
will continue in this direction, and the TDM is used.

10

International Journal of Computer Games Technology

(1) initialize count to one

(2) initialize directionChange to false

(3) while count is less than Q do

(4) if the angle between the velocity at t = last received and
the velocity at t = last received minus count’s is above

a threshold angle /. then

(5) set directionChange to true.
(6) endif

(7) increment count by dt.

(8) end while

ALGORITHM 4: Check player direction change.

To determine whether a player has changed direction, we
use the method outlined in Algorithm 4.

h is a threshold angle used to determine the angle above
which the change in velocity needs to be before a change
in direction is registered. We use h = 40 degrees, so that
if a player changes direction by 45 degrees, it is detected as
a change in direction. x is the minimum threshold of lag
below which the EKB method is always used.

5. Experimental Parameters and Results

5.1. Overhead Introduced by Our EKB Algorithm. Our algo-
rithm computes a player’s desired position based on several
calculations. The constituents of this algorithm that add com-
plexity include the A* algorithm, as well as the calculation of
(a) the follow vector, (b) the align vector, and (c) the bravery
vector. Computing each of these vectors requires looping
through nearby players, and therefore the time complexity is
O(n), where n is the number of players. The time complexity
of the A* calculation depends on heuristics. It is essentially
a guided breadth-first search on the tiles (or grid) of the
game world. In our implementation, the complexity is O(D?),
where D is the depth of the solution path. Each of these
calculations is computed at most once per prediction, and
there are at most n players that require prediction. So the total
time complexity of algorithm EKB is O(nD2 + nz).

5.2. Experiment Conditions. In order to collect players’ input,
replay the collected data (for data analysis and pattern extrac-
tion), and conduct empirical and comparative evaluations,
we implemented an interactive distributed test environment.
This test environment takes the form of a multiplayer online
game named Ethereal. We designed the test environment so
that player activities would be similar to those that would
be seen in any traditional action game. Players, each on
a separate computer, can make a connection to the server
machine to join the distributed interactive system, wherein
players can interact with each other in real-time. Once a
connection is made to the server, each player chooses a team
to join and can then start playing the game. In Ethereal,
players assume the role of a single entity that can move in
all directions on a 2D plane freely. Also, they can use the
mouse to aim and shoot. Gameplay is such that there are two

FIGURE 5: A snapshot from Ethereal.

teams, both pitted against each other in competition. Points
are awarded to a team when a player from that team kills a
player from the opposing team. A team wins when it reaches
a certain amount of points before the other team does. A
screenshot from the game can be seen in Figure 5.

To ensure adequate observations and depth of analysis,
we implemented a replay system to record all events and
inputs from play sessions and to conduct analysis based on
this replay data. This allows us to do multiple predictions per
update (i.e., tick) of the simulation on all players in the game
without worrying about the analysis and collection of our
results slowing down the simulation for the players during a
play test. The replay system is a server-side implementation
that is designed to accurately playback all game actions and
events exactly as they were recorded. The replay system
records all relevant information from a play session as it
happens. It records player input, births time (i.e., player
spawn time), death time, and state snapshots. Player input
records consist of a time stamp, directional information,
and mouse input at every update of the simulation. A
“player snapshot” is taken every 5 seconds to ensure nothing
becomes desynchronized. A player snapshot consists
of all state information that is important to gameplay,
namely: player position, velocity, health, and ammo. An
example of such “replay raw data” can be found after the
References section. The complete dataset is available at
http://www.jakeagar.com/sessionInputsAndMapsAndConfi-
gs.zip.

After recording all necessary data, the system can then
play it back. This is done by spawning a given player at its

International Journal of Computer Games Technology

TABLE 2: Session parameters for algorithm evaluation.

Number of players Run time
Session 1 10 15 minutes
Session 2 14 35 minutes
Session 3 15 28 minutes

recorded birth time. Then, as the simulation progresses, the
time stamp of the input record that is next to execute is
checked. If it is time to execute this input, it gets executed.
The same is done for the snapshot records. Once the death
time of the player is reached, the player is killed. In this
way, all recorded data is played back, such that an entire
game play session can be observed after it has been recorded.
Our test environment also has the capability to run and
evaluate dead reckoning schemes and to measure and record
metrics associated with each such scheme. At each update
of the playback simulation, the replay system can check any
number of criteria in order to decide if a simulated dead
reckoning prediction should be made. To do so, the replay
system must know the positional history of all objects. It
achieves this by recording player positional data at each
update of the simulation. When a dead reckoning prediction
is called upon, the replay system “looks back in time” to
the relevant simulated last known position. From the latter,
it can predict a position at the current time, as well as
measure how accurate the prediction is (by comparing it
to the current position). That is, since the replay system
makes only simulated dead reckoning predictions, we can
easily compare such predictions against the actual player data.
In particular, we can compute how far away the predicted
position is from the actual position and measure the number
of packets that would be sent by the current dead reckoning
scheme (as will be explained shortly).

For the training and evaluation of our algorithm, we ran
in total 3 play sessions of our 2D networked multiplayer
game Ethereal. Table 2 outlines the number of players in
and duration (i.e.,, “run time”) of each session used for
our algorithm evaluation. All participants were avid for
professional video game players, male, between the ages of
17 and 30, and they were either undergraduate students,
graduate students, or graduates. We used sessions 1 and 3
(25 participants) for our evaluations. We chose this many
players as they constitute a representative set of set of the
actual players that would be seen in an online game playing
community. Furthermore, this size of sample follows suit with
the sample sizes of similar studies. Finally, teams within a
game were organized with respect to the configuration of the
room so that players sitting close to each other were on the
same team, allowing them to discuss strategy.

The play sessions were conducted in a local-area network
(LAN) scenario, and thus while playing, players experienced
near perfect network conditions. That is, lag was in the order
of 5-50 ms at any given time. We then simulated lag on the
players’ input data from the replay files.

5.3. Performance Testing and Metrics. We experimented with
different prediction methods, analyzing them with our replay

1

system. We can setup any amount of delay into the simulation
and test the predicted position against the actual position
of any player. At the time of making a prediction, we can
then measure different metrics. We measured the average
export error (AEE), the number of hits, and the number
of packets sent. We use these metrics to evaluate our EKB
method, as well as the two other dead reckoning schemes we
selected: the TDM [3] and the IS [5, 8]. We believe that these
metrics accurately test and contrast the accuracy of these dead
reckoning schemes. Let us elaborate.

AEE is the average distance from the predicted position
and the actual position of the player for all predictions made.
To calculate it, we take the median of all export errors at fixed
intervals of time (e.g., 300 ms, 600 ms, etc.) to determine the
general accuracy of an algorithm. The calculation of AEE is
shown in (19). B, and E, are, respectively, the actual position
of the player and the predicted position of the player at time
t. Here, n is the total number of predictions made throughout
the lifetime of all replay data. The AEE is a measurement of
how similar the estimated behaviour of a player is related to
the true and actual movement of a player. The AEE is the best
metric in determining the accuracy of any given prediction
method:

_ zzg Pt,i - Et,il (19)

The next metric we take is hits. A hit is defined as when the
predicted location is within a specific threshold (measured in
pixels) of the actual position. It is taken at specific points in
time. This metric measures how many times the prediction
scheme has predicted a position correctly. Whenever the
position of the player is accurately predicted as a hit, this
means that the play experience is improved for the player
because it means that the estimated player position will not
have to be corrected to the actual player position.

We also measure the number of packets that need to be
transmitted over the network during each session of play. This
is done by assuming that a packet only needs to be sent when
the predicted position of the player is more than a certain
static threshold g distance away from the actual position of
the player. We use a threshold of g = 45 because it is less
than the width of a player. Measuring the number of packets
sent is done in order to evaluate network traffic (which,
ideally, should be as low as possible). Network bandwidth
is often a performance bottleneck for distributed interactive
simulations. When there are less packets that need to be
sent per object, the game can replicate more objects over
the network. We present packets sent as a single integer,
representing the total number of packets that have been sent
throughout all play sessions that were conducted.

To ensure we test our prediction scheme against other
prediction schemes in identical situations of play, we make
a prediction and measure its accuracy as often as possible.
Instead of simulating realistic lag onto the players at the
moment of play, we test our prediction scheme at every
update of the simulation during replay playback (of the
recorded replay data). Furthermore, at each tick of the
simulation, we test lag at varying degrees of network delay.

12

500
450

'S
=)
S
1
7

350
00 -

W

—_ N
g o U © U
o O © o o ©
| ! ! ! ! !

Average export error (pixels)
—_)

\
\
\
.

N
1800 2100

300 600 900 1200 1500
Network latency (ms)

g EKB
m OAEKB

m Hybrid EKB
N Hybrid OAEKB

FIGURE 6: AEE of EKB and its variations.

TaBLE 3: AEE of EKB and its variations.

EKB OAEKB Hybrid EKB Hybrid OAEKB

300 ms 37.8 36.9 44.1 423

600ms 106.9 104.8 112.6 112.5
900 ms 178.9 175.2 192.2 192.2
1200ms 241.6 235.8 2671 266.9
1500 ms 293.6 285.7 334.7 334.0
1800ms 3373 327.8 395.2 394.1
2100ms 374.9 364.5 449.4 448.5

At each tick, we simulate lag at 7 different levels, 300 ms
apart. We test prediction at 300 ms of delay, 600 ms of delay,
and so on up to 2100ms of delay. We do 7 predictions
per update of the simulation for each and every player in
the game. We use nonrandom, deterministic lag intervals
to ensure that analysis and comparison are done absolutely
fair, such that nothing is left to chance. We test against lag
up to approximately 2 seconds because lag scenarios above
2 seconds of network lag are not likely in today’s online
video games. Combining testing prediction at every update
of the simulation with an all-encompassing approach to lag
simulation allows the testing of every possible game scenario
at every level of lag with each dead reckoning scheme. Finally,
we remark that jitter is not addressed in this work.

5.4. Experimental Results and Their Analysis. In this sub-
section, the results of our experiments with our different
versions of EKB are described. The discussion is organized
with respect to each metric we consider: AEE, then number
of hits, and finally packets sent.

5.4.1. Average Export Error. The average export error (AEE)
is the discrepancy between the actual location of the player
and the predicted location of the player (in pixels). Figure 6
and Table 3 compare the EKB method against the obstacle
avoiding EKB (OAEKB) method that uses A", the hybrid
EKB, and the hybrid OAEKB method. These figures show the

International Journal of Computer Games Technology

80

Hits (%)

= = P\ o N
300 600 900 1200 1500 1800 2100
Network latency (ms)

m Hybrid EKB
\' Hybrid OAEKB

EKB
m OAEKB

FIGURE 7: Hit percentages, EKB at threshold g = 45.

TABLE 4: Hit percentages and EKB at threshold g = 45.

EKB OAEKB Hybrid EKB Hybrid OAEKB
300ms 62.6% 67.7% 67.2% 67.7%
600ms 15.9% 17.7% 25.8% 26.0%
900 ms 4.8% 5.3% 13.1% 13.3%
1200ms 2.5% 2.8% 7.5% 7.4%
1500ms 1.7% 2.0% 4.6% 4.5%
1800ms 1.4% 1.7% 3.0% 3.0%
2100ms 1.2% 1.4% 2.1% 2.1%

effect of introducing the A* algorithm on the AEE. While
the introduction of the path finding algorithm A* does not
improve prediction accuracy drastically, it does result in more
realistic predicted motion of the player, as a player controlled
by a human user will tend to avoid obstacles to achieve
their objectives. AEE increases as prediction time increases.
This is because as the prediction time increases, so does the
time since the last player’s true position was known. This
suggests that the EKB performs better under higher latency
conditions.

From Figure 6, we can compare the OAEKB and hybrid
OAEKB Recall that movement in the hybrid method can
use TDM or EKB, depending on how linear a player’s past
behaviour is. We introduced the hybrid method to increase
the number of hits and decrease the number of packets sent.
While it does this effectively, it also has the effect of lowering
the accuracy of the AEE.

5.4.2. Number of Hits. Figure 7 shows the number of hits at
different levels of network latency for EKB, OAEKB, hybrid
EKB, and hybrid OAEKB. Table 4 shows the same data.
The number of hits without using the hybrid method was
much lower than with, and this is why we introduced the
hybrid method. The fact that the hybrid method has the
effect of improving the number of total hits while at the same
time lowering AEE accuracy demonstrates that although the
position of the player is often accurately predicted, it does

International Journal of Computer Games Technology

19 - : : : : : : :
18 - 17.63%
17 A
16 -
15 A
14 -
13 A
12 A
11 A
10 A

17.72%

O 1410%
12.91%

Total accurate hit (%)

EKB OAEKB

Hybrid EKB Hybrid OAEKB

Total number of hits

FIGURE 8: Total hit percentages, EKB at threshold g = 45.

not mean that the position of the player is overall better
approximated. The hybrid method improves the number of
hits because it allows for frequent predictions of the player
moving in a straight line, during which time it is exactly
accurate in predicting the player (as long as the player
is moving linearly). Without the hybrid scheme, the EKB
does approximate the player relatively accurate but does not
produce as many exact predictions of player position.

As can be seen in Figure 8, the hybrid OAEKB method
improves on the number of hits made by EKB. It can also
be seen that while introducing A" into EKB did not provide
relevant improvements to AEE, it increased the total number
of accurate predictions made (as shown in Figure 8). This
further provides evidence that A* allows our algorithm to
more accurately predict the movement of the player.

5.4.3. Number of Packets Sent. We also measure the number
of dead reckoning packets (or position packets) that need to
be sent through the network. The “packets sent” metric is
produced not by using fixed intervals of lag like for the AEE
and hit metrics. Instead, as explained earlier, we work under
the assumption that a packet is sent only when the predicted
position is a certain threshold h distance away from the actual
position of the player. To calculate packets sent per second, we
add up all the packets that would be sent in this way for each
dead reckoning algorithm and then divide it by total time (of
the play session) such that we obtain a measure of packets sent
per second.

Figure 9 shows the number of packets required to be sent
by the different versions of EKB. We observe that the hybrid
method reduces the number of packets that need to be sent.

In summary, our experiments show that the OAEKB
is best suited to produce the lowest AEE, and the hybrid
OAEKB method is best suited for increasing the number of
hits and reducing network traffic. In the next section, we will
compare the different versions of EKB with TDM [3] and IS
[5, 8].

6. Comparative Evaluation

6.1. Average Export Error. Figure 10 and Table 5 show the
AEE introduced by the TDM, IS, EKB, OAEKB, hybrid EKB,
and hybrid OAEKB algorithms. From this figure we can see
that the OAEKB considerably lowers the overall prediction

13

23.5 +

2342293 22.84 - -

22.5 A

22 A

215 - 2147

21.19

Packets sent (s)

21 A

20.5 A

20 A

EKB OAEKB Hybrid EKB Hybrid OAEKB

FIGURE 9: Packets per second, EKB at threshold g = 45.

TaBLE 5: AEE comparison with high latency.

TDM [3] IS [5, 8] EKB
300 ms 35.6 382 378
600 ms 109.1 110.0 106.9
900 ms 198.7 1917 178.9
1200 ms 293.3 271.8 2416
1500 ms 388.8 3457 293.6
1800 ms 484.2 413.8 3373
2100 ms 579.5 4777 374.9

OAEKB Hybrid EKB Hybrid OAEKB
300 ms 36.9 441 423
600 ms 104.8 112.6 12.5
900 ms 175.2 192.2 192.2
1200 ms 235.8 2671 266.9
1500 ms 285.7 3347 334.0
1800 ms 3278 395.2 394.1
2100 ms 364.5 4494 4485

error when predicting at large amounts of network delay.
This is a consequence of the OAEKB’s strong ability to
approximate the position of the player. It considers various
factors that would affect the player in the context of the
game and uses these to predict the path of the player. The
OAEKB performance at high lag is demonstrated by the slope
of OAEKB’s AEE-prediction time relationship decreasing as
high levels of prediction time are reached, while the TDM
and IS seem to take a relatively linear increase in AEE as
prediction time is increased.

From Figure 10, it can be seen that while the hybrid
OAEKSB yields significantly worse AEE overall compared to
the OAEKB results, it still outperforms the TDM and IS.

6.2. Hits Percentages. We then measure the number of times
each algorithm makes an accurate hit. Figure 11 lays out the
number of hits that were recorded at each given time interval.
Table 6 shows the same data as Figure 11. Hybrid EKB and
Hybrid OAEKB performed relatively well, especially at very
low amounts of lag (300 ms). The TDM is a close second in
terms of number of hits to the hybrid OAEKB. The strength
of the TDM is its ability to predict an object moving in a
linear direction. So while hybrid OAEKB can better predict

14

700 -

600

500

400 ~

300 ~

Average export error (pixels)

200 A

100 A
0 - = & A N N
300 600 900 1200 1500 1800 2100
Network latency (ms)
H TDM B OAEKB
IS W Hybrid EKB
& EKB N\ Hybrid OAEKB

FIGURE 10: Average export error comparison.

TABLE 6: Hit percentages at threshold g = 45.

TDM [3] IS [5, 8] EKB
300 ms 61.9% 66.1% 62.6%
600 ms 26.3% 19.0% 15.9%
900 ms 13.4% 5.3% 4.8%
1200 ms 7.6% 2.3% 2.5%
1500 ms 4.6% 1.4% 1.7%
1800 ms 2.9% 11% 1.4%
2100 ms 1.9% 0.8% 1.2%

OAEKB Hybrid EKB Hybrid OAEKB
300 ms 67.7% 67.2% 67.7%
600 ms 17.7% 25.8% 26.0%
900 ms 5.3% 13.1% 13.3%
1200 ms 2.8% 7.5% 7.4%
1500 ms 2.0% 4.6% 4.5%
1800 ms 1.7% 3.0% 3.0%
2100 ms 1.4% 2.1% 2.1%

a player’s overall behaviour, the TDM can better predict a
player’s behaviour when moving in the same direction (which
players will often do).

The total number of hits as shown in Figure 12 is cal-
culated by taking a mean calculation of all the previous
hit percentage results. Hybrid OAEKB and Hybrid EKB
performed best, followed very closely by the TDM. This is
because the TDM predicts very accurately when a player
moves in a single direction, which is often the case. The IS
performed poorly because it failed to account for the case
when a player would move in a straight line for an extended

International Journal of Computer Games Technology

80
70
60
50

40

Hits (%)

30

20

10

N

z 0 =N =0 =l 2E B Bal
300 600 900 1200 1500 1800 2100
Network latency (ms)

H TDM m OAEKB
IS W Hybrid EKB
EKB N\ Hybrid OAEKB

FIGURE 11: Hit percentages at threshold g = 45.

oo 17.63% . 17.72%
1 1699%

14 - 13730 . 14.10%
12.91%

Total accurate hit (%)

TDM IS EKB

OAEKB Hybrid Hybrid
EKB OAEKB

Total number of hits

FIGURE 12: Total number of accurate hits at threshold g = 45.

period of time. The IS assumes that the player will maintain
the original velocity V, for only a relatively short amount of
time.

6.3. Number of Packets Sent. We also measure the number
of packets that need to be transmitted over the network
during each time interval we monitor. Figure 13 shows hybrid
OAEKB improves prediction accuracy over TDM and IS
while sending as few packets as TDM. The difference in
packets sent between TDM and hybrid OAEKB is negligible,
whereas IS needs to send a significantly higher number of
packets.

It is worth noting that, compared to TDM, EKB sig-
nificantly reduces AEE but yields relatively poor improve-
ments/results with respect to the number of hits and the
number of packets sent. This is because the AEE is a measure
of overall accuracy, while hits and packets sent are concerned

International Journal of Computer Games Technology

23.5 4 :
23 |) 02297 . 2291
21.5

20.5 4

Packets sent (s)
[38]
) o N
—_ [\) w
_N
et
o
(o))
[\S)
N
B
Q
(3]
=
O

20 -

TDM IS EKB OAEKB Hybrid Hybrid

EKB OAEKB

FIGURE 13: Comparison of packets sent per second.

with making a binary observation of whether the prediction
was within a small threshold /4 or not. The strength of
the TDM is in its ability to perfectly predict the player, as
long as this player is moving in a constant direction. The
strength of hybrid OAEKB is that it selectively chooses to
predict the player moving in a constant direction or to a
defined behaviour. In this way, AEE can be improved without
adversely affecting the number of hits made or the number of
packets sent.

Finally, contrary to IS, hybrid OAEKB improves the
prediction accuracy without increasing the network traffic.
And while the number of packets sent is not improved over
TDM, hybrid OAEKB does result in more realistic player
movement on account of the significant improvements made
to the AEE.

7. Conclusion

In light of the limitations observed in existing work on dead
reckoning, we have proposed here a new prediction scheme
that relies on user play patterns. Our research takes place in
the context of a 2D top-down multiplayer online game we
have developed. In such typical team-based action game, a
player’s movement is highly unpredictable and is therefore
highly prone to prediction inaccuracies, thus emphasizing the
need for a better prediction method. We have evaluated our
three proposed algorithms against the IEEE standard dead
reckoning algorithm [3] and the recent “Interest Scheme”
algorithm [5, 8]. In particular, we have shown that while our
hybrid OAEKB is best suited to improve hits and packets sent,
its use also reduces the improvement to AEE we get from EKB
and OAEKB, while still outperforming the other two dead
reckoning algorithms we considered.

We emphasize that both the proposed play patterns and
algorithms proceed from the data collected for a specific 2D
multiplayer competitive game opposing two teams and in
which players have freedom to move in all directions without
gravity. We observe that traditional 3D first-person shooter
games, such as Unreal Tournament, Quake III, and Counter-
Strike, employ mostly 2-dimensional player motion (aside
from jumping). Thus, our algorithms could be well-suited
for these kinds of games as well. However, our algorithms

15

specifically assume there are teams of players. Thus, the gener-
alization of our results to other types of games still constitutes
future work. Furthermore, we remark that we still adopt a
simple approach to prediction. More complex schemes that
(in the spirit of swarm artificial intelligence) would enable a
player to simultaneously use multiple strategies (taking into
account many possible scenarios) are beyond the scope of our
current research.

Additionally, we would like to explore the potential
for our method to take into account past decisions and
play styles of the player to increase prediction accuracy.
Our method assumes all players are interested at the same
rate in following teammates and reacting to enemy players.
In reality, many players possess differing play styles and
skill levels and will react differently in any given situation.
Utilizing machine learning or data analytics with this in mind
could provide greatly improved results. Just by playing, a
user could see automatically personalized improvements in
prediction.

We would also like to experiment with taking into
account the play styles associated with different weapons or
character classes in order to increase prediction accuracy.
Many games have different ways to interact in the world
such as different weapons and characters to use that can
greatly change how a player interacts with teammates and
enemies. Building a framework that would allow knowl-
edge of such factors could increase prediction accuracy
even further.

We would like to improve upon how the desired position
is calculated for the player. While A* made improvements to
the method, these improvements were quite minimal. This
may be caused by the fact that the position that is currently
being used to predict where the player would like to be is fun-
damentally incorrect. More work should be done in finding
exactly where the player would like to be at any given time.

Another difficult question we hope to eventually address
pertains to the possibility that users could possibly adapt
their input based on the network latency they are currently
experiencing.

Finally, work needs to be done in order to reduce the
number of packets that are sent over the network. Though
each of the 3 versions of the EKB results in improved AEE
and hits over the two other dead reckoning methods we
considered, it does so with no improvement to network
traffic.

Appendix

Box 1is an example of the raw gameplay data recorded from
a play session. Map, Us, U, UL, N, P, Pos, Sy, Alignment, Si, s,
I, T and B, X, and Y represent the current map, the list of all
users, information for a single user, the user’s identification
number, the user’s name, starting information of a user’s
player, starting position, character type, team, spawn time of
the player, list of input data, individual input entry, time of
input, character representing directional and mouse input,
the X position of the mouse cursor, and the Y position of the
mouse cursor respectively, respectively.

16

<Map>ProvingGrounds.xml</Map>
<Us>

<U>

<Ui>0</Ui>
<N>Unnamed</N>
<P>

<Pos>

<X> -2560</X>
<Y>1024</Y>
</Pos>
<N>Unnamed</N>
<Sy>4</Sy>
<Alignment>0</Alignment>
<Si>3621</Si>
</P>

<Is>

<I>

<T>3723</T>
0

</T>

<I>

<T>3740</T>
0

</T>

<I>

<T>3757</T>
0

</I>

<I>

<T>3774</T>
8

<X> -1827.08</X>
<Y>1147.52</Y>
</T>

<I>

<T>3791</T>
8

</T>

<I>

<T>3808</T>
8

</T>

Box1

Nomenclature

W : Static distance threshold to

differentiate between a player in
battle or out of battle

Coefficient used in (14) to determine
how much smaller we scale the
strength of the friendly team
Maximum distance a player will aim
to run towards or away from the
friend epicenter depending on how
strong each team is

Coefficient used to modify m
(explained below) so that it is in the
correct range

International Journal of Computer Games Technology

Zf’ ZE:

D bravery

Vbravery :

closestEnemyDist:
InBattle:

v,:

S

Upper bound on m that ensures that
there is always some transition that
occurs from the old velocity V, to the
new velocity

Sets how much of each velocity (follow
and bravery) is used to create the
resultant movement velocity if in battle
Sets how much of each velocity (follow
and align) is used to create the resultant
movement velocity if out of battle
Threshold angle used to determine the
angle above which the change in
velocity needs to be before a change in
direction is registered

Minimum threshold of lag below which
the EKB method is always used

The player whose position is being
predicted (target player)

The current position of the TPlayer

The top movement speed of the TPlayer
Vector representing the epicenter of
either friend or enemy players
Movement vector used to predict
movement towards an epicenter of
players

Distance from the TPlayer to a given
friendly (or enemy) player

Position of a given player

Initial movement vector used to predict
align behaviour before setting the
magnitude limit S

Movement vector used to predict
movement aligning to friendly players’
movement

Current health, current ammo, max
health, and max ammo of a given player
Influence of a given player

Sum of player influences (either friend
or enemy)

Initial movement vector used to predict
bravery behaviour before setting
magnitude to S

Movement vector used to predict
bravery behaviour

Distance to closest enemy player

True or false value based on in the
player is said to be in battle
Combination of other movement
vectors used to predict the new position
of the TPlayer

Prediction movement vector used to
smooth the last known velocity into V,
Number of updates since the last known
velocity

Number of updates since the last known
velocity to fully transition from \7]» toV,
Amount of time that has passed the last
known velocity.

International Journal of Computer Games Technology

Conflict of Interests

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgment

The authors gratefully acknowledge financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Grant no. 371977-2009 RGPIN.

References

[1] Entertainment Software Association, Essential Facts about the
Computer and Video Game Industry, 2013.

[2] Entertainment Software Association, Essential Facts about the
Computer and Video Game Industry, 2011.

[3] “IEEE standard for distributed interactive simulation applica-
tion protocols,” IEEE Standards Board, 1995.

[4] D. E. Comer, Computer Networks and Internets, Prentice Hall,
2008.

[5] S. Li, C. Chen, and L. Li, “A new method for path prediction
in network games,” Computers in Entertainment, vol. 5, no. 4,
article 8, 12 pages, 2008.

[6] A.F. Wattimena, R. E. Kooij, J. M. van Vugt, and O. K. Ahmed,
“Predicting the perceived quality of a first person shooter: the
Quake IV G-model,” in Proceedings of the 5th ACM SIGCOMM
Workshop on Network and System Support for Games (NetGames
’06), Singapore, October 2006.

[7] P. Quax, P. Monsieurs, W. Lamotte, D. de Vleeschauwer, and N.
Degrande, “Objective and subjective evaluation of the influence
of small amounts of delay and jitter on a recent first person
shooter game, in Proceedings of the 3rd ACM SIGCOMM
Workshop on Network and System Support for Games (NetGames
’04), pp. 152-156, Portland, Ore, USA, September 2004.

[8] C. Chen and S. Li, “Interest scheme: a new method for
path prediction,” in Proceedings of the 5th ACM SIGCOMM
Workshop on Network and System Support for Games (NetGames
’06), Singapore, October 2006.

[9] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and
S. Rangarajan, “Accuracy in dead-reckoning based distributed
multi-player games,” in Proceedings of the 3rd ACM SIGCOMM
Workshop on Network and System Support for Games (NetGames
’04), pp. 161-165, Portland, Ore, USA, September 2004.

[10] D. Liang and P. Boustead, “Using local lag and timewarp to
improve performance for real life multi-player online games,” in
Proceedings of the 5th ACM SIGCOMM Workshop on Network
and System Support for Games (NetGames '06), Singapore,
October 2006.

[11] Y.Ishibashi, Y. Hashimoto, T. Ikedo, and S. Sugawara, “Adaptive
A-causality control with adaptive dead-reckoning in networked
games,” in Proceedings of the 6th ACM SIGCOMM Workshop on
Network and System Support for Games (NetGames *07), pp. 75—
80, Melbourne, Australia, September 2007.

[12] M. Claypool, “The effect of latency on user performance in real-
time strategy games,” in Proceedings of the 2rd Workshop on
Network and System Support for Games (NetGames "03), pp. 3-
14, Redwood City, Calif, USA, May 2003.

[13] Z.B.Simpson, “A stream-based time synchronization technique
for networked computer games,” 2010, http://www.minecont-
rl.com/zack/timesync/timesync.html.

17

[14] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roccetti,
“Interactivity-loss avoidance in event delivery synchronization
for mirrored game architectures,” IEEE Transactions on Multi-
media, vol. 8, no. 4, pp. 874-879, 2006.

[15] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Local-lag
and timewarp: providing consistency for replicated continuous
applications,” IEEE Transactions on Multimedia, vol. 6, no. 1, pp.
47-57,2004.

[16] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient
synchronization mechanism for mirrored game architectures,”
in Proceedings of the Ist Workshop on Network and System
Support for Games (NetGames *02), pp. 67-73, 2002.

[17] Valve, “Source Multiplayer Networking.” Valve Developer
Community, 2011, https://developer.valvesoftware.com/wiki/
Source_Multiplayer_Networking.

[18] Y. W. Bernier, “Latency Compensating Methods in
Client/Server In-game Protocol Design and Optimization,”
Valve Developer Community, 2009, https://developer.valvesoft-
ware.com/wiki/Latency_Compensating_Methods_in_Client/S-
erver_In-game_Protocol_Design_and_Optimization#Footnotes.

[19] Y.-J. Lin, K. Guo, and S. Paul, “Sync-MS: synchronized messag-
ing service for real-time multi-player,” in Proceedings of the 10th
IEEE International Conference on Network Protocol (ICNP ’02),
pp. 1092-1648, 2002.

[20] Y. Zhang, L. Chen, and G. Chen, “Globally synchronized dead-
reckoning with local lag for continuous distributed multiplayer
games,” in Proceedings of the 5th ACM SIGCOMM Workshop
on Network and System Support for Games (NetGames '06),
Singapore, October 2006.

[21] E W.B.Li, L. W. E Li, and R. W. H. Lau, “Supporting continuous
consistency in multiplayer online games,” in Proceedings of
the 12th Annual ACM International Conference on Multimedia
(MULTIMEDIA *04), pp. 388-391, New York, NY, USA, October
2004.

S. Ferretti, “Interactivity maintenance for event synchronization
in massive multiplayer online games,” Technical Report UBLCS,
Bologna, Italy, 2005.

[23] L. C. Wolf and L. Pantel, “On the suitability of dead reckoning
schemes for games,” in Proceedings of the Ist Workshop on
Network and System Support for Games (NetGames *02), pp. 79—
84, 2002.

[24] T. P. Duncan and D. Gracanin, “Pre-reckoning algorithm for
distributed virtual environments,” in Proceedings of the Winter
Simulation Conference, vol. 2, pp. 1086-1093, December 2003.

[25] W. Cai, E B. S. Lee, and L. Chen, “An auto-adaptive dead
reckoning algorithm for distributed interactive simulation,” in
Proceedings of the 13th Workshop on Parallel and Distriuted
Simulation (PADS ’99), pp. 82-89, May 1999.

[26] A. McCoy, T. Ward, S. McLoone, and D. Delaney, “Multistep-
ahead neural-network predictors for network traffic reduction
in distributed interactive applications,” ACM Transactions on
Modeling and Computer Simulation, vol. 17, no. 4, article 16,
Article ID 1276929, 2007.

[27] A. Hakiri, P. Berthou, and T. Gayraud, “QoS-enabled ANFIS
Dead Reckoning algorithm for distributed interactive simula-
tion,” in Proceedings of the 14th IEEE/ACM International Sym-
posium on Distributed Simulation and Real-Time Applications
(DS-RT ’10), pp. 33-42, Fairfax, Va, USA, October 2010.

[28] D.Delaney, T. Ward, and S. McLoone, “On reducing entity state
update packets in distributed interactive simulations using a
hybrid model,” in Proceedings of the 21st IASTED International

[22

18

(30]

Multi-Conference on Applied Informatics, pp. 833-838, February
2003.

W. Palant, C. Griwodz, and P. Halvorsen, “Evaluating dead
reckoning variations with a multi-player game simulator,” in
Proceedings of the 16th Annual International Workshop on
Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV °06), pp. 4:1-4:6, Newport, RI, USA, May
2006.

S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995.

International Journal of Computer Games Technology

International Journal of

Rotating
Machinery

Advances in

The Scientific Journal of | Journal of Mechanical
World Journal Robotics Sensors Engineering

International Journal of

Chemical Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Distributed
Sensor Networks

Advances in

Civil Engineering

-
R

VLSI Design

Advances in
OptoElectronics

Modelling &
International Journal of Simulation

Navigation and . . :
Observation in Engineering

e

Journal of
Control Science
and Engineering

Los®

f//#f

and Passive
ronic Components

Journal of
A > e Electrical and Computer
Propagation Shock and Vibration Engineering

