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Abstract 

The continuous development of networking technologies and smart devices has led Internet 

traffic, especially for the multimedia content traffic, to increase drastically both in wired 

and wireless networks. Similarly, the fast developing of wireless networks, such as 5G, has 

led the Internet of things (IoT) to be growing at an unprecedented pace. However, the 

traditional host-centric IP Internet is based on host-to-host communications which is not 

suitable for satisfying the requirements of content delivery. Hence, information-centric 

networking (ICN), one of the emerging next-generation Internet paradigms, is proposed to 

overcome these challenges. With the ubiquitous in-network caching, ICN can facilitate 

content delivery and reduce network delay. Both 5G and IoT can use the concept of ICN 

to constitute ICN-5G and ICN-IoT networks respectively. 

However, the requirements of in-network caching may vary for different networks. This 

thesis focuses on designing in-network caching approaches for different networks, 

including pure ICN networks, ICN-5G networks and ICN-IoT networks, from a theoretical 

perspective and a practical perspective. Both reactive and proactive caching approaches 

are discussed in this thesis. Moreover, by leveraging the concepts of software-defined 

networking (SDN) and machine learning (ML), the efficiency of in-network caching can 

be significantly improved. 
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𝑁   Total number of AV users 

𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚) Number of video chunks that will be played during the period 

𝑡𝑑(𝑢𝑛, 𝑖) and 𝑡𝑎(𝑢𝑛, 𝑖) 

𝑛𝑠𝑣𝑚    The normalized size of video 𝑣𝑚 

𝑃   User feature matrix 

𝑃𝑜𝑝(𝑣𝑚)  Historical popularity of video 𝑣𝑚 

𝑃𝑟𝑒𝑑(𝑣𝑚)  The normalization of the predicted ratings for video 𝑣𝑚 

𝑝𝑛   A 𝑛th row vector 

𝑝𝑛𝑤   The 𝑛th row 𝑤th column element in 𝑃 

𝑄   Video feature matrix 

𝑄ℎ   Queueing delay for the ℎth hop 

𝑞𝑚
𝑇    A 𝑚th column vector 

𝑞𝑚𝑤   The 𝑚th row 𝑤th column element in 𝑄 

𝑅   Rating matrix 

�̃�   The estimated rating matrix 

𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  The average predicted rating of video 𝑣𝑚 
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𝑅𝑒𝑞(𝑖, 𝑡)  Set of requests for all videos from node 𝑖 at time 𝑡 

|𝑅𝑒𝑞(𝑖, 𝑡)|  Total number of requests of node 𝑖 at time 𝑡 

𝑟(𝑢𝑛, 𝑣𝑚)  Rating of user 𝑢𝑛 on video 𝑣𝑚 

𝑟(𝑢𝑛, 𝑣𝑚)̃   The estimated rating of user 𝑢𝑛 on video 𝑣𝑚 

𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡) Total number of requests for the kth chunk of video 𝑣𝑚 of node 𝑖 at 

time 𝑡 

𝑠𝑣𝑚   Size of video 𝑣𝑚 

𝑡𝑎(𝑢𝑛, 𝑖)  The arrival time of an AV user 𝑢𝑛 at an edge node 𝑖 

𝑡𝑏 The time that AV user needs to finish watching the buffered video 

chunks before fetching new chunks from RSUs 

𝑡𝑐   Current time 

𝑡𝑑(𝑢𝑛, 𝑖)  The departure time of an AV user 𝑢𝑛 at an edge node 𝑖 

𝑈   Set of AV users 

𝑢𝑛   AV user 𝑛 

𝑣𝑚   Video 𝑚 

𝑉   Set of videos 

𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    Current velocity vector of an autonomous vehicle 

𝑊   Number of features 

(𝑥𝑐, 𝑦𝑐)  Current position of the vehicle 

(𝑥𝑝, 𝑦𝑝)    Predicted position of the vehicle 
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Chapter 1: Introduction 

Information-centric networking (ICN) is proposed as a significant common approach of 

several future Internet research activities. The ICN architecture leverages in-network 

caching to improve the efficiency of content distribution, and uses name-based routing to 

support mobility by nature.  

This chapter is divided into four parts. The first part presents a brief background on 

current Internet shortcomings and several future network scenarios for ICN in-network 

caching. The second part describes the motivation of the research on ICN in-network 

caching. The third part presents the contributions of this research. Finally, the last part 

shows the thesis organization. 

1.1 Background 

With the tremendous increase of content transmissions, the current Internet traffic has 

shifted from host-centric to content-centric [1]. According to the Cisco’s Visual 

Networking Index (VNI) report [27], the Internet traffic will increase around threefold from 

2016 to 2021, the sum of all forms of video and multimedia traffic will account for 82% of 

global consumer traffic by 2021. Further, the mobile video will account for 78% of the 

total mobile traffic by 2021. This trend causes a huge challenge for today’s Internet on how 

to distribute videos efficiently. Moreover, billions of devices will be connected to the 

Internet over the next five years, which leads the current IP-based Internet to facing 

tremendous challenges, such as limited expressiveness of IP addressing multicast, complex 
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mobility support and the requirements of energy efficiency for IoT resource-constrained 

devices.  

To address these challenges, many future Internet architectures have been proposed. 

Among all the proposed architectures, information-centric networking (ICN) [1] is a 

promising paradigm to facilitate content delivery, reduce retrieval delay and save energy 

for resource-constrained devices by performing in-network caching. Since ICN supports 

name-based routing, it decouples contents from the locations, which means that ICN 

supports mobility by nature. Therefore, by combining ICN and 5G, we can get ICN-5G 

networks [76]; by combing ICN and IoT, we can get ICN-IoT networks [1]. With the help 

of emerging technologies, such as software-defined networking (SDN) [45] and machine 

learning algorithms (e.g., recommender system algorithms [98]), the efficiency of in-

network caching can be further improved.  

1.1.1 Information-centric Networking 

The evolution of social networking, mobile applications, multimedia streaming services, 

and IoT networks has caused the current IP-based Internet to shift from host-centric to 

content-centric. However, the current IP-based Internet which was originally designed for 

host-to-host communications, is a host-centric network. The current host-centric IP-based 

Internet is inefficient for today’s content transmissions, hence ICN has been proposed to 

provide efficient content transmissions for future networks.  

The basic principle of ICN is that content is identified by using a unique and location-

independent identifier, so that users can fetch the content by its name instead of its IP 

address as used in the current Internet. Therefore, ICN can provide native support for 

scalable and highly efficient content retrieval, support mobility, and overcome the limited 
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expressiveness of IP addressing of IP-based networks. Many projects or architectures have 

been proposed for ICN, such as the European Union (EU) funded project Publish-Subscribe 

Internet Technology (PURSUIT) [31], and the United State funded project called Named 

Data Networking (NDN) [8]. However, NDN is currently the dominant one and it has been 

widely accepted in the research community.  

Routers in ICN route and forward packets based on names, which eliminate three 

problems caused by addresses in the IP-based Internet: address space exhaustion, NAT 

traversal, and address management [113]. Since the namespace is unbounded, there is no 

address exhaustion problem in ICN. There is no NAT traversal problem since NDN does 

away with addresses, public or private. Finally, address assignment and management is no 

longer required in local networks. Conventional routing protocols, such as OSPF and BGP, 

can be adapted to route on name prefixes by treating names as a sequence of opaque 

components and doing component-wise longest prefix match of a name in an Interest 

packet against the forwarding information base (FIB) table. The research of the Name-

based routing is beyond the scope of this thesis. Although the details of name-based routing 

are outside the scope of this research, interested reader is referred to [11]. 

In general, when a node receives an interest packet, it first checks if the requested 

content has been cached locally. If it is cached, this node will directly return the content 

back to the user. Otherwise, this node will check if the name of the content is in its pending 

interest table (PIT). The PIT table stores the interest packets that the node has received but 

not satisfied yet. If there is a matching entry in the PIT, this node will simply add the 

incoming interface of this interest packet in the corresponding entry. Once the requested 

content is available, it will be sent back to users through all the interfaces that are recorded 
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in the PIT entry. On the other hand, if there is no matching entry in its PIT, it will forward 

the interest packet toward the content provider based on information in its FIB. 

In-network caching is one of the most important features of ICN to reduce duplicated 

content transmissions and network delay. Contents can be cached at every node (e.g., 

router) in ICN. For example, users can fetch the contents from a nearby node instead of the 

remote content provider. Therefore, the workload of the content provider and the network 

delay can be reduced simultaneously. Caching decision policies play a vital role in ICN. 

This thesis exploits the concept of in-network caching in different network architectures 

(e.g., pure ICN networks, ICN-5G networks and ICN-IoT networks), and proposes novel 

caching decision policies for autonomous vehicle (AV) users.   

1.1.2 ICN In-network Caching 

Generally, an in-network caching approach includes two parts: a caching decision policy 

and a caching replacement policy. The caching decision policy decides what contents 

should be cached at which node. The caching replacement policy decides which content 

should be evicted when the cache is full. For efficiency reasons, the replacement policy 

should be performed as fast as possible, which means that complicated replacement 

policies are unsuitable for ICN [115]. Moreover, even a simple random replacement policy 

can achieve similar performance results compared to the Least Recently Used (LRU) 

replacement policy [78]. On the other hand, an efficient caching decision policy can 

improve the performance of ICN in-network caching significantly [115]. Therefore, how 

to design an efficient caching decision policy is a crucial issue in the ICN in-network 

caching research field. 
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Caching decision policies can be divided into two categories: reactive caching 

approaches and proactive caching approaches. They are discussed in the next subsections. 

1.1.2.1 Reactive Caching Approaches 

For reactive caching approaches, contents will only be cached if they were repeatedly 

requested in the past. If a content has never been requested before, then there is no copy of 

this content in the cache. Therefore, the first request of a video will have to be served by 

the remote content provider. Moreover, processing and caching videos at a cache also needs 

additional time since checking if videos are cached locally (reading) and writing video into 

the storage memory take time. This means that during a small time period ∆𝑡, when a 

particular content is being cached, requests for the same video will not be served by the 

cache either. 

1.1.2.2 Proactive Caching Approaches 

Proactive caching approaches try to predict future contents that will be requested by the 

users, and pre-cache videos before users are requesting them. Consequently, proactive 

caching is more efficient than reactive caching, especially for bursts of requests during 

peak hours. Obviously, how to make accurate predictions is the main issue for proactive 

caching approaches. 

1.1.3 ICN-based Networks  

To date, 5G is considered as a key enabling technology for the development of current 

networks. Using 5G in conjunction with ICN could provide significant performance 

improvements. As a result, ICN is a promising next-generation network architecture, where 

future networks could be built on top of ICN. In addition, next-generation networks should 
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deal with the transition from host-centric communications to content-centric 

communications. By combing ICN with recent technologies in wired and wireless 

networks, next-generation network architectures could be classified into pure ICN 

networks (wired networks), ICN-5G networks (wireless networks) and ICN-IoT networks 

(wireless and wired networks).  

1.1.3.1 ICN-5G Networks 

Since the amount of wireless traffic is increasing at a fast pace and ICN is a promising 

candidate network architecture to realize various 5G objectives [76], ICN-5G has great 

potential for future wireless networks. Compared to the traditional IP network, ICN 

supports name-based routing, in-network caching and mobility by nature, which makes 

ICN suitable for wireless networks. The name-based routing naturally decouples contents 

from the locations. In-network caching enables every node in ICN-5G networks to cache 

contents. Consequently, 5G-ICN can provide contents to mobile users (MU) with lower 

latency than 5G networks, i.e., better quality of experience (QoE). 

1.1.3.2 ICN-IoT Networks 

IoT networks are content-centric in nature. Users or applications focus on “what” not 

“where”. In other words, IoT users (or applications) care about the data itself not where the 

data is stored in. ICN works in a receiver-driven model. This means users send an interest 

packet to the network to retrieve a content, and any node in the network that has the 

requested content can send the content back to the user. Moreover, the content in ICN is 

named by using a unique and location-independent identifier, so that users can fetch the 

content by its name instead of its IP address. This feature allows ICN to overcome the 
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limited expressiveness of IP addressing of IP-based networks, which is suitable for IoT 

networks. Based on these advantages, ICN-IoT networks also have potential to be the next-

generation IoT networks, and some pioneer works have already been conducted [8] [69] 

[35] [64]. 

1.1.3.3 Software-defined Networking 

Software-defined networking (SDN) is an emerging network architecture that decouples 

the control plane from the data plane [45]. The network intelligence and states are logically 

centralized to provide a global view of the network. This feature can potentially overcome 

the drawbacks of the existing works in the field of in-network caching [15] [35]  [64] [80] 

[109]. Some pioneer research works about the combination of ICN and SDN have been 

conducted recently [22] [41] [94] [102]. However, they only proposed an SDN-based ICN 

architecture without discussing the caching decision policy. This thesis proposes to 

leverage the global view provided by the SDN controller to improve the efficiency of in-

network caching. 

1.1.4 Matrix Factorization Techniques 

Recent advances in machine learning algorithms and their applications will have profound 

impacts on computing, networking and caching [49]. For example, the future popularity of 

content can be predicted by extreme-learning machine techniques (e.g., matrix 

factorization (MF) [12], feedforward neural networks [86]). Since the future popularity of 

content can be predicted, popular contents can be pre-fetched before users request them. In 

this way, the caching efficiency can be improved. 

Since users’ preferences are the direct reason that makes videos have different levels of 

popularity, the popularity of videos can be predicted by using users’ ratings on those 
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videos. Singular value decomposition (SVD) and non-negative matrix factorization (NMF) 

are two typical MF techniques that can be used to predict user ratings in recommender 

systems (RS) [43]. SVD and NMF can achieve similar performance. The only difference 

between SVD and NMF is that SVD may generate negative ratings for low rated videos, 

which is considered not practical in real life networks [37]. 

The idea of the NMF technique is that there are W latent features that have impacts on 

the rating conducted by a user on a video. NMF tries to explain the ratings by characterizing 

both users and videos [43]. By learning the latent features, NMF can predict the ratings of 

videos that have not been watched by users. 

1.2 Motivations 

Although a great deal of research on caching has been conducted for traditional IP-based 

networks, most of it cannot be applied directly to ICN due to its specific features such as 

caching-transparency, ubiquity and fine-granularity [115]. Hence, it is necessary to 

conduct research on caching decision policies for ICN. Moreover, with the potential of ICN 

to incrementally replace the current IP-based Internet architecture, the combination of 5G 

and ICN, IoT and ICN have become the current trends [8] [35] [64] [69]. However, the in-

network caching decision policies for the pure ICN are not suitable for those combinations 

due to the particular caching requirements and special challenges of the combined network 

technologies. Hence, it is necessary to design caching decision polices for different 

potential network scenarios based on their particular caching requirements and special 

challenges. 

Since ICN supports mobility by nature, ICN is more suitable for 5G than the IP-based 

Internet. Meanwhile, in-network caching is a key component of 5G. There are existing in-
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network caching approaches [2] [20] [38] [72] [55] [87–88] [100] [101] [106] [120], but 

they are based on the IP-based Internet which only provides weak support for mobility. On 

the other hand, although some recent works [42] [63] [84] [108] [114] propose ICN-based 

caching approaches, they only focus on paradigms for ICN-5G networks without focusing 

on the caching decision policies. Moreover, 5G users will experience more frequent 

handoffs and shorter connection durations in 5G networks due to the short transmission 

range of millimeter wave (mmWave) [3]. Unfortunately, most of the existing caching 

approaches do not consider the impact of frequent handoffs in 5G networks. Due to the 

aforementioned problems, it is essential to design efficient caching decision policies for 

ICN-5G networks. 

Another challenge for next-generation networks is related to ICN-IoT networks. As 

devices in ICN-IoT networks are typically battery-powered, energy efficiency is a major 

challenge for ICN-IoT networks. Through caching IoT data at different nodes (such as a 

content router, a base station (BS), etc.), IoT devices can stay in sleep mode for a longer 

period of time and therefore reduce the overall energy consumption. However, caching IoT 

data is more challenging than caching traditional Internet data since it is only valid for a 

limited period of time after being generated by the content producer [90]. Once the IoT 

data has expired, it becomes meaningless for users and will be dropped immediately. Some 

pioneering research works have been performed recently [8] [35] [64] [69] [90] to leverage 

in-network caching to gain benefits (i.e., energy efficiency) for ICN-IoT networks. 

Unfortunately, they only used simple caching decision policies, such as random caching 

and LCE (leave copy everywhere) [1], which are inefficient for saving energy in ICN-IoT. 
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Motivated by the lack of research on caching decision policies for ICN-IoT networks, this 

thesis designs a novel caching decision policy for ICN-IoT networks. 

The motivation of this thesis is to make original contributions to the ICN community, 

shed light on designing caching decision policies for different scenarios in next-generation 

networks. 

1.3 Contributions of this Research 

The research focuses on developing ICN in-network caching decision policies that can be 

used to simultaneously improve the performance of different network scenarios and the 

QoE of the end users. Some advanced techniques are also leveraged to enhance the 

efficiency of ICN in-network caching. To date, the contributions to the literature resulted 

from this research are listed below. 

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, S.S. Rao. “Router Position-

Based Cooperative Caching for Video-on-Demand in Information-Centric 

Networking”, Proceedings of the 2017 conference on 41st Annual IEEE Computer 

Software and Applications Conference (COMPSAC), pp. 523-528, July 2017. 

(Chapter 3) 

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, “When 5G Meets ICN: An 

ICN-based Caching Approach for Mobile Video in 5G Networks”, Computer 

Communications (Elsevier), 118:81–92, 2018. (Chapter 4) 

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, “IoT Data Lifetime-Based 

Cooperative Caching Approach for ICN-IoT Networks”, Proceedings of the 2018 

IEEE International Conference on Communications (ICC), pp. 1-7, May 2018. 

(Chapter 5) 
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 Z. Zhang, C.H. Lung, M. St-Hilaire, I. Lambadaris, “Smart Caching: Empower the 

Video Delivery for 5G-ICN Networks”, Proceedings of the 2019 IEEE 

International Conference on Communications (ICC), pp. 1-7, May 2019. (Chapter 

6) 

 Z. Zhang, C.-H. Lung, M. St-Hilaire, I. Lambadaris, “An SDN-based Caching 

Decision Policy for Video Caching in Information-centric Networking”, to appear 

in IEEE Transactions on Multimedia. (Chapter 3) 

 Z. Zhang, C.-H. Lung, M. St-Hilaire, I. Lambadaris, “Smart Proactive Caching: 

Empower the Video Delivery for Autonomous Vehicles in ICN-based Networks”, 

ready for submission. (Chapter 6) 

1.4 Thesis Organization 

The rest of this thesis is organized as follows:  

In Chapter 2, related research works for ICN in-network caching in pure ICN networks, 

ICN-5G networks and ICN-IoT networks are provided. Advanced techniques (e.g., SDN 

and machine learning techniques) which can be used to improve the efficiency of ICN in-

network caching are also presented in this chapter.  

In Chapter 3, the caching decision problem is formulated as a 0-1 static integer linear 

programming (ILP) problem. By introducing the notation of time, the formulated 0-1 static 

ILP problem becomes a 0-1 dynamic ILP problem which is NP-hard. As future video 

requests cannot be known in a real network, this chapter uses the next time slot’s video 

requests as the input and uses the current time’s optimal solution as the caching decision. 

Therefore, a more accurate optimal solution for the dynamic networks which change its 

states dynamically can be found. In order to overcome the high computational complexity 
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of finding optimal solutions, a light-weight cooperative caching decision policy is 

proposed. The proposed approach (called router position-based cooperative caching 

(RPC)) is based on the router’s topology position to cache popular video on the edge 

routers. Since the proposed approach does not require knowledge of the popularity of 

videos a priori, it is more practical compared to existing approaches [1] [7] [17] [25] [47–

48] [62] [79] [103]. This chapter also evaluates the proposed approach with a realistic 

topology and real data traces. Simulation results show that the proposed approach 

outperforms existing approaches in terms of the average number of hops and server load 

ratio.  

Since the proposed RPC approach makes caching decisions locally, the efficiency can 

be improved if the caching decisions are made from a controller with a global view. The 

concept of SDN is leveraged in this chapter to improve the performance of caching. With 

the global view of the network, a more efficient caching approach is proposed. Through 

simulations, the proposed SDN-based approach is more efficient than RPC, and the 

performance is close to the optimal solution.  

In Chapter 4, motivated by a few research works that aim at reducing the retrieval delay 

due to frequent handoffs in ICN-5G networks, an ICN-based caching decision policy for 

ICN-5G networks is proposed. Since user mobility has rarely been considered in existing 

works [2] [20] [38] [72] [87–88] [100] [101] [106] [120], this chapter exploits user mobility 

to reduce the retrieval delay caused by frequent handoffs. Videos can be retrieved from the 

router which is directly connected to the BS instead of the original content provider when 

a handoff happens. Simulation results show that the proposed caching decision policy 

outperforms the traditional IP-based RAN (radio access network) caching and a recent 
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proposed ICN-based caching decision policy [114] in terms of retrieval delay and network 

traffic reduction. 

Chapter 5 applies the concept of in-network caching in ICN-IoT. Specifically, this 

chapter proposes a novel cooperative caching decision policy based on the IoT data lifetime 

and user request rate to improve the energy efficiency of ICN-IoT networks. By caching 

IoT data at different nodes (such as content routers, BSs, etc.), IoT devices can stay in sleep 

mode for a longer period of time and, therefore, reduce the overall energy consumption. 

With the help of an auto-configuration mechanism, the proposed IoT data lifetime-based 

cooperative caching (LCC) decision policy can dynamically adapt to the change of request 

rate. Extensive evaluations were performed and the simulation results show that LCC 

outperforms existing approaches in terms of total energy consumption (reduction up to 

40%) and average number of hops (reduction up to 20%), which is also directly related to 

the response time. 

In Chapter 6, a novel hierarchical proactive caching approach is proposed for 

autonomous vehicle (AV) users. By using the NMF technique, the users’ future ratings on 

videos can be predicted. To solve the shortcoming of the NMF technique that generates 

inaccurate predictions for high rated but unpopular videos, the proposed approach also 

takes video historical popularity into consideration. Thus, the users’ future demands can 

be predicted based on the user preferences (i.e., the predicted ratings) and the historical 

popularity of videos. Since the traveling route, velocity and current location information of 

AV users can be easily obtained from the self-driving system of AVs, the future position 

of AVs can be predicted based on this information. As a result, the proposed approach can 

decide what videos should be cached at which road side unit (RSU) before the AV users 
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arrive. The proposed approach is evaluated in two scenarios: a highway scenario and a grid 

street scenario. The simulation results show that the proposed proactive caching is more 

efficient in terms of cache hit ratio and the average number of hops compared to existing 

approaches. 

Finally, Chapter 7 concludes the thesis by providing an overview of the main results and 

discusses the potential research directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2: Literature Review 

2.1 ICN in-network Caching  

Caching can be defined as having data, information and object temporarily stored in a 
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location for predictive usage on frequent or closely related interval [1]. In ICN, every node 

(e.g., content router (CR)) has the capability to cache contents or a part of a content locally, 

which makes caching in ICN become in-network caching. Since ICN works in a receiver-

driven model and uses content’s name instead of IP address for routing, it decouples 

contents from the locations and supports mobility.  When requesting content, the user 

issues an interest packet which carries the name of the content to his/her neighbor CRs. If 

any of the neighbor CRs has the content, the user can fetch the content from the storage 

memory of that CR. Otherwise, this interest packet will be forwarded based on the 

information in each of the forwarded interest packets in the PIT. The PIT stores the interest 

packets that CR has received but not satisfied yet. When users request contents, they don’t 

care where the contents are (e.g., at the BS, router, gateway, or the original content 

provider), they only care about how fast they can fetch the contents. Therefore, if the 

nearest node has the requested content, the user can fetch the content from the node directly 

instead of from the original content provider (typically located far away). In this way, the 

retrieval delay and network traffic can be reduced considerably. 

 As in–network caching is a key feature of ICN, how to improve the efficiency of in-

network caching has become a curial problem. Since the caching decision policy plays a 

key role in in-network caching, how to design an efficient caching decision policy is a 

challenging issue. In fact, many caching decision policies in ICN have been proposed in 

recent years [1] [7] [17] [25] [47–48] [62] [79] [103]. Generally, the in-network caching 

can be categorized into two types: coordinated and non-coordinated.  

Non-coordinated caching approaches have less overhead and are simpler than 

coordinated approaches. However, they have more overlapped contents and lower hit 
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ratios. For example, Jacobson et al. [1] proposed leave copy everywhere (LCE). This 

approach lets every router cache all the packets that go through it, which leads to a high 

redundancy. Leave copy down (LCD) [47] and move copy down (MCD) [48] have been 

used to replace LCE for the sake of reducing object redundancy. In [7], Prob caching is 

proposed to cache content by a fixed probability. Carofiglio et al. [17] proposed the 

latency-aware caching (LAC) policy which takes popularity and latency into consideration. 

They calculate a probability according to the content’s popularity and latency, and let the 

routers decide to cache the content according to this probability. Evaluation results showed 

that they achieved a higher hit ratio and lower delivery time compared to LCD. However, 

all the approaches mentioned above let each router make its own decision locally. In other 

words, there is no cooperation between the routers which prevents them from having a 

global view to make better caching decisions. 

On the other hand, coordinated caching approaches can achieve higher hit ratios and 

lower network delay at the expense of higher overhead and complexity. “Coordination”, 

“cooperation” and “collaboration” are all used in ICN literature for coordinated caching 

approaches. Coordinated in-network caching carefully picks contents to store with the 

intention of avoiding duplicates in the cache. In WAVE [25], an upstream router 

recommends to its downstream router the number of chunks to be cached. As a popularity-

based cache replacement policy, WAVE can achieve effective performance compared to 

Prob caching [7]. However, WAVE has a high cooperation overhead for each 

recommendation from an upstream router to a downstream router. Salah et al. [79] 

proposed a centralized coordinated caching approach by designing a caching controller in 

each domain. The caching controller is responsible for deciding and advertising the caching 
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decisions to each caching node. This approach is complicated and has a high overhead. 

 Liu et al. [58] took video drop ratio into consideration to design their user-behavior 

driven caching approach. Li et al. [51] presented a cooperative caching strategy for ICN 

video delivery which combines directory-based and traditional hash-based caching 

approaches. However, the cooperation only happens among the one-hop neighbors instead 

of the whole network. Besides, this approach also introduces some extra delay and 

overhead due to the fact that a router only caches a part of the segments of a video. It needs 

to collaborate with other routers to satisfy a user’s request for an entire video.  

Several light-weight approaches are designed to simplify the coordinated caching 

approach to suit ICN caching requirements. For example, Ming et al. [62] proposed a light-

weight aged-based cooperative caching approach (ABC) with an aim to spread popular 

contents to the network edge. This policy assigns an age to each content according to the 

content’s popularity and the distance to the content server. However, ABC requires 

knowledge of content’s popularity a priori which is impractical. 

Xu et al. [107] designed the popularity-driven caching location and searching (P-CLS) 

approach which considers router’s position and video’s popularity. However, similar to 

LCD [47], once a hit occurs, the hit chunk will be pulled down from the upstream router to 

the downstream router. They did not regard router position as a parameter which makes a 

notable impact on the performance of ICN in-network caching.  

A partial popularity-based approach is proposed in [70], they only cache part of the total 

requested contents by comparing content’s popularity. They also consider the dynamic 

content popularity. Authors in [14] present MPC, a popularity-based caching approach 

which will cache a content once its number of requests exceeds the popularity threshold. 
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But similar to WAVE [25], MPC also induces high overhead during each recommendation 

from a router to its neighbors. Moreover, it is inefficient to push popular contents to edge 

routers as all routers have the same popularity threshold.  

2.2 In-network Caching in ICN-5G networks 

The rapid development of wireless networking technologies and mobile devices has led the 

dominated traffic in cellular network to be changing from voice and text to data content, 

especially the big files such as video files. The rich bandwidth and high downloading speed 

provided by 5G technologies make more and more MUs watch videos on their mobile 

devices. However, the wireless network will be facing a tremendous traffic. Therefore, how 

to reduce the traffic load for wireless network and improve the user QoE have become 

major challenges. 

Deploying caches at the edge of wireless networks, especially in the RAN, is regarded 

as a promising way to alleviate the increasing pressure of wireless network traffic growth 

and improve MU QoE. Generally, RAN devices have storage and computing capabilities 

in 5G networks, therefore it is possible to deploy caches at the RAN. With RAN caching, 

MUs can fetch cached contents and thus significantly improving the MU QoE and reducing 

the backhaul traffic load. 

The existing IP-based RAN caching approaches are based on the packet-level. 

Unfortunately, they are not content-aware and they suffer from a scalability problem [96]. 

Moreover, the packet-level RAN caching is inefficient to cope with todays’ content-

oriented 5G networks. To overcome these shortcomings, the name-based forwarding and 

routing mechanisms of ICN can be leveraged to realize content awareness for 5G and make 
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5G more scalable. With the help of its in-network caching, the content retrieval delay and 

the amount of mobile traffic can be reduced effectively.  

ICN is a state-of-the-art networking paradigm. It naturally supports client mobility and 

can make 5G mobility management simple. For example, in traditional IP-based wireless 

network, the IP address of a MU will change if the MU moves to another location. To deal 

with this issue, cellular network service providers have to use additional methods or 

protocols such as mobile IP. However, mobile IP suffers from issues such as triangular 

routing, control overhead to manage the routing states between the current point of 

attachment and the home agent. In contrast, MUs can fetch contents without any mobility 

issue in ICN-based wireless networks, e.g., ICN-5G networks. Because ICN is a receiver-

driven network, its naming mechanism decouples the location and identity. Each content, 

user, and content provider has a unique name in ICN, and this name will not change no 

matter how their location changes. MUs send interest packets to the networks to fetch 

contents. Any node that has the requested contents can send the contents back to them 

based on the name of the MU. Recently, ICN-5G (the combination of 5G and ICN) has 

been proposed [42] [63] [84] [108] [114]. In [42], a mobility tracking node is used to 

redirect consumer’s request from an old position to a new position of a producer. In this 

way, the content retrieval delay can be reduced once a handoff occurs. However, they are 

focusing on the producer mobility issue. For video services, the producer (i.e. video 

provider) has no mobility while consumers (i.e. users) have high mobility. Nishiyanma et 

al. [68] have proposed a routing-based mobility architecture to provide seamless mobility 

management for 5G by adopting ICN. The evaluation results show that their proposed 

architecture reduces signaling overhead and paging overhead significantly. In [76], an 
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application-driven framework is introduced to realize ICN-5G. The ICN-5G architecture 

can achieve the mobility as a service (MaaS) objectives. The work in [63] proposed an 

efficient access control framework for ICN-5G. Legitimate users can access the content 

directly without verification/authentication by the content provider authentication 

mechanism, which can reduce the delivery latency. 

In-network caching is the key feature of ICN and as a result, a lot of work has been 

conducted in ICN caching. However, there are only a few papers discussing ICN-5G 

caching algorithms [40] [84] [96] [108]. In [114], a cooperative caching approach is 

proposed to reduce cache redundancy and improve the diversity of content distribution. 

Content popularity and availability are considered to make the caching decision in a 

probabilistic way. However, they did not propose any method to reduce the retrieval delay 

once a handoff occurs, which is a crucial issue for 5G video caching. For the sake of 

improving the performance of video distribution, Si et al. [84] investigated the use of 

harvested bands for proactively caching videos closed to the users. They formulated the 

allocation of harvested bands as a Markov decision process. Based on the Markov decision 

process, a spectrum management mechanism is developed to improve the efficiency of 

proactive video caching and spectrum utilization. This thesis focuses on the caching 

algorithm, therefore, the spectrum management is beyond the scope of investigation. In 

[108], an innovative video streaming solution for ICN mobile networks is proposed. In 

order to achieve better performance, a content-centric multi-region video content 

management method and a mobility-adaptive content-centric video delivery strategy is 

designed. The optimal video provider and delivery path can be achieved by these two 

methods. However, their caching strategy only considers the caching space which is 
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inefficient in improving the performance of video distribution. Wang et al. [96] explored 

current content delivery and caching techniques in 5G networks. Based on their trace-

driven evaluation results, the deployment of in-network caching into 5G networks can 

potentially help reduce mobile traffic compared to RAN caching and evolved packet core 

(EPC) caching. Conclusively, ICN-based caching can cope with the ever growing demand 

of mobile users for huge amount videos efficiently. However, they did not propose any 

new caching decision strategy. 

2.3 In-network Caching in ICN-IoT networks 

The rapid development of networking technologies, such as 5G, also boosts the 

development of IoT networks. Billions of devices will be connected to the Internet, about 

44 trillion GB traffic will be generated over the next 5 years [27], which will bring a huge 

pressure for the current IP-based networks. The three major challenges that IoT networks 

are facing are limited expressiveness of IP addressing, complex mobility support and the 

requirement of energy efficiency. The first two challenges can be easily resolved by using 

ICN as the infrastructure for IoT networks. Then, the third challenge will be the only 

challenge left. 

There are two major methods to improve the energy efficiency of IoT devices: energy- 

saving mechanisms and charging solution which is beyond the scope of this thesis. 

Designing particular protocols [81] for IoT networks is a basic method to improve the 

energy efficiency for IoT devices. Since the radio module is the main component that 

causes energy consumption of IoT devices, some researchers have tried to optimize radio 

parameters to make the hardware more efficient [104]. Moreover, idle states are major 

sources of energy consumption at the radio component. Therefore, letting IoT devices stay 
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in sleep mode can also save energy. Duty cycling schemes are the basic methods to 

schedule the IoT devices in different states based on the network activity [5].  

Deploying in-network caching at intermediate nodes, e.g., CRs and BSs, is another 

efficient method to let IoT devices stay in sleep mode. When the cached data are requested 

by users or applications, the intermediate nodes can send the requested data back to them 

directly. Hence, these requests will not be forwarded to wake up the IoT devices. 

Consequently, IoT devices can stay in sleep mode most of the time to reduce their energy 

consumption. 

Although the caching decision policy in ICN has been extensively studied [1] [7] [17] 

[25] [47–48] [62] [79] [103], the ICN caching decision approaches cannot be applied to 

IoT directly, since the IoT data items are usually transient and small [75]. Unfortunately, 

very few studies have been conducted related to the ICN-IoT caching decision approach. 

Baccelli et al. [8] explore the feasibility, advantages, and challenges of an ICN-based 

approach in IoT. Through ICN experiments in a life-size IoT deployment, they show that 

caching provides significant benefits to ICN-IoT in terms of energy efficiency. However, 

the paper does not consider the temporal properties of IoT data for caching decision 

making, even though they mention the freshness requirement of IoT data.  

The study in [90] proposes a probability-based caching decision which makes a trade-

off between IoT data freshness and multi-hop communications cost so that IoT data can be 

cached at the content router. An auto-configuration mechanism is used to adjust the data 

caching probability by comparing the data freshness and the multi-hop communication 

cost. Least Fresh First (LFF) replaced policy is used as the replacement policy. However, 
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their caching decision approach is quite complicated and needs heavy computation, which 

is not suitable for the content router.  

Similar to [90], the authors in [69] also consider the IoT data freshness by maintaining 

a timer. However, they regard the capacity of sensor energy as a parameter when making 

a caching decision for the IoT with energy harvesting. As their caching approach is 

threshold-based, a threshold adaptation is introduced to allow the nodes to dynamically 

adjust the parameter of caching to achieve better performance. However, the approach only 

caches data at the wireless gateway which is inefficient due to its limited amount of 

resources. The ideal caching decision approach should not only cache data at the gateway 

node but also at all intermediate nodes between the gateway node and the content 

consumers. Through cooperating among the nodes, the caching efficiency can be 

significantly improved, and IoT devices can spend more time in sleep mode without being 

activated too frequently, hence reducing the overall energy consumption.  

The recent research work in [35] leverages the in-network caching of ICN to gain 

benefits for IoT energy efficiency. The authors propose a simple side protocol called 

cooperative caching side-protocol (CoCa) to exploit data names together with the 

interaction between cooperative caching and power-save sleep capabilities on IoT devices. 

By performing extensive, large-scale experiments on real hardware with IoT networks, 

they report that the IoT devices can significantly reduce their energy consumption while 

maintaining recent IoT data availability above 90%. However, their caching decision 

approach is based on random caching with a probability p = 0.5, a widely used approach 

in previous studies. The random caching approach is inefficient compared to existing 

approaches, such as [90]. Since the request rate varies, some contents may have a higher 
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request rate in a certain time period. If they are not cached at this time, and the approach 

cannot adjust the caching probability dynamically to cache them, then this will lead to poor 

caching performance.  

2.4 Machine Learning for Proactive Caching 

Proactive caching is an efficient approach to improving users’ QoE and reducing the 

network backhaul load for 5G networks, hence a great deal of research has been conducted 

on the topic. Most of the existing research works about proactive caching for 5G networks 

are based on traditional IP networks. However, IP-based networks are inefficient for 

caching, because users cannot retrieve the cached videos without any other additional 

techniques, e.g., domain name system (DNS) redirection. Since ICN uses content name 

instead of IP address for communications, it makes it suitable for in-network caching and 

mobile content delivery. Hence, it is believed that ICN is a more suitable candidate for 5G 

networks. Although a great deal of research has been conducted on in-network caching 

[14] [96], proactive caching for 5G networks has not been well investigated yet. Some 

pioneer works about the combinations of ICN and 5G networks [42] [63] [84] [108] [114] 

have been conducted, but most of them focus on the architecture level.   

In previous studies [9–10], videos are only cached based on historical popularity. But 

even a popular video cannot be guaranteed to remain popular in the future. To address this 

issue, recent research efforts [5] [12] [36] [37] [59] [71] [110–111] [119] use machine 

learning techniques to predict the future demands of users. 

Using ML algorithms for improving the performance of traffic engineering is a hot topic 

nowadays [5] [12] [36] [37] [59] [71] [110–111] [119]. The traditional ICN in-network 

caching approaches are usually reactive. Nodes in ICN decide “where” to cache “what” 
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contents based on the previous requests. Even proactive caching approaches pre-cache 

contents based on the previous requests without any predictions. However, the popularity 

of contents and the location of users are changing over time, which lowers the efficiency 

of traditional ICN in-network caching. If the popularity of videos and the mobility of users 

can be known in advance, then popular contents can be cached at nodes that are closer to 

the user future location. Therefore, the caching efficiency can be significantly improved. 

Thanks to the rapid development of ML techniques, both the content popularity and the 

user mobility can be predicted by using proper ML techniques. Based on those predictions, 

proactive caching can be more intelligent and more efficient. 

Statistical models, such as auto-regressive and moving average (ARMA) [36] have been 

used for predicting the video popularity. Similarly, methods based on neural network are 

also popular to predict the video popularity. For example, Yin et al. [110] use echo state 

networks (ESN), a type of RNN, to predict users’ future demands. Although neural network 

model-based methods can achieve more accurate predictions compared to approaches 

using historical popularity only, the prediction accuracy of those methods highly depends 

on the configured parameters. A slight change of in the configured parameters can lead to 

inaccurate predictions. Moreover, finding the best set of configured parameters is also 

challenging. Furthermore, neural network model-based approaches do not consider users’ 

preferences which also plays a vital role in improving QoE of mobile users. 

In recent years, RS has been used to improve the efficiency of caching since it can shape 

the network traffic. For example, RS is used as a TE tool to shape the content demand in 

[21]. The authors in [21] first formulated the caching problem and the recommendation 

problem as a joint optimization problem. To provide a light-weight algorithm for its 
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solution, they also proposed a practical algorithm. An experiment with 40 YouTube-using 

volunteers was conducted in [46]. The experiment results show that users may change their 

original content request when they are recommended videos that are cached locally and 

may attract them. Hence, the efficiency of caching can be improved by implementing RS 

on a cache system. Authors in [105] leverage the algorithms of RS to predict what a single 

user is going to watch in the future. Based on this prediction, they can pre-fetch videos 

before user requests come. However, their prefetching algorithm is designed for a single 

user, which does not reduce the network traffic, since duplicate videos still need to be 

transmitted from the content provider to the users. In [97], an important user is selected as 

the helper to cache the recommended contents which are generated by a RS in a mobile 

network. Other users can fetch their interested contents from the important user. A more 

recent work [83] proposed a soft cache hits approach which can provide users a relevant 

content when the requested content is not cached at the local cache. 

Instead of implementing RS on a cache system, this thesis plans to leverage the 

algorithms of RS to predict the future user demands. Collaborative filtering (CF) [82] is 

the basic algorithm of RS due to its efficiency and simplicity to implement. In order to 

improve the performance of RS, matrix factorization (MF) technique is proposed in [44]. 

Singular value decomposition (SVD) [44] and non-negative matrix factorization (NMF) 

[44] are two major techniques to perform MF. Even though SVD can achieve similar 

performance in general, NMF is believed to be more suitable for preference prediction due 

to the fact that SVD will generate negative predicted ratings, which does not apply to 

ratings for this problem in the real world [37]. Generally, MF-based approaches can predict 

if a video will be liked by a user through learning the latent features of users and videos, 
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and predicting the rating of videos based on these two latent features. Since MF-based 

approaches consider the users’ preference, they can achieve a notable improvement in 

terms of the user satisfaction, the average video retrieval delay and the hit ratio compared 

to traditional proactive caching approaches [12] [37]. 
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Chapter 3: Caching Approach for Pure ICN Networks 

3.1 Introduction 

Nowadays, video traffic accounts for a huge volume (more than 73%) of the total Internet 

traffic. Moreover, the ultra-high-definition (UHD) will attribute to 20.7% of video traffic 

in 2020 [27]. This trend causes a huge challenge for today’s Internet on how to distribute 

videos efficiently. Unfortunately, the current IP-based Internet paradigm is designed for 

host-to-host communications, it is not suitable for content delivery, especially for the video 

delivery due to the fact that videos are usually large files. 

Videos can be cached on each router in ICN. This means that users can fetch the content 

from a nearby router instead of the remote video server (i.e. content provider), so that the 

video server load and the network delay can be reduced simultaneously.  

A caching approach includes two parts: a caching decision policy and caching a 

replacement policy. The caching decision policy is used to decide what content should be 

cached, whereas the caching replacement policy is used to decide what content should be 

evicted. Because of the requirement of efficiency, the replacement policy should be 

performed as fast as possible, which makes complicated replacement policies unsuitable 

for ICN [115]. Moreover, even a simple random replacement policy can achieve similar 

performance results attained by the Least Recently Used (LRU) replacement policy [78]. 

On the other hand, an efficient caching decision policy can improve the performance of 

ICN caching significantly [115]. Therefore, how to design an efficient caching decision 

policy is a crucial issue in the ICN research field. 

In this chapter, the caching decision problem is first formulated as a 0-1 integer linear 

programming (ILP) problem. Then, this thesis introduces the notion of time and divides it 
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into time slots. By finding the optimal solution for each time slots, a more accurate optimal 

solution can be achieved as the theoretical bound for further research. 

Since the formulated ILP problem is NP-hard, a router position-based cooperative 

(RPC) caching decision policy which is a novel and practical approach is proposed in this 

chapter. The aim of the proposed approach is to allow edge routers to cache the most 

popular videos to reduce the server load, network usage, and network delay. 

Software-defined networking (SDN) is a promising technology that can enhance traffic 

engineering. As SDN can provide a global view of the network, and forwarding decisions 

are made by the centralized controller [45], SDN is a suitable technology that can be used 

to overcome the drawbacks of the existing approaches in pure ICN. Hence, an SDN-based 

practical approach is also proposed in this chapter. 

3.2 System Model and Problem Formulation 

This section first describes the system model for the proposed SDN-based centralized 

caching decision policy. Then, it formulates the caching decision problem as a 0-1 integer 

linear program problem. The symbols and their definition that will be used in the rest of 

this chapter are summarized in Table 3.1. 

3.2.1 System Model 

In this thesis, 𝑉 is used to indicate the set of videos where 𝑣 (𝑣 ∈ 𝑉) stands for a specific 

video and |𝑉| is the total number of videos. Users send interest packets to edge routers 

directly to retrieve videos. The set of requests for the videos is denoted as 𝑅𝑒𝑞, where 

|𝑅𝑒𝑞| is the total number of requests. Each request in this set is represented by 𝑟𝑒𝑞𝑛(𝑣) ∈

𝑅𝑒𝑞 which indicates the total number of requests for video 𝑣 from node 𝑛. 
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All nodes (e.g. routers) in this thesis have the capability to cache videos that go through 

them. Let 𝑁 denote the set of nodes, and each node is denoted by 𝑛 ∈ 𝑁, where |𝑁| is the 

total number of nodes, including routers and the video server. Let 𝑛 = 0 indicate the video 

server and 𝑛 ≠ 0 represents the routers. The caching state of node 𝑛 can be represented by 

an array of binary values, denoted as 𝑐𝑛(𝑣). If video 𝑣 is cached at node 𝑛, 𝑐𝑛(𝑣) = 1; 

otherwise, 𝑐𝑛(𝑣) = 0. Let 𝐶 denote the caching state set of all nodes, we can easily get 

∀ 𝑐𝑛(𝑣) ∈ 𝐶 . Since each node (except the video server) has a limited cache size, the 

constraint that ensures that each node cannot cache more videos than its cache size is 

denoted as follows: 

                                                ∑𝐿𝑣 ∙

𝑣∈𝑉

𝑐𝑛(𝑣) ≤ 𝑍𝑛,   (𝑛 ∈ 𝑁, 𝑛 ≠ 0)                                      (3.1) 

where 𝐿𝑣 is the size of video 𝑣, if 𝑛 ≠ 0, 𝑍𝑛 is the cache size of router 𝑛; otherwise 𝑛 = 0 

means that node 𝑛 is the video server. Since the video server has all videos, we assume it 

has infinite storage, i.e., 𝑍0 = ∞ . Furthermore, we use 𝑅(𝑛) , where 𝑛 ∈ 𝑁, 𝑛 ≠ 0  to 

represent how many requests can be served from switch 𝑛. 𝑅(𝑛) can be calculated by 

Equation (3.2): 

                                      𝑅(𝑛) =∑𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑐𝑛(𝑣),    (𝑛 ∈ 𝑁, 𝑛 ≠ 0)

𝑣∈𝑉

                              (3.2) 

3.2.2 Problem Formulation 

This subsection first formulates the caching decision problem as a 0-1 ILP. An optimal 

solution can be obtained without considering the effect of time. However, the solution is 
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not suitable for a real-time scenario due to the fact that the popularity of videos and the 

number of requests vary over time. Hence, this subsection divides the time into time slices. 

Table 3.1: Notations 

Symbol Definition 

𝑉 Set of videos 

|𝑉| Total number of videos 

𝑅𝑒𝑞 Set of requests for the videos 

|𝑅𝑒𝑞| Total number of requests 

𝑟𝑒𝑞𝑛(𝑣) Total number of requests for video v from node n 

𝑁 Set of nodes 

|𝑁| Total number of nodes 

𝑐𝑛(𝑣) ∈ {0,  1} Caching state of node n 

𝐶 Caching state set of all nodes 

𝐿𝑣 Length of video v 

𝑅(𝑛) Number of requests can be served from node n 

G Gain (the total reduced transmission delay) 

𝐷(𝑛) 
Reduced video transmission delay by performing 

caching at node n 

𝑑𝑚𝑛(𝑣) 
Video transmission delay for video v from node m 

to node n 

𝑍𝑛 Cache size of node n 

 𝑎𝑚𝑛 ∈ {0,  1} If node n retrieves video from node m 

T Simulation time 

𝑟𝑒𝑞𝑛(𝑣, 𝑡) 
Number of requests for video v from node n at 

time 𝑡 

𝑐𝑛(𝑣, 𝑡) Caching state of node n at time t 

𝐷(𝑛, 𝑡) 
Reduced video transmission delay by performing 

caching at node n from time 0 to time t 

𝑑𝑚𝑛(𝑣, 𝑡) 
Video transmission delay for video v from node m 

to node n at time t 

G(t) 
Total reduced video transmission delay (gain) 

from time 0 to time t 

 𝑎𝑚𝑛(𝑡) ∈ {0,  1} If node n retrieves video from node m 

P Caching decision policy 
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By solving the optimal solution for each time slice, more accurate optimal solutions can be 

obtained and applied to dynamic networks.   

3.2.2.1 Static Scenario 

First, this subsection considers the caching decision problem as a static scenario like that 

in existing approaches [16] [28] [29] [53] [56] [87]. Since the transmission delay is the key 

performance metric for video streaming services in network caching, e.g., long waiting 

time for video buffering may lead users giving up watching the video [56], the goal of this 

work is to minimize the video transmission delay. By performing caching, users can 

retrieve videos from nearby nodes; therefore, the video transmission delay can be reduced 

significantly. The total reduction in video transmission delay is defined as gain (denoted as 

G). Since users can retrieve a video either from the video server, or from a router, the 

restriction of (3.2) can be removed, and it can be expressed as follows: 

                                                    𝑅(𝑛) =∑𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑐𝑛(𝑣)

𝑣∈𝑉

, (𝑛 ∈ 𝑁)                        (3.3) 

Therefore, G can be calculated as follows: 

                                                              𝐺 = ∑𝑅(𝑛)

𝑛∈𝑁

∙ 𝐷(𝑛)                                                     (3.4) 

where 𝐷(𝑛)  represents the reduced video transmission delay by performing caching at 

node n which can be expressed by the following equation: 

                                           𝐷(𝑛) =∑ ∑(𝑑0𝑛(𝑣) − 𝑑𝑚𝑛(𝑣)), (𝑛 ∈ 𝑁)                  (3.5)

𝑚∈𝑁𝑣∈𝑉

 

where 𝑑0𝑛(𝑣) is the video transmission delay for video 𝑣 from the video server to node n, 

𝑑𝑚𝑛(𝑣) is the video transmission delay for video 𝑣 from node m to node n. When m = 0, 

𝑑𝑚𝑛(𝑣) stands for the video transmission delay from the video server to router n; when m 
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= n, 𝑑𝑚𝑛(𝑣) = 0, which means the video is cached locally (i.e., there is no transmission 

delay).  

By substituting Equations (3.3) and (3.5) into (3.4), Equation (3.4) can be reformulated 

as follows: 

                    𝐺 = ∑ ∑ ∑𝑎𝑚𝑛 ∙ 𝑟𝑒𝑞𝑛(𝑣)

𝑣∈𝑉

∙ 𝑐𝑛(𝑣)

𝑚∈𝑀𝑛∈𝑁

∙ (𝑑0𝑛(𝑣) − 𝑑𝑚𝑛(𝑣))                     (3.6) 

where   𝑎𝑚𝑛 is a binary value,  𝑎𝑚𝑛 = 1 indicates that node n fetches the video from node 

m; otherwise there is no video transmission between node n and m. 

Then, the objective function is formulated as a 0-1 ILP, expressed as follows: 

                               max 𝐺                                                                                                              (3.7) 

                       𝑠. 𝑡.   ∑𝐿𝑣 ∙

𝑣∈𝑉

𝐶𝑛(𝑣) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑛 ≠ 0)                                                      (3.8) 

                               ∑  𝑎𝑚𝑛 = 1，(𝑛 ∈ 𝑁)   

𝑚∈𝑁

                                                                         (3.9) 

                               𝑎𝑚𝑛 ∈ {0,  1} ，(𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁)                                                           (3.10) 

As defined in Constraint (3.1), 𝐿𝑣  is the length of video 𝑣. As mentioned in Section 

3.2.1.1, N is the set of nodes. Constraint (3.9) is used to guarantee that only one node (a 

router or the video server) sends the requested video back to the user.  

The caching problem has been proven to be NP-hard in [52]. Since the above formulated 

0-1 ILP is similar to the one formulated in [52], then, we can conclude that the formulated 

problem in this thesis is also NP-hard. However, using exhaustive searching to find an 

optimal solution is unacceptable due to its high computational complexity. Instead, branch 

and cut method is a better method which is integrated in many general solvers, such as 
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CPLEX [91], to find an optimal solution. Therefore, if all the prior information is known, 

the maximum G can be found by CPLEX.  

3.2.2.2 Real-time Scenario 

By solving the objective function Equation (3.7), an optimal caching decision can be found. 

However, the achieved optimal caching decision is not suitable for a real-time scenario due 

to the fact that the video popularity and request pattern vary over time. Since the 

aforementioned optimal caching decision is achieved based on the historical data, it is only 

valid for a particular time period.  

If we want to find a more accurate optimal solution for dynamic networks, it is essential 

to divide the time into time slots and use the current time slot’s optimal solution as the next 

time slot’s caching decision. In this way, the optimal caching decision can be calculated 

incrementally over time. Through evaluating the performance of the caching decision over 

time, a more accurate optimal solution for dynamic networks can be obtained.  

Let 𝑟𝑒𝑞𝑛(𝑣, 𝑡) stand for the number of requests for video 𝑣 from node n at time 𝑡 ∈ 𝑇, 

where 𝑟𝑒𝑞(𝑣, 𝑡) ∈ 𝑅𝑒𝑞. The caching state of node n at time t is denoted by 𝑐𝑛(𝑣, 𝑡). By 

performing a caching decision policy P, 𝑐𝑛(𝑣, 𝑡)
𝑃
→𝑐𝑛(𝑣, 𝑡 + 1), the new caching state of 

node n at time t+1 can be achieved. Hence, Constraint (3.8) can be reformulated as follows: 

                                   ∑𝐿𝑣 ∙

𝑣∈𝑉

𝑐𝑛(𝑣, 𝑡) ≤ 𝑍𝑛, ( 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑛 ≠ 0)                          (3.11) 

Let 𝑅(𝑛, 𝑡) indicate the number of requests that are served at node n from time 0 to time 

t. Then, Equation (3.3) can be reformulated as follows: 

                                         𝑅(𝑛, 𝑡) =∑∑𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡)

𝑣∈𝑉𝑡∈𝑇

                                        (3.12) 
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where ∑ 𝑟𝑒𝑞(𝑣, 𝑡)𝑡∈𝑇  represents the total number of requests for video 𝑣 from time 0 to 

time t. 

This thesis denotes the reduced video transmission delay by performing caching at node 

n from time 0 to time t as 𝐷(𝑛, 𝑡) which can be represented as follows: 

                                𝐷(𝑛, 𝑡) =∑∑ ∑(𝑑0𝑛(𝑣, 𝑡) − 𝑑𝑚𝑛(𝑣, 𝑡))                                  (3.13)

𝑚∈𝑁𝑣∈𝑉𝑡∈𝑇

 

where 𝑑𝑚𝑛(𝑣, 𝑡) is the video transmission delay for video 𝑣 from node m to node n at time 

t, 𝑑0𝑛(𝑣, 𝑡) is the video transmission delay for video 𝑣 from the video sever to node n, 

∑ 𝑑𝑚𝑛(𝑣, 𝑡)𝑡∈𝑇  indicates the total video transmission delay for video 𝑣 from node m to 

node n during the time period (from time 0 to time t). 𝐺(𝑡) is used to represent the total 

reduced video transmission delay, i.e., gain, from time 0 to time t. Equation (3.14) is used 

to calculate 𝐺(𝑡). 

                                                    𝐺(𝑡) = ∑ 𝑅(𝑛, 𝑡) ∙ 𝐷(𝑛, 𝑡)

𝑛∈𝑁

                                              (3.14) 

Substitute Equation (3.12) and (3.13) to (3.14), we can get Equation (3.15) as follows: 

              𝐺(𝑡) =∑∑ ∑∑𝑎𝑚𝑛(𝑡) ∙ 𝑟𝑒𝑞𝑛(𝑣, 𝑡)

𝑣∈𝑉

∙ 𝑐𝑛(𝑣, 𝑡) ∙ 𝑑𝑚𝑛(𝑣, 𝑡)                  (3.15)

𝑛∈𝑁𝑚∈𝑁𝑡∈𝑇

 

Finally, the objective function can be reformulated as follows: 

                                    max 𝐺(𝑡)                                                                                                (3.16) 

                        𝑠. 𝑡.   ∑𝐿𝑣 ∙

𝑣∈𝑉

𝐶𝑛(𝑣, 𝑡) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑛 ≠ 0)                           (3.17) 

                                  ∑  𝑎𝑚𝑛(𝑡) = 1，(𝑛 ∈ 𝑁)

𝑚∈𝑁

                                                                 (3.18) 

                                  𝑎𝑚𝑛(𝑡) ∈ {0,  1}，(𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁)                                                    (3.19) 
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where N is the set of nodes,  𝑎𝑚𝑛(𝑡) indicates if node n retrieves video from node m 

( 𝑎𝑚𝑛(𝑡) = 1 indicates yes; otherwise no).  

Proposition 1: As the time 𝑡 increases, the caching state 𝑐𝑛(𝑣, 𝑡) becomes more stable 

than in the previous time period, namely, the difference between 𝑐𝑛(𝑣, 𝑡) and 𝑐𝑛(𝑣, 𝑡 + 1) 

decreases. 

Proof: Let us consider the caching state of a cache-enabled node 𝑛 in a network. We 

assume there is one video provider, which can provide 𝑉 videos for users; that the request 

generation follows a stationary Poisson process with an arrival rate 𝜆; and that the video 

popularity follows the Zipf distribution [24]. The cache size of node 𝑛 is 𝑍𝑛. 𝑍𝑛 < 𝑉 ∙ 𝑆𝑣; 

hence, node 𝑛 cannot cache all the videos. At the beginning, node 𝑛 will cache every 

requested video until its cache is full. After that, node 𝑛 begins to cache the most popular 

video 𝑣 and since there is only one video provider and the transmission delay for caching 

each video is the same for node 𝑛, caching popular videos will result in higher gain. With 

the increase of time 𝑡, popular videos are being requested more frequently, which leads to 

𝑟𝑒𝑞𝑛(𝑣𝑝𝑜𝑝𝑢𝑙𝑎𝑟, 𝑡) > 𝑟𝑒𝑞𝑛(𝑣𝑢𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , 𝑡)  and this difference continues to increase. In 

addition, the top 20% of the videos account for 80% of the total network traffic since the 

video popularity follows the Zipf distribution; hence, 𝑟𝑒𝑞𝑛(𝑣𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , 𝑡) ≫

𝑟𝑒𝑞𝑛(𝑣𝑢𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑟, 𝑡). As a result, the rank of videos becomes increasingly stable, which 

means that the popularity of the videos does not change substantially from time 𝑡 to time 

𝑡 + 1. Since caching the most popular video at node 𝑛 will result in a larger gain for node 

𝑛, node 𝑛 will always try to cache the most popular video. Consequently, the difference 

between 𝑐𝑛(𝑣, 𝑡) and 𝑐𝑛(𝑣, 𝑡 + 1) → 0, i.e., the caching state becomes increasingly stable. 
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The current optimal caching decision can be solved by calculating the historical data. 

The achieved optimal caching decision can be used for the video caching at the next time 

slice ∆𝑡. After that, the optimal caching decision for the next time slice ∆𝑡 can be solved 

by calculating the historical data and the new request at the next time slice ∆𝑡. In this way, 

the optimal decisions for the real-time network can be found.  

However, the reformulated model for real-time scenario is still NP-hard. Even though a 

solution can be obtained with a general solver, the computational complexity is extremely 

high, which is not suitable for a real-time caching system. Therefore, a light-weight and 

practical approach is needed. 

3.3 Router Position-based Cooperative Caching 

This section describes the proposed router position-based cooperative caching approach. 

The main idea of RPC is to cache popular videos closer to the users. Along the video 

delivery path, the proposed RPC allows a router to calculate its own topology level value 

by adding 1 to the value of its immediate upstream router’s topology level value. Routers 

also track the access count for each video locally, and stores all the access counts 

information as a key-value structure (video name; access count). 

3.3.1 Principle of RPC 

The basic principle of RPC is described as follows: 

 Each router has a caching threshold and keeps track of an access count for each 

video (indicating the video’s popularity). Each router decides what video should be 

cached according to the access count of the videos, its own caching threshold, and 

the available storage space.  
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 Least Recent Used (LRU) [47] is used for the replacement policy. Obviously, other 

methods can be used as the replacement policy as well, such as Least Frequently 

Used (LFU) [93]. 

 Along the video delivery path, routers need to transmit their topology level value 

and root routers’ caching threshold to their immediate downstream routers. This 

cooperation only happens once during the procedure of determining the caching 

threshold, which has low overhead. 

 The caching threshold of root routers is pre-configured. The other routers determine 

their caching threshold using the proposed caching threshold decision policy 

described in Section 3.2.3.  

3.3.2 How RPC Works 

A router decides what video to be cached based on its caching threshold and storage space. 

A video can be cached if one of the following conditions is satisfied: 1) The access count 

of the video is greater than the caching threshold of the router; 2) The router has enough 

space to store the video. If a video access count exceeds a router’s caching threshold, but 

the router does not have enough space to cache it, the router will perform the replacement 

policy to discard videos until the router has enough space to cache the video. 

In RPC, root routers are routers which are connected to video servers directly. Routers 

collaborate with each other through transmitting their topology level value and root routers’ 

caching threshold value. The principle for setting the caching threshold is as follows: 1) 

Root routers set a minimal caching threshold all over the network; 2) Downstream router’s 

caching threshold should be less than that of its upstream routers, so that the popular videos 
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can be cached in low level routers, e.g., edge routers; 3) Routers should use the same 

threshold if they are at the same level in the topology. 

The procedure for determining the caching threshold works as follows: at the initial 

state, the root routers set a default value as their caching threshold, then inform this 

threshold value and their topology level value to their immediate downstream routers. 

When a downstream router receives this threshold value, it will use the caching threshold 

decision policy (illustrated in Section 3.2.3) to calculate its caching threshold and advertise 

its topology level value and the root routers’ threshold value to its immediate downstream 

routers along the video delivery path. The rest of the routers repeat the above procedure 

until all routers have a caching threshold. 

Algorithm 3.1 Router position-based cooperative caching  

Input: access count = 0 for all contents 

caching threshold = a default value for root routers, or calculated (as 

explained in Section 2.2.3) for other routers 

 1:  a request for content arrives 

 2:  content’s access count++ 

 3:  checks whether it has this content 

 4:  if (has this content) then 

 5:      forward it  

 6:  else if (has enough space) then 

 7:      cache it once received from other nodes 

 8:      forward it 

 9:  else if (access count > caching threshold) then 

10:      while (not enough space) do    

11:         delete least requested replica 

12:      end while 

13:      cache it 

14:      forward it 

15:  else  

16:      forward it 

17:  end if 
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After the caching threshold is set up, routers can perform the RPC as described in 

Algorithm 3.1. 

In RPC, only a router’s topology level value and the root routers’ caching threshold 

value are transmitted in the caching threshold determining procedure, and this procedure 

only happens once. Therefore, the cooperation overhead is significantly lower compared 

to other cooperative caching decision policies [25] [51] [79] which require transmitting 

recommendations between upstream routers and downstream routers for each video. 

3.3.3 Caching threshold decision policy 

This section describes how a router determines its caching threshold. First, it explains how 

to calculate the topology level value for a router when it receivers multiple topology level 

values from its immediate upstream routers. Second, it illustrates the caching threshold 

decision policy based on the principle of RPC. 

3.3.3.1 Topology level decision  

As mentioned above, routers can calculate their topology level value as follows: 

                                                             𝑙𝑖 = 𝑙𝑖−1 + 1                                        (3.20) 

where 𝑙𝑖  is the topology level value of router i,  𝑙𝑖−1 is the topology level value of the 

immediate upstream router. However, if router 𝑖 has multiple immediate upstream routers, 

it may receive multiple topology level values from these immediate upstream routers. As 

shown in Fig. 3.1, edge router B has two immediate upstream routers, edge router A and 

the root router. As the topology level value increases along the video delivery path, the 

topology level value transmitted from edge router A to edge router B will be higher than 

the one received from the root router. Hence, there are two options that router B can adopt 
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to calculate its own topology level value: 1) use A’s topology level value; or 2) use the root 

router’s topology level value.  

It is important to note that the topology level and the caching threshold have a positive 

correlation, i.e., a higher topology level value always leads to a higher caching threshold. 

However, a higher caching threshold will lower the chance for contents to be cached at the 

router. As a result, these contents have to be cached in upstream routers which causes the 

video delivery path to be longer. Moreover, contents also need more time to increase their 

access count to satisfy the router’s caching threshold. Finally, during this period, users have 

to fetch these contents from the router’s upstream routers, or even from the video server. 

Consequently, the number of hops for retrieving these contents will increase. Hence, for 

the scenario illustrated in Fig 3.1, router B should use the root router’s topology level value 

 
 

Fig. 3.1: Different topology levels from multiple immediate upstream routers 
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to calculate its own topology level value. Therefore, when a router receives multiple 

topology level values from its immediate upstream routers, it should use the lowest one to 

calculate its own topology level value. Then Equation (3.20) can be modified as follows: 

                                                     𝑙𝑖 = 𝑚𝑖𝑛 𝑙𝑖−1 + 1                                         (3.21) 

where 𝑚𝑖𝑛 𝑙𝑖−1 ∈ 𝐿, 𝐿 is the topology level value set for router 𝑖’s immediate upstream 

routers, 𝑚𝑖𝑛 𝑙𝑖−1 is the lowest level value in 𝐿. If there are multiple video servers, routers 

should maintain multiple topology level values correspond to these video servers. Once an 

interest arrives, router can decide to use which topology level value based on the interest 

and video server’s name prefix. 

3.3.3.2 Caching Threshold Calculation 

According to the principle of RPC mentioned above, a default caching threshold can be 

configured for the root routers. Then, other routers’ caching thresholds will be determined 

by two parts: 1) The root router’s caching threshold; and 2) Its own topology level. 

Specifically, the caching threshold determining policy can be described as follows:  

                   𝑡𝑖 = 𝛼𝑡𝑟 + 𝛽𝑙𝑖                                         (3.22) 

where 𝑡𝑖  is router 𝑖’s threshold, 𝑡𝑟  is the root router’s threshold, 𝑙𝑖  is the topology level 

value of router 𝑖. Both 𝛼 and 𝛽 are configurable wrights for 𝑡𝑟 and 𝑙𝑖 respectively (each is 

an integer ≥ 0) for the policy. 

3.3.4 Performance Evaluation  

This section presents the simulation and results. LCE [1] and ABC [62] are chosen as 

comparisons, because LCE is the default caching strategy in ICN [1] and ABC outperforms 

other popularity-based algorithms, such as WAVE [25]. A custom-built simulator (written 

in C++) is used to perform the simulation, since the well-known simulators [18] [26] [66] 
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[93] do not integrate the caching approach to be compared in this thesis and they are not 

sufficient for large scale simulation [85]. The simulation is conducted by using a real 

topology with real data traces. A shortest path routing protocol is applied in the simulation. 

The reduced video server load ratio and the average number of hops are used as the 

simulation metrics, which are described as follows. 

Reduced video server load ratio: Equation (3.23) is used to calculate the reduced video 

server load ratio. If there is a video request hit, the video will be transmitted from the router 

without having to be transmitted from the video server, which causes a reduction of traffic 

delivery. The reduced video server load ratio is defined as: 

                                                                  𝑅 =
∑ 𝑇𝑖
𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡
𝑖=1

𝐹
                                                 (3.23) 

where 𝑇𝑖 stands for the traffic reduction contributed by router 𝑖 and 𝐹 is the total amount 

of traffic for all requests transmitted from the video server if no caching is used. 

Average number of hops: This thesis uses the average number of hops to indicate the 

network delay from a general perspective. It is calculated by Equation (3.24). 

                                                              𝐴 =
∑ ℎ𝑖
𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡
𝑖=1

|𝑅𝑒𝑞|
                                                     (3.24) 

where  ℎ𝑖 is the number of hops needed to deliver video request 𝑖 and |𝑅𝑒𝑞| is the total 

number of requests. Since the number of request used in the simulation is high, the average 

over all requests gives a good approximation of the performance of the various approaches. 

This thesis uses the average number of hops to indicate the network delay from a general 

perspective. 
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3.3.4.1 Topology and Data  

CERNET 2 [40] is the largest next-generation Internet backbone of China and it is also the 

largest native IPv6 backbone network all over the world. As shown in Fig. 3.2, the topology 

of CERNET 2 is used for the simulation. Each node represents the city’s core router, and 

users request contents from them. This thesis assumes the video servers are deployed in 

Beijing and Shanghai; therefore, the routers in Beijing and Shanghai are the root routers. 

Data traces are collected from the video channel of Sina [92]. Sina video attracts more than 

80 million users each day. This thesis filters the data traces and gets 278,262 unique 

requests as the input. And these data are sorted according to the request time. Each video 

 

Fig. 3.2: Topology of CERNET2 [40] 
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is divided into small chunks. For simplicity, this thesis assumes all chunks have the same 

size (4,000 bytes), video size ranges from 50 MB up to 3 GB randomly.  

3.3.4.2 Simulation Parameters Setting 

For the data traces, we evaluate the base age and maximum age for the ABC from 10 

seconds to 180 seconds. The simulation results show that when the base age is set to 10 

seconds and the maximum age is set to 30 seconds, the approach can achieve the best 

performance. For RPC, a number of experiments are conducted by using different values 

for the root router’s caching threshold, 𝛼 and 𝛽, and found that when the root router’s 

caching threshold is set to 1, 𝛼 and 𝛽 are also set to 1, the best performance can be achieved. 

3.3.4.3 Simulation Results  

 

 

 

Fig. 3.3: Reduced video server load ratio VS cache size 
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Fig. 3.3 shows the reduced video server load ratio for different approaches. We can see that 

RPC outperforms ABC and LCE for the experiments. It is worth noticing that RPC has 

significant performance gain when the cache size is small. In reality, routers have limited 

storage and the size of video keeps growing, especially as HD-video (or even 4K videos) 

becomes more and more popular. Under this circumstance, we can see RPC can achieve 

evident benefits in reducing the publisher load compared with LCE and ABC.  

Fig. 3.4 describes the trend for the average number of hops of LCE, ABC and RPC. 

Obviously, RPC has the smallest average number of hops out of these three algorithms 

despite the change of cache size. ABC slightly outperforms LCE with a reduction around 

3% regardless of the cache size. In comparison RPC can reduce the average number of 

hops by 26.7% compared to ABC when the cache size is 15 GB. The reason for this 

phenomenon is that ABC is not sensitive user request rate, i.e., user may request a number 

of contents in a short time, but routers do not make any change to this burst request, they 

 

Fig. 3.4: Average number of hops VS cache size 
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still replace contents only when they expire, which causes a higher number of hops. But 

RPC can handle a burst of requests effectively, since it relies on access count, which can 

adaptively cache new popular videos in time.  

3.3.4.4 Parameter Configuration of Caching Threshold Decision Model 

This section discusses how to configure parameters from equation (3.22). The caching 

threshold is determined by root router’s pre-configured caching threshold 𝑡𝑟and router’s 

topology level 𝑙𝑖, 𝑛 and 𝑤 are their weights. The smaller 𝑛 is, the more important role 𝑙𝑖 

plays, which leads to a greater difference between 𝑡𝑖 and 𝑡𝑖−1, i.e., the caching thresholds 

tend to be hierarchical, which suits contents following the Zipf–distribution. On the other 

hand, the smaller 𝑤 is, the bigger impact 𝑡𝑟 has, and the difference between 𝑡𝑖 and  𝑡𝑖−1 is 

smaller, i.e., the caching threshold tends to be uniform, which will perform better when 

contents are requested uniformly. 𝑡𝑟  should be configured large enough to filter most 

unpopular contents, e.g., 𝑡𝑟 = 1 for the data traces, as 90% of the videos are requested only 

once. Obviously, if 𝑛 and 𝑤 are set to 0, RPC will become to LCE and its performance will 

degrade to LCE’s performance. 

3.4 SDN-based Caching Approach 

The proposed SDN-based caching decision policy for dynamic caching is presented in this 

section. 

3.4.1 How SDN Can Improve the Caching Efficiency for ICN 

In pure ICN, nodes make their caching decision locally, i.e., every node tries to cache the 

most popular video, which leads to high caching redundancy and low caching efficiency. 

Several cooperative caching schemes [3] [114] have been proposed to allow nodes to 
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cooperate with each other to make the caching decision. However, in those schemes 

cooperation only happens among the node and its neighbors. As a result, the caching 

redundancy and efficiency can only be improved slightly, because nodes in those proposed 

schemes still lack the global view to make caching decisions.   

Since SDN provides a global view, we can leverage this feature to make caching 

decisions from a global perspective. Generally, the more information we use, the more 

efficient the caching decision can be. For instance, nodes in a specific area will always 

cache the local popular videos if they only have the local information and make the caching 

decision locally. However, some local popular videos may not be popular in other parts of 

the whole network. Hence, caching those videos may obtain a lower caching efficiency for 

the whole network. If these nodes have a global view and are coordinated by the centralized 

SDN controller to make their caching decision, nodes can achieve better caching 

performance for the whole network. 

In current ICN, the content transmission is inefficient since nodes need to broadcast 

interest packets to all of their neighbor nodes. This mechanism could cause significant 

overhead and delay, especially for dynamic networks. By exploiting the SDN capabilities, 

nodes can send interest packets to the SDN controller directly. The SDN controller is able 

to forward the interest packets to the best node based on the current status, such as the 

available bandwidth, the link latency, etc. Hence, the overhead caused by broadcasting 

interest packets in the current ICN can be significantly reduced. 
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3.4.2 How the proposed SDN-based caching decision policy works 

The term “delivery cost” is used to represent the total delivery delay for delivering a video 

from the video server to all users at current time, which is denoted as 𝐷𝐶(𝑣), 𝑣 ∈ 𝑉 .  

Equation (3.25) is used to calculate 𝐷𝐶(𝑣). 

                                                     𝐷𝐶(𝑣) = ∑ 𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑑0𝑛
𝑛∈𝑁

                                             (3.25) 

The term “benefit”, (denoted as 𝐵𝑛(𝑣)), is used to indicate how much delay can be reduced 

by caching video  𝑣 ∈ 𝑉  at node 𝑛 ∈ 𝑁 locally. Since the video is cached locally, 𝑑𝑚𝑛 

becomes to 𝑑𝑛𝑛, then we can calculate 𝐵𝑛(𝑣) as follows: 

                                                       𝐵𝑛(𝑣) = 𝑟𝑒𝑞𝑛(𝑣) ∙ (𝑑0𝑛 − 𝑑𝑛𝑛)                                     (3.26) 

where, 𝑟𝑒𝑞𝑛(𝑣) represents the number of requests for video 𝑣 from node 𝑛. 𝑑0𝑛 represents 

the delivery delay from the video server to node 𝑛. Obviously, 𝑑𝑛𝑛 is 0 since the requested 

content is cached locally, there is no delay to fetch the content. Therefore, the reduced 

delay should be 𝑑0𝑛, and Equation (3.26) can be re-written as Equation (3.27): 

                                                              𝐵𝑛(𝑣) = 𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑑0𝑛                                              (3.27) 

In the proposed SDN-based caching decision policy, the centralized controller tracks 

both the global popularity and the local popularity of each video through receiving statistic 

information from all nodes periodically. The local video popularity information and the 

global video popularity information are stored in the local video popularity rank table 

(denoted as 𝑇𝐿) and the global video popularity rank table (denoted as 𝑇𝐺), respectively. 

Both of these two tables are key-value structured, in which the video name is stored as the 

key (character), and the popularity is stored as the value (integer). Generally, the average 

number of characters of video titles is not too big, e.g., it is only 16.7 for on our dataset. 

Considering one character is 1 byte, one integer variable is 4 bytes, each entry in 𝑇𝐿 and 
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𝑇𝐺 only accounts 21 bytes in average, i.e., 1 MB memory can support 49000 entries at 

least. Since the global and local video popularity, the video delivery delay, and 𝑟𝑒𝑞𝑛(𝑣) 

are known, the controller can calculate 𝐵𝑛(𝑣) and can make the caching decision for each 

node in the network based on 𝑟𝑒𝑞𝑛(𝑣) and 𝑑0𝑛. 

 

 

 

 

 

 

 

 

 

 

The following steps illustrate how the proposed SDN-based caching decision policy works: 

1. The controller maintains a video cost rank table (denoted as 𝑇𝑐) which is used to 

store the delivery cost (𝐷𝐶(𝑣)) for each video from the entire network perspective.  

2. The caching decision policy is triggered if the rank of any video cost in 𝑇𝑐 changes. 

Then, a caching decision calculation table (a copy of the modified videos in the 

video cost rank table, denoted as 𝑇𝑑) will be created temporarily to facilitate the 

caching decision making. 

3. The controller always checks the 1st ranked video (the video that changes its rank) 

in the caching decision calculation table (𝑇𝑑 ) and marks it as 𝑣1𝑠𝑡 . Then, the 

Algorithm 3.2 SDN-based caching decision policy  

 1: the controller checks the video cost rank table 

 2: if (the rank of videos in 𝑇𝑐 changes) then 

 3:     update and re-rank 𝑇𝐿 and 𝑇𝐺  

 4:     create 𝑇𝑑 

 5:     find the 1st ranked video (𝑣1st) in 𝑇𝑑 

 6:     decide which node should cache video 𝑣1 in order  

         to achieve the maximum benefit (𝐵𝑛𝑜𝑏𝑗(𝑣1st)) 

 7:     update the delivery cost of video 𝑣1st in 𝑇𝑐 and  𝑇𝑑     

 8:     re-rank 𝑇𝑑 

 9:     send caching decision to router 𝑛𝑜𝑏𝑗  

10:    if (∃𝑣 ∈ 𝑉, 𝐷𝐶(𝑣) ≠ 0)||(∃𝑛 ∈  𝑁, 𝑍𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙) 
         then    
11:           goto step 5 

12:    else  

13:           update 𝑇𝑐 

14:    re-rank 𝑇𝑐 

15: end if 
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controller determines which node (the objective node is marked as 𝑛𝑜𝑏𝑗) should 

cache 𝑣1𝑠𝑡  to realize the maximum benefit, i.e., 𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡) ≥ 𝐵𝑛(𝑣), ∀𝑛 ∈

𝑁, ∀𝑣 ∈ 𝑉. Then the controller sends the name of the video 𝑣1𝑠𝑡 to node 𝑛𝑜𝑏𝑗 for 

caching, i.e., node 𝑛𝑜𝑏𝑗 will cache video 𝑣1𝑠𝑡 once 𝑣1𝑠𝑡 goes through 𝑛𝑜𝑏𝑗. 

4. Then, the controller updates 𝐷𝐶(𝑣1𝑠𝑡) in the caching decision calculation table; the 

updated value is denoted as 𝐷𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑣1𝑠𝑡) , 𝐷𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑣1𝑠𝑡) = 𝐷𝐶(𝑣1𝑠𝑡) −

𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡).  

5. The controller re-ranks the caching calculation table, and goes to step 3. The 

calculation will terminate if (i) the cache size of each node (𝑍𝑛) is full; or (ii) in the 

caching decision calculation table, all 𝐷𝐶(𝑣) = 0, ∀𝑣 ∈ 𝑉.   

6. Since the popularity of video changes over time, a former popular video may not 

be popular in the current time. To cache the recent popular videos, the video cost 

rank table is calculated periodically. 

Via the above steps, the controller can perform the proposed caching decision policy as 

described in Algorithm 3.2. 

Fig. 3.5 presents an example to show how the proposed SDN-based approach works. 

There are two routers (routers 1 and 2), three videos (A, B and C). For simplicity, this 

example uses the number of hops to indicate the delivery delay. The delivery delay from 

the video server to router 1 and router 2 is 5 hops and 1 hop respectively. At time 𝑇1, video 

A is requested 3 times, therefore the rank table needs to be updated. The entry of delivery 

cost for video A is updated from 0 to 15, i.e., 3 × 5 according to Equation (3.27). Since the 

rank of video A in the rank table changes, the caching decision is triggered. A caching 

decision calculation table is created based on the updated rank table. The controller checks 
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the 1st video (video A) in the caching decision calculation table, then decides to cache video 

A at router 1. Video B is already cached at router 2 from a previous iteration. 

3.4.3 Responsibilities of the SDN Controller 

The controller is the core of the proposed SDN-based caching decision policy. The main 

responsibilities of the controller are as follows: 

 Making caching decision. The SDN-based caching decision policy is implemented 

in the controller so that it can make caching decision. 

 Tracking video popularity from both local and global perspectives. Nodes in the 

network send their local information on video popularity to the controller 

periodically. Based on this information, the controller can maintain the local video 

popularity rank table 𝑇𝐿 and the global video popularity rank table 𝑇𝐺. 𝑇𝐿 is used 

to find the objective node 𝑛𝑜𝑏𝑗, 𝑇𝐺 is used to obtain the video cost rank table 𝑇𝑐. 

 

Fig. 3.5: An example for proposed SDN-based approach 
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 Determining where to forward requests (interest packets). If a node does not have 

the requested video, it will forward the interest packets to the controller. Then, the 

controller will decide how to forward the request based on the network status, e.g., 

the available bandwidth, the link latency, etc. 

3.4.4 Computational Complexity 

As mentioned in Section 3.2, the problems formulated in Equation (3.7) and (3.16) are 0-1 

ILP problems and are NP-hard. Although exhaustive searching methods can be used to find 

a solution, the computational complexity of an exhaustive searching method is exponential 

[99], which is unacceptable for dynamic networks. Even though the branch and cut method 

or dynamic programming can be used to find an optimal solution for experiment purpose, 

they are not suitable for practical scenarios as they are still computationally intensive. 

The computational complexity of the proposed SDN-based caching decision policy 

mainly depends on the sorting parts in Algorithm 3.2, i.e., steps 3, 6, 8 and 14. Since the 

controller updates all the rank tables each time the caching decision policy is triggered, all 

the rank tables are in a nearly sorted initial order, i.e., in each update, only a few videos’ 

ranks are changed; most videos’ rank remain unchanged. Therefore, insertion sort can be 

used to re-rank those tables. Consequently, the computational complexity of steps 3 and 14 

is 𝑂(|𝑉|), and the computational complexity of step 8 is 𝑂(𝑋),  where 𝑉 is the set of videos 

and X is the number of videos in 𝑇𝑑 . Step 6 identifies the node 𝑛𝑜𝑏𝑗  that satisfies 

𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡) ≥ 𝐵𝑛(𝑣), ∀𝑛 ∈ 𝑁, ∀𝑣 ∈ 𝑉. The benefit can be easily calculated by (3.27), we 

only need to find the maximum benefit in step 6. Since the computational complexity of 

finding the maximum value in a given data set is 𝑂(𝑛), where n is the total number of the 

given videos, we can easily know that the computational complexity of step 6 is 𝑂(|𝑁|), 
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where |𝑁| is the total number of nodes in the network. Moreover, step 6 is executed until 

the conditions in step 10 are not satisfied. Hence, the final computational complexity of 

step 6 should be  𝑂(𝑌|𝑁|), where Y is the number of iterations of step 10. Y could be 

𝑂(max {|𝑉|, |𝑁|}) in the worst case; therefore, the computational complexity of step 6 

could be 𝑂(max {|𝑉||𝑁|, |𝑁|2}). Obviously, the computational complexity of the proposed 

SDN-based caching decision policy is constituted by the computational complexity of steps 

3, 6, 8 and 14, it is 𝑂(|𝑉| + max{|𝑉||𝑁|, |𝑁|2} + 𝑋 + |𝑉|). Notably, the computational 

complexity of step 6 ( 𝑂(max {|𝑉||𝑁|, |𝑁|2}) ) is the dominant part, because it is 

exponential. Since the controller keeps track of table 𝑇𝑐 , even a slight change can be 

detected by the controller, the value of Y would not be too big. What’s more, with an 

increase in time, the video popularity tends to be stable and the cache of nodes becomes 

full eventually; therefore, the value of Y will become much smaller than the earlier time 

period. In fact, the practical computational complexity of the proposed scheme is much 

lower than 𝑂(|𝑉| + max{|𝑉||𝑁|, |𝑁|2} + 𝑋 + |𝑉|); it could be 𝑂(|𝑉| + 𝑋 + |𝑁| + |𝑉|) =

𝑂(2|𝑉| + 𝑋 + |𝑁|) in the best case (when 𝑌 = 1, the computational complexity of step 6 

is 𝑂(|𝑁|) ). Notably, the proposed scheme reduces the computational complexity 

significantly compared to the exhaustive searching method and branch and cut method, and 

it can be implemented in a real network to make dynamic caching decisions. 

3.4.5 Performance Evaluation 

In this section, the evaluation metrics are described firstly, then the simulation setting and 

results are presented.  
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As mentioned in Section 3.2.1, the ILP problem in Equation (3.17) is NP-hard, even the 

computational complexity of solving it by CPLEX is exponential, namely, 

𝑂(22|𝑉|∙3|𝑅𝑒𝑞|∙2|𝑁|)  [91], which can incur an incredibly long execution time when the 

topology is large. Hence, firstly, a small topology is used to establish a baseline comparison 

between the optimal solution using Equation (3.17) and the proposed SDN-based caching 

decision policy. Then, this thesis uses a real topology and chooses several practical caching 

decision policies, such as LCE [1], MPC [14] and RPC, to compare and evaluate the 

proposed SDN-based caching decision policy.  

Since well-known simulators such as ndnSIM [66] and ccnSIM [26] do not support 

recent caching decision policies, including MPC and RPC, a simulator (written in C++) is 

developed to evaluate the performance of the policies used in this thesis. Fig. 3.6 shows an 

overview of our simulator. More specifically, we emulate the SDN Controller with a 

Routing Manager, a Popularity Tracker, a Caching Decision Maker and a Video 

Forwarding Handler. The Request Generator and the Topology Generator produce the 

video requests and the topology information, respectively. The Routing Manager offers a 

 

 

Fig. 3.6: Overview of the simulator 
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global view of the network status by maintaining a global table that contains the network 

status information (such as the shortest path for any given source-destination pair and the 

delivery cost for each delivery path). The Popularity Tracker can track each video’s global 

and local popularities. Based on the caching decisions and the routing information, the 

Video Forwarding Handler can forward the video requests to the selected nearest node that 

has cached the requested video or to the content provider if the video is not cached in the 

network. Either the corresponding selected node or the remote video server will forward 

the requested video to the user or the destination node.  

The Caching Decision Maker decides what video should be cached at which node based 

on the videos’ popularity, and the topology information. In addition, we set a configurable 

parameter as the caching threshold for each node in the topology. By configuring the 

caching threshold and disabling the Popularity Tracker’s global popularity tracking 

function (i.e., it only tracks videos’ local popularity), we can easily perform LCE, RPC and 

MPC policies. For instance, LCE can be realized by only setting the caching threshold to 

0; RPC can be emulated by setting different threshold values to different nodes based on 

their topological information relative to the video server; and MPC can be conducted by 

setting the same threshold value (could be greater than 0) to each node.  

If we set the caching threshold value to 0 and enable the Popularity Tracker’s global 

popularity tracking function (i.e. global and local popularities will be tracked), we can 

perform the proposed SDN-based approach. Finally, the Output Generator formulates and 

writes the simulation performance results to a file, which can be used to evaluate the 

caching performance. The simulations are executed on an 8-processor (Intel i7-4770) X86 

desktop with 16 GB of RAM using Microsoft Windows 7 Enterprise edition. 
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3.4.5.1 Evaluation Metrics 

Hit Ratio: The cache hit ratio is a key metric to evaluate the efficiency of a caching 

decision policy. Equation (3.28) shows how we calculate the hit ratio. 

                                𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ [𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇 ]

∑ ∑ 𝑟𝑒𝑞𝑛((𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇
                                   (3.28) 

Average Number of Hops: This thesis uses the average number of hops (denoted as 𝐴) 

to indicate the average video retrieval latency. It can be calculated as follows: 

                 𝐴 =
∑ ∑ ∑ ∑ [𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡) ∙ 𝑑𝑚𝑛(𝑣, 𝑡)]𝑛∈𝑁𝑚∈𝑁𝑣∈𝑉𝑡∈𝑇

∑ ∑ 𝑟𝑒𝑞𝑛((𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇
                      (3.29) 

Number of Interest Packets: The number of interest packets (denoted as 𝐼) that are 

generated or broadcasted in the network is used to indicate the overhead. It can be 

calculated by Equation (3.30). 

                                                      𝐼 =∑∑∑𝑟𝑒𝑞𝑛((𝑣, 𝑡)

𝑛∈𝑁𝑣∈𝑉𝑡∈𝑇

                                              (3.30) 

3.4.5.2 Comparisons of the Optimal Solution and the Proposed SDN-Based 

Caching Decision Policy 

This subsection evaluates the performance of the optimal solution and the proposed SDN-

based caching decision policy in terms of the cache hit ratio and the average number of 

hops. 

3.4.5.2.1 Simulation Setting 

This thesis uses the topology illustrated in Fig. 3.7 for the simulation. There are five 

switches in the network, three of them at the bottom layer are edge switches which are 

directly connected to users. The other two switches in the middle layer are connected to 
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the video server. A centralized controller is deployed to manage the network and perform 

the proposed SDN-based caching decision policy. In total, 120 videos are requested 1,000 

times by the users, and their popularity distribution follows the Zipf–distribution [24], 

which is widely used in Video-on-Demand (VoD) systems [50] [58] [117]. Users retrieve 

videos through sending interest packets to the edge switches. 

3.4.5.2.2 Simulation Results 

Results shown in Fig. 3.8 compare the average number of hops between the optimal 

solution and the proposed SDN-based caching decision policy. As can be seen, the average 

number of hops decreases with the increase of the network cache size (the total size of all 

nodes in the network) for both of the optimal solution and the proposed SDN-based caching 

decision policy. The proposed SDN-based caching decision policy has a similar 

performance with the optimal solution. Moreover, the gap between the optimal solution 

 

 

Fig. 3.7: System architecture 
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and the SDN-based caching decision policy is much smaller when the network cache size 

ranges from 10% to 20%. In a real network, nodes have limited caching storage, which 

means that the network can only cache a small portion of the total videos [115]. Hence, the 

proposed SDN-based caching decision policy can achieve a high efficiency in terms of 

cache hit ratio when it is implemented in dynamic networks in which the requests and 

network states are changed frequently.   

Fig. 3.9 describes the influence of the network cache size on the hit ratio. It is observed 

that the optimal solution and the proposed SDN-based caching decision policy have 

comparable performance in terms of hit ratio. Moreover, the proposed SDN-based caching 

decision policy even outperforms the optimal solution in terms of hit ratio at some 

particular cache size. The reason is that the objective of the optimal solution is to find the 

maximum gain which is mainly affected by the average number of hops. Moreover, the 

maximum gain only guarantees a minimum average number of hops instead of the hit ratio. 

 
 

Fig. 3.8: Comparison between the optimal solution and the SDN-

based caching decision policy in terms of the average number of 

hops 
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For example, if a user sends a request to switch s3, as depicted in Fig. 3.7, for a particular 

video which is cached at switch s1 only, it will travel 5 hops for this user to fetch the video 

from switch s1. But it only traverses 4 hops if the user fetches the video from the video 

server, but it will result in a miss which means the hit ratio is decreased. 

 

Because the computational complexity of finding the optimal solution is NP-hard, the 

execution time for realistic cache sizes is another important performance metric that needs 

to be evaluated. Fig. 3.10 shows the comparison between the actual execution time of the 

optimal solution and the proposed SDN-based caching decision policy versus the network 

cache size. Based on the curves in Fig. 3.10, the execution time of the proposed SDN-based 

policy is about 1 second, whereas the execution time required to find the optimal solution 

is more than 7 minutes even for a simple topology which is presented in Fig. 3.7. The 

computational complexity of the optimal solution is significantly higher than the 

computational complexity of the proposed SDN-based caching decision policy, and it is 

 
Fig. 3.9: Hit ratio of the optimal solution and the SDN-based caching 

decision policy for different network cache size  
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highly affected by the network cache size. Evidently, finding the optimal solution is not 

suitable for real networks, especially for large networks, whereas the proposed SDN-based 

caching decision policy is lightweight and can be implemented for dynamic scenarios for 

real time calculation.  

Based on the comparisons conducted above, we can see that the performance of the 

proposed SDN-based caching decision policy can approximate the performance of the 

optimal solution in terms of the hit ratio and the average number of hops, whereas the 

execution time of the proposed algorithm is significantly shorter. 

 

 

 

 
 

Fig. 3.10: Execution time of the optimal solution and the SDN-based caching 

decision policy for different network cache size 
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3.4.5.3 Comparisons of the Proposed SDN-Based Caching Decision Policy and the 

Existing Caching Decision Policies 

In this subsection, evaluations of the proposed SDN-based caching decision policy versus 

existing caching decision policies (i.e., LCE, MPC and RPC) are presented in terms of the 

hit ratio and the average number of hops. 

3.4.5.3.1 Simulation Setting 

 The Northern and the Eastern China regions of CERNET 2 [40], as shown in Fig. 3.11, 

are used as the simulation topology. This thesis assumes that there is a video server which 

is connected to the switch which is located in Beijing to provide video service for all users. 

Each switch represents an aggregate network device of its associated city. Users are 

 

 
Fig. 3.11: Simulation topology 
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connected to the access network directly and send requests to them to retrieve videos. As 

a result, Fig. 3.11 illustrates the logical view the network from the video server to other 

switches. There are 1,000 identical videos that are requested 10,000 times by all 2,500 

users, and the popularity of videos follows the Zipf–distribution [24]. Since there is only 

one video server which sends video contents to all the users through the real topology, the 

video server becomes the root, and the network becomes a logical tree topology. In other 

words, you could have any physical topology, but when there is only one video server and 

it is responsible for sending contents to users, the topology for content delivery will become 

a tree topology. The concept is the same if there are multiple video servers. 

Since the proposed SDN-based caching decision policy can be implemented in a real 

network for real time caching, this thesis choses the following practical caching decision 

policies as comparisons: LCE, MPC and RPC. LCE is the default caching decision policy 

of ICN. In LCE, videos are cached at each node along the video delivery path. Also, in 

comparison, MPC is selected as the non-cooperative caching decision policy, whereas RPC 

is selected as the cooperative caching decision policy. Both MPC and RPC use a caching 

threshold to filter the unpopular videos, i.e., a video can be cached at a node only if the 

number of requests of the video exceeds the caching threshold of the node. The only 

difference is that RPC takes the topology position of a node into consideration and assigns 

a pre-configured caching threshold value to each node based on their topology position, 

which leads RPC to be more efficient in caching. 

3.4.5.3.2 Simulation Results 

a) Description of the existing caching decision policies 
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Based on the performance results from Section 3.4.5.2.2, the proposed SDN-based caching 

decision policy has the potential to be implemented in a real network for real-time caching, 

this thesis compares it with the following practical caching decision policies: LCE, MPC 

and RPC. LCE is the default caching decision policy of ICN. In LCE, videos are cached at 

each node along the video delivery path as long as the cache size is large enough. For 

comparison, MPC is selected as the non-cooperative caching decision policy, whereas RPC 

is selected as the cooperative caching decision policy. Both MPC and RPC use a caching 

threshold to filter unpopular videos, namely, a video can be cached at a node only if the 

number of requests for the video exceeds the pre-configured caching threshold value of the 

node. The only difference is that RPC considers the topological position of a node and 

assigns a caching threshold value to each node based on its topological position (more 

details can be found in Section 3.3.3), which renders RPC more efficient in caching. For 

MPC, since all the nodes share the same caching threshold, the only key parameter is the 

caching threshold (𝑇𝐻). In contrast, RPC has three key parameters: the threshold for the 

root router (𝑇𝐻𝑟), the weight of the root router threshold (𝛼), and the weight of the topology 

level (𝛽). Through extensive experiments, the optimal parameter settings in terms of hit 

Table 3.2: Optimal Parameter Settings of the Existing Caching Decision Policies 

Caching Decision 

Policy 
Key Parameters  Values 

RPC 

Threshold for the root router (𝑡𝑟) 2 

Weight of the root router threshold (𝛼) 1 

Weight of the topology level (𝛽) 5 

MPC Caching threshold (𝑇𝐻) 20 
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ratio and the average number of hops for RPC and MPC in the simulation topology are 

identified and listed in Table 3.2.  

b) Impact of cache size 

This part evaluates how cache size influences the performance of the proposed SDN-based 

caching decision policy and the compared policies.  

Fig. 3.12 demonstrates the impact of the cache size on the hit ratio. Notably, all these 

four policies can increase the hit ratio with the increase of the network cache size. We can 

see that the proposed SDN-based caching decision policy performs best among these 

policies regardless of the change of the network cache size. The poor performance of LCE 

is caused by its high caching redundancy, i.e., videos are cached at each node along the 

video delivery path. RPC and MPC are all popularity based, therefore they have a close 

 

 
Fig. 3.12: Network cache size VS hit ratio  
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performance. Since RPC considers the relative topology location of each node, it achieves 

a slightly better performance than MPC.  

Fig. 3.13 shows the trend of the average number of hops when the network cache size 

ranges from 10% to 100% of the total video size. If no in-network caching is adopted, i.e., 

represented by the red top line, the average number of hops is about 4.1. As expected, all 

policies can reduce the number of hops with the increase of the network cache size. 

Specifically, the proposed SDN-based caching decision policy outperforms other policies 

regardless of the network cache size; it can achieve 17.3% and about 45% reduction in the 

average number of hops when the network cache size is 10% and 100%, respectively. 

Although the network cache size cannot be 100% in a real network, the proposed algorithm 

can still obtain a significant reduction in the average number of hops when the network 

cache size is less than 100%.  It is also observed that RPC and MPC have similar 

 
 

Fig. 3.13: Network cache size VS average number of hops 
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performance in terms of the average number of hops, whereas LCE performs poorly 

compared to the other three caching decision policies.  

The impacts of cache size on the number of interest packets are illustrated in Fig. 3.14. 

Obviously, the proposed SDN-based caching decision policy can significantly reduce the 

number of interest packets (from 18,987 to 17,279 when network cache size ranges from 

10% to 100%), while other three policies need to generate or broadcast at least 97,378 

interest packets. The reason behind this phenomenon is that in the current ICN, routers 

need to broadcast interest packets to their neighbors if the requested video is not cached 

locally. With the help of SDN, the forwarding policy of current ICN can be easily changed 

to let routers send requests to the SDN controller directly if the video is not cached locally. 

Since the SDN controller has all the information of the network, it can find the nearest node 

which has the requested video, and forward the interest packet to that node directly. 

 

 

Fig. 3.14: Network cache size VS number of requests  
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Therefore, the proposed SDN-based caching decision policy can significantly reduce the 

number of interest packets, i.e., the overhead. More specifically, the proposed SDN-based 

caching decision policy can reduce up to 954% the number of interest packets (from 

162,148 to 18,987) compared to these three ICN caching decision policies.  

c) Impact of the Exponent Parameter 𝜶 of the Zipf-Distribution 

The probability mass function (PMF) of the Zipf-distribution is described as follows: 

                                             𝑓(x) =
1

𝑥𝛼 ∑ (1 𝑖⁄ )
𝛼𝑛

𝑖=1

     𝑥 = 1, 2, … , n,                                 (3.31) 

where 𝛼 is the exponent parameter of the Zipf-distribution that reflects how skewed the 

popularity distribution is [67], and 𝑥 is the rank of a video.  

 

 
Fig. 3.15: Exponent parameter α VS hit ratio  
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As shown in Fig. 3.15, the proposed SDN-based caching decision policy has the best 

performance in terms of the hit ratio regardless of the value of α. It is also observed that 

the higher the value of α, the higher the hit ratio can be achieved for all these four caching 

decision policies. Because a higher α means a higher skewness of the distribution, i.e., a 

higher probability of requesting the top rank videos, which means that a higher popularity 

of these top rank videos. Hence, caching these top ranked videos can improve the hit ratio.  

The results demonstrated in Fig. 3.16 illustrate how the exponent parameter 𝛼 affect the 

average number of hops for these four caching decision policies and without caching. 

Similarly, the proposed SDN-based caching performs the best among all caching decision 

policies. Furthermore, with the increase of 𝛼, all caching decision policies can further 

reduce the average number of hops. The reason is the same as the one described above. 

 

Fig. 3.16: Exponent parameter α VS the average number of hops 
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Through the curves, we can see that the exponent parameter 𝛼 has a significant influence 

on the average number of hops for all these caching decision policies. For example, the 

proposed SDN-based caching decision can improve the reduction from 24% to 45% (from 

4.2 hops to 3.19 hops and 2.31 hops respectively) compared to no caching when 𝛼 changes 

from 0.6 to 0.9. Therefore, the proposed SDN-based caching decision policy can reduce 

the video delivery delay significantly, especially when the popular videos account for the 

majority of the traffic, i.e., a skewed Zipf–distribution.  

d) Comparisons in Terms of Execution Time 

The execution time per caching decision, denoted as 𝑇�̅�, can be calculated as follows:  

                                           𝑇�̅� =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑐ℎ𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
                          (3.32) 

The execution time per caching decision for these four approaches is shown in Table 

3.3. We can see that all existing practical approaches can make faster caching decisions 

compared to the proposed SDN-based caching decision policy. The reason is that in these 

three light-weight approaches (RPC, MPC and LCE), nodes make their own caching 

Table 3.3: Comparisons in Terms of Execution Time 

 

Caching Decision Policy 𝑻𝒆̅̅ ̅ 

SDN-based 0.015 s 

RPC 0.004 s 

MPC 0.003 s 

LCE 0.001 s 
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decision locally with light-weight computation, or even no computation. For example, 

there is no caching computation in LCE as nodes just cache everything that goes through 

them. The reason that the proposed SDN-based caching decision policy performs the worst 

in terms of 𝑇�̅� is because the SDN controller needs to calculate 𝐵𝑛(𝑣) (which is used to 

indicate how much delay can be reduced by caching video  𝑣 ∈ 𝑉 at node 𝑛 ∈ 𝑁 locally) 

based on the current popularity of videos, which involves more computation compared to 

the three light-weight approaches. However, the proposed caching decision will be 

triggered only if the rank of any video cost in 𝑇𝑐 changes. Based on Proposition 1, the 

video popularity tends to be stable with the increase of time; hence, the caching decision 

will not be triggered frequently. Even if it is triggered, it only costs 0.15 s which does not 

make a big impact for caching compared to the length of a video which could be hours. 

Finally, considering that real networks always use powerful servers, 𝑇�̅� can be significantly 

reduced.  

d) Comparisons in Terms of Simulation Time 

In this part, the complexity of performing each caching decision policy is evaluated by 

comparing the number of caching decisions with respect to the simulation time.  

According to Fig. 3.17, the proposed SDN-based caching decision policy makes fewer 

caching decisions as the simulation time increases. The reason is that the popularity of 

videos stabilizes over time. Hence, the caching decision policy is triggered less frequently 

with the proposed approach. However, RPC and MPC share a similar constant trend with 

respect to the simulation time. Since these two policies are threshold-based, the caching 

decision will be made once a video’s popularity exceeds the caching threshold. LCE 
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exhibits the worst performance across the four policies since it stores every requested video 

and the policy is triggered often due to the limited cache size. 

3.5 Summary 

In this chapter, the caching problem was first formulated as a 0-1 ILP problem. Then, it 

was turned from a static ILP problem to a dynamic ILP problem by introducing the notion 

of time. However, the formulated ILP problem is NP-hard, which means it is impractical 

to find the optimal solution for a dynamic network. Hence, a light-weight router position-

based cooperative caching (RPC) decision policy was proposed for the pure ICN. The 

proposed RPC approach works from a local perspective which may lead to a low efficiency 

of ICN in-network caching, hence SDN is a promising technique that can be leveraged to 

make the caching decision from a global perspective. This thesis leveraged the centralized 

control and the global view of SDN to design an SDN-based caching approach which 

 
Fig. 3.17: Impacts of the simulation time on the number of caching decisions 

made  
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considers both the video popularity and delivery delay. With the help of the centralized 

controller, the video popularity and delivery delay can be easily recorded and calculated. 

Based on that information, network nodes are coordinated by the controller to make their 

caching decision from a global perspective. Moreover, with the help of the controller, 

nodes do not need to broadcast interest packets any more for video transmissions, which 

can reduce the overhead significantly. 
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Chapter 4: Caching Approach for ICN-5G Networks 

4.1 Introduction 

The dramatic increasing demand for video from mobile users (MU) has imposed huge 

pressure on cellular networks. According to Cisco’s VNI report [27], an estimated 

sevenfold increase in mobile data traffic will be reached by 2021. Among all forms of data 

traffic, the mobile video will account for 78 percent of the total mobile traffic by 2021. The 

mobile video has become a fundamental service for the wireless networks. 

Millimeter wave (mmWave) is the key technique for 5G networks to overcome the 

bandwidth limitations of current wireless networks [32]. As the spectrum of mmWave is 

between 30GHz and 300GHz, it can allocate a huge amount of bandwidth to satisfy the 

dramatically increasing demands of mobile videos and multimedia services.  

However, the limitation of mmWave is the short transmission range. If we take the 

propagation degradation into consideration, the transmission distance of mmWave is only 

100 meters [32]. Therefore, mmWave BSs have to be deployed in small-cells. 

Consequently, high mobility users will suffer more frequent handoffs and shorter 

connection durations in 5G networks. Users with high mobility have to reconnect to the 

original content provider once a handoff happens [74], which induces heavy overheads and 

high retrieval delay. As a result, the QoE for mobile video users will be notably affected, 

and choppy playback might be caused. How to satisfy the QoE requirements for mobile 

video users with frequent handoffs in 5G networks has become a huge challenge. 

This chapter combines ICN and 5G networks to propose the ICN-based caching 

approach for mobile videos in ICN-5G networks. Compared to existing IP-based 

approaches [42] [63] [84] [108] [114], videos can be cached at every node along the video 
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delivery path in ICN. If a video is requested by many high mobility users, this video will 

be cached at the CR which is directly connected to the BS according to the proposed 

approach. In this way, when a mobile user enters a new cell, the mobile user does not need 

to reconnect to the original content provider to retrieve the video, he/she can fetch the video 

from the nearby CR by the name of the video. Hence, the retrieval delay can be significantly 

reduced and the QoE for users can be noticeably improved. However, which video should 

be cached at a CR is an important issue to improve the QoE for mobile video users and to 

reduce network traffic for 5G networks. 

The main contributions of this chapter are as follows: 

 This thesis proposes to integrate the features of ICN, such as in-network caching 

and name-based routing, into 5G networks to facilitate video delivery for MUs. 

 The proposed caching approach takes both the mobility of users and the popularity 

of videos into consideration, which results in reduced retrieval delay and cache miss 

ratio. 

 This thesis assumes the CRs which are directly connected to the BSs have the 

capability to cache videos. By caching popular videos for high mobility users at 

CRs, high mobility users can fetch the videos from CRs directly when a handoff 

occurs. As a consequence, QoE has been notably improved based on the simulation 

results. 

The reminder of this chapter is organized as follows: Section 4.2 presents the proposed 

caching approach and the system model. Section 4.3 shows the experimental settings and 

simulation results. Finally, Section 4.4 summarizes this chapter. 
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4.2 System Model  

In this section, the system model and the proposed caching approach for mobile videos in 

ICN-5G networks is described. The approach consists of a user mobility calculation model, 

a content popularity calculation model, and a caching decision model. Videos are cached 

at the chunk level. The architecture of the ICN-based caching approach is illustrated in Fig. 

4.1. This thesis first uses a simple scenario to illustrate how the ICN-based caching 

approach works; then it details all those aforementioned models.  

 

 

Fig. 4.1: System model 
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The main idea of the ICN-based caching approach is to cache videos requested by high 

mobility users at CRs in the RAN, and cache videos requested by low mobility user at BSs. 

Hence, low mobility users can fetch the popular video from a BS directly. If a handoff 

occurs, and the newly connected BS does not have the requested video, the high mobility 

users can fetch the video from a CR directly. By this means, there is no need to download 

the video from the remote content provider. Hence, the retrieval delay can be reduced. And 

the requirements of high QoE can be satisfied for both high mobility and low mobility 

users. 

The proposed ICN-based caching approach works as follows: A mobile user sends an 

interest packet to the BS first. The BS retrieves the video name from the interest packet, 

and checks if it has the video. If the requested video is cached locally, the BS will send the 

video back to the mobile user directly; otherwise, it will forward the interest packet to the 

connected CR. Similarly, the CR checks its local memory first. If it has the requested video, 

it will send the video back to the user in reverse route of the interest packet deliver path; 

otherwise, it will forward this interest packet to its neighboring CRs. Its neighboring CRs 

repeat the same process. If no CR has this video, the interest packet will be forwarded to 

the content provider via the Internet. 

4.2.1 A Simple Scenario 

Fig. 4. 2 shows how the proposed ICN-based caching approach works with the help of a 

simple scenario. There are two BSs and both are connected to the same CR. Three users 

are requesting three different videos. Further, one user, MU2, is moving while the other 
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two users are not (e.g., waiting for a bus). For simplicity, this thesis assumes the cache size 

of all BSs and CR is one, i.e., only one video can be cached for this simple scenario. 

As shown in Fig. 4.2 (a), video A is cached at BS1, video B is cached at CR and video 

C is cached at BS2. MU1 issues an interest packet for video A to BS1. BS1 checks if it has 

video A once it receives the interest packet. As BS1 has video A, BS1 sends video A back 

to MU1 directly. During this period, no traffic for video A is imposed at the core network, 

and the retrieval delay is low as the video is fetched from BS1 directly. Similarly, MU3 

retrieves video C directly from BS2.  

Assuming that MU2 is moving from BS1 to BS2 and the speed of MU2 is fast enough 

that he/she cannot finish watching video B before the handoff occurs. At the initial phase, 

MU2 sends an interest packet to BS1 for requesting video B. After receiving this interest 

packet, BS1 searches its cache memory and finds there is no video B. Then BS1 forwards 

 
 (a) 

 

 

 (a) 

 

 
 (b) 

 

 

 
 (b) 

 

Fig. 4.2: A simple scenario 
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this interest packet to CR.  As video B is assumed to be cached at CR, MU2 can retrieve 

video B from CR. As MU2 keeps moving, he/she leaves the coverage area of BS1 and 

enters the coverage area of BS2, as shown in Fig. 4.2 (b). Hence, a handoff occurs for MU2. 

After the handoff is finished, MU2 sends another interest packet to BS2 for fetching video 

B. BS2 checks its local cache memory and cannot find video B; therefore, BS2 forwards 

the interest packet to CR. After the interest packet is received by CR, it checks its cache 

memory by video’s name and finds out that video B is cached in its cache memory. Then, 

MU2 can retrieve video B from CR by video’s name.  

In the traditional IP network, if a handoff occurs, the user’s device has to reconnect to 

the content provider, because the user only knows the IP address of content provider and 

has to rebuild a connection to the content provider first before recovering the video 

delivery. Even if a neighboring CR has the content, the user has no choice to fetch the video 

from them due to the principle of the host-centric IP network. However, in the proposed 

ICN-based approach, the user does not need to find out where the content is, the only thing 

the user needs to do is send an interest packet to nearby CRs, and then the nearest CR which 

has the content will send the content back to the user. In this way, the retrieval delay is 

reduced, and the QoE for mobile users is improved.  

4.2.2 User Mobility Calculation Model 

The user mobility calculation model is used to calculate the mobility of a mobile user and 

predict whether a handoff will occur during the playback period based on the location 

change information of the mobile user. As BSs in 5G networks can provide accurate 

location information with a deviation of one meter [30], the displacement of a mobile user 

can be precisely calculated by the change in position. The user mobility calculation model 
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can benefit from the positioning technologies in 5G networks to calculate the speed of the 

user accurately. 

This thesis assumes the coverage area of the BS is a circle, 𝑃0 is the position when user 

enters the coverage area of BS, 𝑃1 is the position of user at time 𝑡1, 𝑃2 is the predicted 

Table 4.1: Symbols Used for the Mobility Calculation Model 

Symbol Definition 

𝑆𝑖 Size of video i 

𝑅𝑖 Bit rate of video i 

𝛼 Angle between user moving direction and the 
BS 

r Radius of the BS coverage 

𝑑 Distance that a user moves in the coverage area 
of the BS 

𝑑𝑡1−𝑡0 Distance moved by a mobile user between time 
𝑡0 and 𝑡1 

𝑑𝑡0−𝑏𝑠 Distance between a mobile user and the BS at 
time 𝑡0 

𝑑𝑡1−𝑏𝑠 Distance between a mobile user and the BS at 
time 𝑡1 

 

 

Fig. 4.3: An illustration for user mobility calculation 
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position when user is about to leave the coverage area of BS, as shown in Fig. 4.3. Table 

4.1 presents the important symbols and their definition. As the transmission distance of BS 

is around 100 meters [32], this thesis assumes users do not change their moving direction 

in a cell. Therefore, by calculating the change in position within a period of time, the user’s 

speed can be calculated. Taking the duration of the video and the user’s speed into 

consideration, a handoff can be predicted by (4.1): 

           𝐻 =

𝑆𝑖
𝑅𝑖
×
  𝑑𝑡1−𝑡0
𝑡1−𝑡0

𝑑
                                                          (4.1) 

      𝑐𝑜𝑠𝛼 =
𝑑𝑡1−𝑡0
2 +𝑑𝑡0−𝑏𝑠

2 −𝑑𝑡−𝑏𝑠
2

𝑑𝑡1−𝑡0×𝑑𝑡0−𝑏𝑠
                                           (4.2) 

                   𝑑 = 2𝑟 ∙ 𝑐𝑜𝑠𝛼                                                          (4.3) 

          𝑑𝑡1−𝑡0 = √(𝑥𝑡1 − 𝑥𝑡0)2 + (𝑦𝑡1 − 𝑦𝑡0)2                        (4.4) 

          𝑑𝑡0−𝑏𝑠 = √(𝑥𝑡0 − 𝑥𝑏𝑠)2 + (𝑦𝑡0 − 𝑦𝑏𝑠)2                       (4.5) 

          𝑑1𝑡−𝑏𝑠 = √(𝑥𝑡1 − 𝑥𝑏𝑠)2 + (𝑦𝑡1 − 𝑦𝑏𝑠)2                       (4.6) 

where the first part of the numerator (𝑆𝑖/𝑅𝑖) in equation (1) depicts the time it takes to 

watch a particular video and the second part ( 𝑑𝑡1−𝑡0/(𝑡1 − 𝑡0)) is the mobile user speed. 

If 𝐻 ≥ 1, a handoff will occur; otherwise, no handoff will occur during the playback time. 

The calculation result is an input of the caching decision model. Based on the distance 

between user and the BS, and the change of user position, the user moving direction can 

be calculated by equation (4.2). Then the distance (d) that the user will move until the user 

leaves the coverage area of the BS can be calculated by equation (4.3). Equation (4.4), (4.5) 

and (4.6) are used to calculate 𝑑𝑡1−𝑡0, 𝑑𝑡0−𝑏𝑠 and 𝑑1𝑡−𝑏𝑠 respectively. The position of a 

mobile user at time 𝑡0 + 𝑡1is denoted by (𝑥𝑡0+𝑡1, 𝑦𝑡0+𝑡1), where (𝑥𝑡0, 𝑦𝑡0) is the position of 

the mobile user at time 𝑡0, and (𝑥𝑏𝑠, 𝑦𝑏𝑠)is the coordinate of the BS.  
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4.2.3 Content Popularity Calculation Model 

In this chapter, each node tracks the number of requests of each video locally by the video’s 

name and stores them as a key-value structure (key: video name; value: access counts) into 

a popular video table. An example is shown in Table 4.2. The number of requests for each 

video indicates the popularity of the video. A popularity threshold is assigned to each node. 

Once a video’s access count reaches the popularity threshold, this video is tagged as a 

popular video in the popular video table, 1 indicates popular, 0 indicates unpopular. This 

information of the popular video table is another input of the caching decision model.  

As the popularity of video generally decreases over time, a former popular video may 

not be popular at the current time. If a node still regards it as a popular video and stores it 

at the local cache memory, the limited cache memory cannot store recent popular videos; 

hence, the cache space is wasted. In order to prevent this phenomenon from happening, a 

reset value is configured to reinitialize the number of requests in the popular video table. 

In other words, if the reset value is reached, all the information will be reinitialized in the 

popular video table. 

4.2.4 Caching Decision Model 

The principle of the caching decision model is described as follows: 

Table 4.2: Popular Video Table 

Video 

name 

Number of 

requests 

Popular or 

not 

Video A 100 1 

Video B 5 0 

⋯ ⋯ ⋯ 
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 CRs cache videos which are requested by high mobility users only. 

 BSs cache local popular videos for users with low mobility. 

 Least Recently Used (LRU) is used in this chapter for the replacement policy. 

However, LRU can be replaced by other replacement policies, such as Least 

Frequently Used (LFU). 

Algorithm 4.1: Caching decision model 

Input: 1) The number of requests for a video; 

2) The mobility of a user 

popularity threshold = a pre-configured value 

1:  a video request arrives at the node 

2:  increment the number of requests of the video 

3:  checks if it has this video 

4:  if (content cached) then 

5:      send the video back to user 

6:  else if (enough free space) then 

7:      cache the video 

8:      forward the video 

9:  else if (the node is a CR) then 

10:      if (high mobility user) then 

12:          if (No. of requests ≥ popularity threshold) 

13:             then while (not enough space) do 

14:                 delete least requested replica 

15:              end while 

16:             cache the video 

17:          else 

18:             forward the video only 

19:      else 

20:          forward the video only 

21:  else if (the node is a BS) then 

22:      if (No. of requests ≥ popularity threshold) 

23:          then while (not enough space) do 

24:              delete least requested replica 

25:          end while 

26:          cache the video 

27:      else 

28:          forward the video only 

29:  end if 

 

 

 

Algorithm 4.1: Caching decision model 

Input: 1).The number of requests for a video; 

2).The mobility of a user 

popularity threshold = a pre-configured value 
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The caching decision model is used to decide which video should be cached, and the 

replacement policy is used to decide which video should be replaced if there is not enough 

space to cache new video. The models is designed as follows:  

1. Each node (BS or CR) first checks its cache storage. If there is enough space to 

cache the video, it caches the video directly.  

2. If there is not enough space, the information of the user mobility is needed. If 

the user moves with a high speed, i.e. a handoff will happen during the session, 

the video will be cached at the CR when the number of requests for the video 

(stored in the popular video table) reaches the popularity threshold of the CR.  

3. Otherwise (i.e. no handoff happens), the video will be cached at the BS if the 

number of requests of the video exceeds the BS’s popularity threshold. In this 

way, the delay induced by frequent handoffs and the core network traffic can be 

reduced. Therefore, the user can have better QoE for watching video in 5G 

networks. The whole procedure to make caching decision is described in 

Algorithm 4.1. 

4.3 Performance Evaluation  

This section presents the simulation environment and results. As the proposed caching 

approach is ICN-based, this thesis choses IP address-based RAN caching [100] (cache 

contents at BSs) for a comparison, and apply LRU as replacement policy for the ICN-based 

caching approach and RAN caching. Since the well-known simulators such as ccnSim [26] 

and ndnSIM [66] do not support 5G networks, a custom-built simulator (written in C++) is 

used to evaluate the performance of the proposed ICN-based caching approach. This thesis 
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performed the simulation 10 times for each experiment and calculated the average of those 

10 runs. 

4.3.1 Evaluation Metrics 

Average retrieval delay: The average retrieval delay is used to evaluate how fast a user 

can fetch the requested video. If the average retrieval delay is high, QoE will be 

significantly affected and a lot of packets may be lost and retransmissions will be triggered, 

which leads to choppy playback. The average retrieval delay can be calculated by equation 

(4.7).                              

                                                                    �̅� =
∑𝑑𝑖
|𝑅𝑒𝑞|

                                                                 (4.7) 

where the average retrieval delay is denoted as �̅�, 𝑑𝑖 is the retrieval delay of video 𝑖, and 

|𝑅𝑒𝑞| is the total number of requests. 

Average miss ratio: This thesis evaluates the efficiency of the proposed ICN-based 

caching approach by measuring the miss ratio which can be calculated by equation (4.8). 

The average miss ratio shows the efficiency of the ICN-based caching approach from the 

macroscopic viewpoint. 

                          

                                                                     �̅� =
∑𝑚𝑖

|𝑅𝑒𝑞|
                                                                (4.8) 

                                              

               

                                                𝑚𝑖 = {
1, 𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑐ℎ𝑒𝑑 
0, 𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑖 𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑         

                                      (4.9)             

where the average miss ratio is denoted by �̅�, 𝑚𝑖 is a binary value, 𝑚𝑖 = 0 if video 𝑖 is 

cached at a BS or a CR locally for a request; otherwise, 𝑚𝑖 = 1. 
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Average number of choppy playback: The average number of choppy playback is used 

to indicate the QoE for mobile users. The number of choppy playbacks is recorded each 

time a handoff occurs. Each handoff will lead to a retransmission due to packets lost if the 

newly connected BS or CR does not cache the requested video. The average number of 

choppy playback can be calculated by equation (4.10) 

      

                                                                         𝐶̅ =
∑ 𝑐𝑖
|𝑅𝑒𝑞|

                                                           (4.10) 

 

where 𝐶̅ represents the average number of choppy playback, 𝑐𝑖 is the number of choppy 

playback for video 𝑖. 

4.3.2 Evaluation Settings 

This section presents the evaluation settings for the proposed approach. 

4.3.2.1 Topology and Input Data 

This thesis implements 20 BSs and 6 CRs in a 500×500 𝑚2 regular grid. Each BS is 

connected to a CR. As shown in Fig. 4.4, a CR connects at least two BSs. The max number 

of connected BSs for a CR is 5. CRs connect to their neighbor CRs via optical fiber. 

There are 1,000 users who keep requesting videos until they walk out of the grid. A 

random mobility module is used for user mobility, each user moves with a random speed 

ranging from 0 𝑚/𝑠 to 20 𝑚/𝑠  and in a random direction. It indicates that the user is 

stationary when the speed is  0 𝑚/𝑠 , while the user may be driving when the speed 

is 20 𝑚/𝑠. The total number of video requests is 10,000, and there are 2,598 identical 
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videos. The popularity of videos follows the Zipf-distribution with 𝛼 = 0.7, which has 

been widely used in video streaming systems [19].  

4.3.2.2 Parameter Setup 

This thesis assumes the wireless link capacities are equally shared among mobile users. As 

the bandwidth provided by mmWave technology is significantly high, the latency from a 

BS to a mobile user is set to 5 𝑚𝑠 [13]. The latency from a CR to a BS is assigned to 

be 10 𝑚𝑠 [96], while the latency from the content provider to a CR is assigned to be 50 𝑚𝑠 

[6]. Videos are divided into chunks. For simplicity, this thesis assumes all chunks have the 

same size (4,000 bytes), and the size of videos ranges from 30 MB to 3 GB. In addition, 

CRs are assumed that can be implemented with larger storage memory than BSs. The 

  

Fig. 4.4: Topology for evaluation 
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shortest path routing protocol is adopted for the simulation. The parameter setup is 

summarized in Table 4.3.  

4.3.2.3 Simulation Results 

This part evaluates how cache size influences the performance of the ICN-based caching 

approach. RAN caching is selected as a comparison.  

 Fig. 4.5 shows the trend of the average retrieval delay when the BS cache size ranges 

from 1 GB to 30 GB and the CR cache size is set as shown in Table 4.3.  Retrieval delay 

is a key factor for QoE. We can see both RAN caching and the ICN-based caching approach 

can reduce the average retrieval delay with the increase of the BS cache size. However, the 

ICN-based caching approach outperforms RAN caching by more than 13 𝑚𝑠 deduction in 

average retrieval delay (i.e., the minimal gain is from 44 𝑚𝑠 to 31 𝑚𝑠 with 1 GB BS and 

Table 4.3: Parameters Setup 

Description Value 

BS layout 
Regular grid  

500 × 500 𝑚2[73]   

Radius of BS coverage 100 m 

BS – Mobile user latency 5 ms 

CR – BS latency 10 ms 

CR – Content provider 

latency 
50 ms 

Video chunk size  4000 bytes 

Number of BSs 20 

Number of CRs 6 

Range of video size 30 MB~3 GB 

Video popularity 

distribution 

Zipf 

Range of BS cache size 
1, 2, 3, …, 10, 15, 20, 

25, 30 GB 

Range of CR cache size 1, 15, 30, 60, 100 GB 

Reset value of popular 

video table 
30 mins 
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CR cache size). As videos can only be cached at BSs not at routers in RAN caching, 

therefore, the change of router cache size has no influence on the performance of RAN 

caching in terms of the average retrieval delay. For the ICN-based caching, the average 

retrieval delay can be reduced significantly with the increase of the CR cache size.  

However, the benefits from the increase of the BS cache size decrease when the CR 

cache size increases. The reason is that a user still needs to reconnect to the remote content 

provider once a handoff occurs for RAN caching, while a user can fetch the video from the 

CR by name in the proposed ICN-based caching. On the other hand, increasing the BS 

cache size may not reduce the retrieval delay caused by handoffs considerably. As shown 

in Fig. 4.5, when the CR cache size is set to 100 GB, the average retrieval delay decreases 

from 25 𝑚𝑠 to 23 𝑚𝑠 with the increase of the BS cache size from 1GB to 30 GB. When 

  

Fig. 4.5: Impact of cache size on average retrieval delay 
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the CR cache size is set to 1 GB, the average retrieval delay decreases from 31 𝑚𝑠 to 26 

𝑚𝑠 with the increase of BS cache size from 1GB to 30 GB.  

Fig. 4.6 illustrates the impact of the cache size on the average number of choppy 

playback. The ICN-based caching approach reduces the average number of choppy 

playback significantly compared to RAN caching. Specifically, the average number of 

choppy playback is below 0.31 for the proposed caching approach for various cache sizes, 

while the average number of choppy playback of RAN caching is greater than 1.  For the 

proposed caching approach, the BS cash size does not have much impact on the average 

choppy playback, especially when the CR has adequate cache size. The reason behind this 

phenomenon is that the CR plays a vital role in reducing the retrieval delay and packet loss 

for frequent handoffs. Hence, no significant advantage for the average number of choppy 

 

 

Fig. 4.6: Impact of cache size on average number of choppy playback 
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playback is achieved by increasing the BS cache size, especially when the CR has adequate 

cache memory. Therefore, the proposed caching approach can improve the QoE 

significantly for mobile users even with a small cache size.  

The impact of the cache size on the average miss ratio is shown in Fig. 4.7. Similar to 

Fig. 4.5, the average miss ratio decreases when the BS cache size increases. It is worth 

noticing that the ICN-based caching approach reduces the average miss ratio significantly 

compared to RAN caching. When the CR cache size is set to 1 GB, the average miss ratio 

of ICN-based caching ranges from 42% to 52%, whereas the average miss ratio of RAN 

caching ranges from 77% to 87% when the BS cache size ranges from 1 GB to 30 GB.  

In terms of the effect of the cache size for the ICN-based approach, it can be seen that 

the ICN-based caching achieves noticeable benefits from the increase of the CR cache size, 

especially when the BS cache size is small. The average miss ratio decreases from 52% to 

 

Fig. 4.7: Impact of cache size on average miss ratio 
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37% for various CR cache sizes when the BS cache size is 1 GB. Even if the gain decreases 

with the increase of BS cache size, but about 10% improvement can still be achieved for 

various BS cache sizes.  

In conclusion, the proposed ICN-based caching approach outperforms RAN caching in 

terms of the average retrieval delay, the average number of choppy playback and the 

average miss ratio. The BS cache size has limited impact on the performance of the ICN-

based caching approach when the CR has adequate cache memory. Slight benefits can be 

achieved in reducing the average number of choppy playback by increasing the CR cache 

size, while noticeable benefits can be achieved in reducing the average retrieval delay and 

average miss ratio by increasing the CR cache size. 

4.4 Summary 

This chapter proposed an ICN-based caching approach for videos in 5G networks. Both 

the video popularity and user mobility are considered to reduce the retrieval delay and core 

network traffic. Caching videos that are requested by high mobility users can significantly 

reduce the retrieval delay which is caused due to the frequent handoffs in 5G networks. 

This thesis performed extensive evaluations, and the simulation results show that the 

proposed ICN-based caching approach is more efficient in reducing the average retrieval 

delay, the average number of choppy playback and average miss ratio significantly 

compared to RAN caching which is widely used in 5G networks.  
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Chapter 5: Caching Approach for ICN-IoT Networks 

5.1 Introduction 

The continuous development of networking technologies and smart devices has led Internet 

of things (IoT) to be growing at an unprecedented pace. It is reported that billions of devices 

will be connected to the Internet over the next 5 years, which will lead the current IP-based 

Internet to facing tremendous challenges, such as the limited expressiveness of IP 

addressing, multicast, complex mobility support and the energy efficiency requirement for 

IoT resource-constrained devices. 

In order to solve those problems, ICN is considered as the replacement of IP-based 

network architecture since ICN supports mobility, name-based routing and in-network 

caching. Some pioneer use cases (smart grid, smart home, etc.) for ICN-IoT networks have 

been investigated and applied by the ICN Research Group (IGNRG) of the Internet 

Research Task Force (IRTF) [76].  

Generally, IoT devices like sensor nodes, actuators, etc., are battery-powered and 

consume energy when they process and transmit data [65]. To save energy, IoT devices 

spend the majority of their lifetime in sleep mode. They are only awake when they need to 

process and transmit data. In integrated ICN-IoT networks, IoT devices, e.g., monitoring 

sensors, are the content producers and the user applications are the content consumers. 

Content consumers send interest packets to content producers to retrieve data. If the data 

item is cached at an intermediate node (i.e. is between the users and the IoT devices), the 

content consumers can retrieve the data directly from that node instead of the content 

producers. Therefore, the content consumers can get the data without activating the IoT 

devices, which leads to low energy consumption. Hence, if the IoT data items are cached 
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properly at the intermediate nodes (such as content routers, BSs, etc.), the IoT network can 

gain a great benefit in terms of energy efficiency and users can get the data faster. 

A great deal of research has been conducted on the traditional Internet data caching [1] 

[17] [62] [90] [103]. Unlike the traditional Internet data items, e.g., video data, IoT data 

items often expire within a certain time period after being generated by the content 

producer [90]. This thesis defines this time period as data lifetime. The term freshness is 

used to express how recent an IoT data item is, after being generated. Caching IoT data is 

more challenging than caching traditional Internet data, since the IoT data lifetime and its 

freshness need to be considered to make caching decisions. The lifetime of IoT data varies 

based on the type of data. For instance, traffic monitoring data has a shorter lifetime 

compared to temperature monitoring data. Besides, different applications may have 

different freshness requirements for the same type of data. For example, some applications 

may require the current temperature data, while other applications can be satisfied with the 

temperature data that was generated 5 minutes ago or even earlier.  

In this chapter, IoT data lifetime-based cooperative caching decision (LCC) approach 

which considers both the IoT data lifetime and the request rate in a certain time period is 

proposed. The aim is to reduce the massive access to the IoT devices so that they can stay 

in sleep mode for most of the time, while the data would still be available at the 

intermediate nodes (content routers, BSs, etc.). Hence, the energy consumption of IoT 

devices and the data retrieval delay can be greatly reduced. The intermediate nodes can 

cooperate with each other by configuring a caching threshold based on their topology 

location information and the request rate. 
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This thesis evaluated the proposed approach by comparing with existing approaches, 

[1], [7] and [90]. Simulation results show that the proposed approach outperforms existing 

approaches in terms of the total energy consumption and the average number of hops. 

The main contributions of this chapter are summarized as follows: 

 Unlike other approaches that use energy efficient hardware or particularly 

designed protocols [107] to improve energy efficiency for IoT, this thesis 

integrates ICN and IoT to save IoT devices’ energy.  

 Through configuring a caching threshold based on each intermediate node’s 

topology location information and request rate, the intermediate nodes can 

cooperate with one another to perform cooperative caching.   

 A sliding time window is introduced to measure the change of the request rate. 

This thesis designs and implement an auto-configuration mechanism that allows 

each intermediate node to adjust its caching threshold dynamically based on the 

current request rate. 

 This thesis develops a simulator (written in C++) to evaluate the proposed 

caching approach. The simulation results show that the proposed caching 

approach outperforms existing approaches, in terms of total energy consumption 

and the average number of hops. 

The remainder of this chapter is organized as follows: Section 5.2 first explains the basic 

concepts used in this chapter, such as “data lifetime”, “freshness” and “intermediate 

nodes”. Then, the proposed LCC approach and detail the auto-configuration mechanism of 

the caching threshold are presented. Section 5.3 presents the simulation setup and the 

simulation results. Finally, Section 5.4 summaries this chapter. 
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5.2 IoT Data Lifetime-based Cooperative Caching 

In this section, the concepts of “data lifetime”, “freshness” and “intermediate nodes” are 

explained firstly. Then, this thesis describes the specifications of LCC and the auto-

configuration mechanism of the caching threshold. 

5.2.1 Basic Concepts 

1) IoT data lifetime 

Data lifetime can be defined as the length of time between which a data item is generated 

by the content producer and the time it is no longer valid, i.e., it expires. 

In ICN, there are two types of packet: interest packet and data packet [1]. There is a 

signed information field which contains information about publisher ID, key locator, stale 

time, and timestamp, etc. By checking the timestamp, a node can know when the data was 

generated by the content producer. 

2) IoT data freshness 

Freshness is defined as the time difference between the time at which the data was 

generated (𝑇𝑔 ) by the content producer and the current time. It can be defined as:  

                                               𝐹𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 − 𝑇𝑔                                           (5.1) 

The data freshness is 0 when the current time is 𝑇𝑔. When the data freshness equals to 

the data’s lifetime, the data item is expired, and it should be discarded.   

Different applications may have different freshness requirements for the same data. The 

data can only be sent back to the application when the data freshness value is less than the 

application’s freshness requirements. 
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3) Intermediate nodes 

In this chapter, the IoT devices, e.g., IoT sensors, are the content producers and the user 

applications are the content consumers. All the nodes between the content producers and 

the consumers are referred to intermediate nodes, including the gateway node, the content 

routers and the BS. 

5.2.2 IoT Data Lifetime-based Cooperative Caching Approach 

This section describes the proposed IoT data lifetime-based cooperative caching (LCC) 

approach. 

5.2.2.1 System Model 

This thesis considers an ICN-IoT scenario as shown in Fig. 5.1. This thesis selects the IoT 

sensor nodes as the IoT devices in this scenario since they can generate IoT data items, i.e., 

they can be regarded as the content producers. The IoT sensor nodes stay in sleep mode for 

most of the time until a request comes or an event occurs, e.g., a timer expires for periodic 

sensing. Then the IoT sensor nodes are activated to perform the sensing task (e.g., sensing 

the local pollution level) and transmit the data items to the content consumers. All the data 

items that can be sensed by the IoT sensor nodes are denoted as D = {d1, d2, d3, …, dl, …, 

dL}, where |D| is the total number of data items. Because the packet size of IoT data items 

is usually small, this thesis assumes all the IoT data items have the same packet size. This 

thesis assumes each IoT sensor node can only sense one kind of data for the sake of 

simplicity. 
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User applications send interest packets to retrieve data items. This thesis denotes the 

requests for the IoT data items at time t by Req(t) = {req1(t), req2(t), req3(t), …, reqn(t), …, 

reqN(t)}. Each request in this set is represented by reqn(t) = < dl, f, t>, where dl ∈ D, f is the 

freshness requirement for data dl, t is the time that the request arrives. 

A wireless node (e.g., access point) is deployed here to act as a gateway node to provide 

Internet access to those IoT sensor nodes. The gateway node has storage to cache the data 

items that go through it. The nodes in the ICN core network are the content routers, while 

nodes in the ICN edge network could be content routers or BSs. All the nodes in the ICN 

network, including the content routers and BSs, have caching capability to store data items 

 

Fig. 5.1: System model 
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that go through them. A binary array C(i, t) = {𝑐𝑑1(i, t), 𝑐𝑑2(i, t), 𝑐𝑑3(i, t), …, 𝑐𝑑𝑙(i, t), …, 

𝑐𝑑𝐿(i, t)} is used to denote intermediate node i’s caching status at time t. If a data item dl is 

cached at intermediate node i at time t, 𝑐𝑑𝑙 (i, t) = 1; otherwise, 𝑐𝑑𝑙 (i, t) = 0. 

∑ 𝑃 ∙ 𝑐𝑑𝑙(𝑖, 𝑡)
𝐿
1 = 𝑠, where P is the packet size, s is the cache size of intermediate node i. 

Furthermore, R(Req(t), ∑ 𝐶(𝑖, 𝑡)
|𝐼|
𝑖=1 ) = {r1(t), r2(t), r3(t), …, rn(t), …, rN(t)} is used to 

represent how many requests in the request set Req(t) that can be obtained from 

intermediate node i, where i ∈ I, I is the set of the intermediate nodes, |I| is the total number 

of the intermediate nodes. rn(t) ∈ {0,1} indicates if the nth request can be served from the 

intermediate nodes at time t.  

By performing a caching decision policy A, C(i, t)
𝐴
→C(i, t+1), the new caching status of 

intermediate node i at time t+1 can be achieved. The hit ratio is the basic metric to evaluate 

the efficiency of the caching decision policy, which is defined as the percentage of requests 

can be satisfied by the cache system. Therefore, the hit ratio can be denoted as follows: 

                          𝐻(𝐴) =∑
1

|𝑅𝑒𝑞(𝑡)|
∙ 𝑅 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)

|𝐼|

𝑖=1
)

𝑇

𝑡=1
                               (5.2) 

where T is the total time, |𝑅𝑒𝑞(𝑡)| is the total number of requests at time t. Theoretically, 

an optimal caching decision policy can be found if all the prior information is known [54]. 

However, it is not implementable as the future information cannot be known in advance. 

Hence, the aim is to find a practical caching decision policy to achieve better caching 

efficiency than existing policies. 
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5.2.2.2 Caching Decision Policy 

A caching approach includes two parts: caching decision policy and caching replacement 

policy. The proposed LCC approach uses the Least Recently Used (LRU) first as the 

replacement policy. The principle of the caching decision is as follows: 

 Each intermediate node has a caching threshold. The data can be cached at a 

node if one of the following conditions is satisfied: 1) The data lifetime is longer 

than the node’s caching threshold; 2) the node has enough space to store the data. 

 All intermediate nodes can be classified into three types: edge node, middle-

level node, and root node. This classification is based on the topology 

information which could be obtained by calculating the number of hops from the 

content consumers (or content producers) to the node. 

 The edge nodes are directly connected to the content consumers, e.g., content 

routers, BSs, while the root nodes are directly connected to the content 

producers, such as the gateway node. The rest of the nodes are the middle-level 

nodes. 

 Different types of nodes have different caching thresholds, and they can adjust 

their caching threshold dynamically based on the current request rate by 

applying the proposed auto-configuration mechanism. The auto-configuration 

mechanism is discussed in Section III.C. 

 The edge nodes have the smallest caching threshold so that they could cache 

more data to reduce the retrieval delay. The root nodes have the highest caching 

threshold, meaning that only data with a long lifetime can be cached. The 
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caching threshold of middle-level nodes is between that for the edge nodes and 

the root nodes. 

This approach exploits the caching capability of the intermediate nodes to avoid 

frequently activating IoT devices to reduce the energy consumption. The retrieval delay 

can be reduced by leveraging the in-network caching of ICN. The intermediate nodes can 

perform the caching decision policy as described in Algorithm 5.1. 

5.2.2.3 Auto-configuration Mechanism 

Since the proposed LCC is threshold-based, the configuration of the caching threshold can 

make a great impact on its performance. Unlike traditional Internet data, IoT data items are 

usually transient and small. The cached IoT data items can expire very quickly even before 

 

Algorithm 5.1 IoT Data Lifetime-based Cooperative Caching  

 1:  a data item arrives at intermediate node i 

 2:  the node checks whether it has this content 

 3:  if (the data item is in cache) then 

 4:    if (its freshness < cached data’s freshness) then 

 5:      cache (refresh) the item  

 6:      forward the item to the next hop’s node 

 7:    else 

 8:      forward the item to the next hop’s node 

 9:    end if 

10:  else if (has enough space) then 

11:    cache the item 

12:    forward the item to the next hop’s node 

13:  else if (data lifetime ≥ caching threshold) then 

14:    while (not enough space) do    

15:      perform LRU replacement policy 

16:    end while 

17:    cache the item 

18:    forward the item to the next hop’s node 

19:  else  

20:    forward the item to the next hop’s node 

21:  end if 
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the next request comes. Therefore, the request rate should be considered when configuring 

the caching threshold of the intermediate nodes. 

As discussed earlier, since there are three different types of nodes (root, middle-level, 

and edge), the threshold of node i (𝑇𝐻𝑖) can be denoted as follows: 

                                      𝑇𝐻𝑖 = 𝛼 ∙ 𝑓𝑟(𝑟𝑖𝑡) + 𝛽 ∙ 𝑓𝑚(𝑟𝑖𝑡) + 𝛾 ∙ 𝑓𝑒(𝑟𝑖𝑟)                                (5.3) 

where 𝛼 + 𝛽 + 𝛾 = 1, 𝛼, 𝛽, 𝛾 ∈{0,1}. In other words, the type of node i can only be one 

of the three types at a given time. 𝑟𝑖𝑡 is the request rate of node i at time t, 𝑓𝑟( ) is the 

threshold decision function of the root nodes, 𝑓𝑚( ) is the threshold decision function of 

the middle-level nodes, 𝑓𝑒( ) is the threshold decision function of the edge nodes. 

When the request rate 𝑟𝑖𝑡 increases, 𝑇𝐻𝑖 should be de creased so that more data items can 

be cached at intermediate node i to reduce the retrieval delay. On the other side, if 𝑟𝑖𝑡 

decreases, 𝑇𝐻𝑖  should be increased to avoid caching short lifetime data at intermediate 

node i, because data with short lifetime may expire before it can be served for the upcoming 

request when 𝑟𝑖𝑡 is small. Therefore, the auto-configuration mechanism can be described 

as follows: 

If 𝑟𝑖𝑡+∆𝑡 > 𝑟𝑖𝑡  (i.e., request rate is increasing), then:    

                       

{
 
 

 
 𝑓𝑒(𝑟𝑖𝑡) = 𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛                                                                           

 𝑓𝑚(𝑟𝑖𝑡) =
1

𝜎
∙ (𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛 + 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥),   1 < 𝜃 < 𝜎                 

   𝑓𝑟(𝑟𝑖𝑡) = (1 −
1

𝜎𝜃
) ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥,   𝜎 ≤

𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥
𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛

                          

                      (5.4)  

Else if 𝑟𝑖𝑡+∆𝑡 ≤ 𝑟𝑖𝑡  (i.e., request rate is decreasing), then: 
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{
 
 

 
 𝑓𝑒(𝑟𝑖𝑡) = 𝜃 ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛,    𝜃 > 1                                                                                                    

  𝑓𝑚(𝑟𝑖𝑡) =
1

𝜃
∙ (𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛 + 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥),   1 < 𝜃 < 𝜎                           (5.5)                           

𝑓𝑟(𝑟𝑖𝑡) = (1 +
1

𝜎𝜃
) ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥 , 𝜎 ≤

𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥
𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛

                                                                        

  

 

where 𝑎𝑔𝑒(𝑖) is the set of data lifetime for intermediate node i in a sliding time window 

(from time 𝑡 to time 𝑡 + ∆𝑡). 𝜃 and 𝜎 are configurable weights which are used to decide 

the increment (or decrement) amount of the caching threshold.  

With (5.4) and (5.5), the proposed LCC can dynamically adjust the intermediate nodes’ 

caching threshold based on the recent request rate.  

5.3 Performance Evaluation  

This section first introduces the evaluation metrics, then presents the simulation setup and 

results. 

5.3.1 Evaluation Metrics 

Total energy consumption: The total energy consumption is the total amount of energy 

consumed by all IoT devices during the simulation. This thesis uses the total energy 

consumption to evaluate the efficiency of the caching decision approach in reducing energy 

consumption. A better caching decision approach can save IoT devices’ more energy by 

avoiding activating them too frequently.  

The energy consumed by IoT device j (denoted as 𝑒𝑗) for transmitting one bit to the 

gateway node can be calculated by the following equation [34]: 

                                                             𝑒𝑗 = 𝑒𝑡 + 𝑏 ∙ 𝐷𝑗
𝑎                                                         (5.6)                   
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where 𝐽 is the set of IoT devices (j ∈ 𝐽), 𝑒𝑡 is the energy consumed by a transmitter for 

transmitting one bit, 𝑏 is the energy cost of the transmitter amplifier, 𝐷𝑗  is the Euclidean 

distance between IoT device j and the gateway node, and 𝑎 stands for path loss factor. 

This thesis uses 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔 to denote the energy consumed by IoT devices for sensing one 

bit. Since IoT device also consumes energy when transferring from the sleep mode to the 

active mode [64], denoted by 𝑒𝑎𝑤𝑎𝑘𝑒, the total energy consumption Etotal can be calculated 

as: 

                                 𝐸𝑡𝑜𝑡𝑎𝑙 =∑ 𝑛𝑗 ∙ [𝑃 ∙ (𝑒𝑗 + 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔)
|𝐽|

𝑗=1
+ 𝑒𝑎𝑤𝑎𝑘𝑒]                             (5.7) 

where 𝑃 is the packet size, |𝐽| is the total number of IoT devices, 𝑛𝑗  represents for how 

many times IoT device j is activated, which is affected by the hit ratio of caching decision 

policy 𝐴, it can be calculated as:  

                             𝑛𝑗 =∑ [|𝑅𝑒𝑞(𝑡)| − 𝑅 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)
|𝐼|

𝑖=1
)] 

𝑇

𝑡=1
                            (5.8) 

where |𝐼| is the total number of the intermediate nodes, T is simulation time, 𝐶(𝑖, 𝑡) is used 

to denote node i’s caching status at time t, |𝑅𝑒𝑞(𝑡)| is the total number of requests at time 

t. 

Average number of hops: The data retrieval delay is measured by the average number of 

hops which is calculated by (5.9). 

                       𝐻𝑜𝑝̅̅ ̅̅ ̅̅ = ∑
1

|𝑅𝑒𝑞(𝑡)|
∙ 𝐻𝑜𝑝 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)

|𝐼|

𝑖=1
)

𝑇

𝑡=1
                              (5.9) 

 where Hop(Req(t), ∑ 𝐶(𝑖, 𝑡)
|𝐼|
𝑖=1 ) = {hop1(t), hop2(t), hop 3(t), …, hopn(t), …, hopN(t)} 

represents how many hops are used for satisfying each request at time t. If reqn(t) can be 
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satisfied from the intermediate node i, hopn(t) equals to the number of hops from 

intermediate node i to the user; otherwise, hopn(t) equals to the number of hops from the 

content producer to the user. 

5.3.2 Simulation Setup 

This thesis chooses LCE [1], Prob caching [7] and caching transient data [90] approaches 

as comparisons. LCE is the default caching approach in ICN where each data item is cached 

at every node along the data delivery path. Evidently, the content redundancy of LCE is 

extremely high. For the sake of reducing the content redundancy, Prob caching was 

proposed by caching a content with a certain probability. [90] is a more recent work, the 

authors present another probability-based caching approach where they exploit in-network 

caching, the key feature of ICN, to cache transient data for IoT. The caching transient data 

approach takes both the data freshness and the multi-hop communication cost into 

consideration, which is more efficient than Prob caching. LRU is applied as the 

Table 5.1: Parameter Settings 

Description Value 

Simulation Time (T) 3,000 s 

Number of intermediate nodes (I) 10 

Number of IoT sensor nodes (J) 30 

Number of IoT data types (D) 30 

Transmission energy consumption (𝑒𝑡) 50 nJ/bit [34] 

Sensing energy consumption (𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔) 150 nJ/bit [34] 

Transmit amplifier (𝑏) 100 pJ/bit/m2 [34] 

Path loss factor (𝑎) 2 [34] 

Awake energy consumption (𝑒𝑎𝑤𝑎𝑘𝑒) 7.34∙104 nJ [64] 

Packet size (P) 500 bytes [34] 
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replacement policy for LCE, Prob caching and LCC, while LFF (Least Fresh First) is used 

as the replacement policy for caching transient data approach based on [90]. 

The scenario illustrated in Fig. 5.1 is used for the simulation. There are 30 kinds of IoT 

data items, and their lifetime is uniformly distributed between 1 second and 1 minute. User 

applications request those data items with a random freshness requirement (less than the 

data’s lifetime) from the edge nodes randomly. The request generation follows a stationary 

Poisson process. For simplicity, this thesis assumes there are 30 IoT sensor nodes (|𝐽| = 

30) to sense those data items. A shortest path routing protocol is applied in this scenario. 

A simulator (written in C++) is developed and be use to evaluate the proposed LCC 

approach. The parameter settings are summarized in Table 5.1.   

5.3.3 Simulation Results 

This thesis performed 30 different runs for each caching approach and calculated the 

average over these 30 runs to plot results. 

5.3.3.1 Impact of Cache Size 

There are 6 edge nodes as shown in Fig. 5.1. Hence, the request rate is set to 𝜆 = 6/𝑠, so 

that there is one request per second at each edge node on average. Fig. 5.2 illustrates the 

impact of cache size in terms of total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 . This thesis uses the 

proportion of the total data items that can be cached at a node to represent the cache size. 

We can see that LCC outperforms other caching approaches in the experiments. As 

expected, all these caching approaches reduce 𝐸𝑡𝑜𝑡𝑎𝑙 with an increasing of the cache size, 

and they can achieve a great reduction of 𝐸𝑡𝑜𝑡𝑎𝑙 when the cache size ranges from 0% to 

30%. LCC can reduce about 46% energy consumption compared to no caching used. Also, 
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even though LCE has a high content redundancy, it has significantly less energy 

consumption compared to both Prob caching and caching transient data approaches. When 

the intermediate nodes’ cache size keeps increasing until they can cache all the data, i.e., 

cache size = 100%, LCC and LCE have the same performance with a reduction of around 

48% of the total energy consumption compared to no caching used. The caching transient 

data approach outperforms Prob caching when the cache size is less than 90%. The reason 

behind this phenomenon is that the caching probability is too small for a data item with a 

short lifetime in the caching transient data approach even if the node has enough space to 

cache all the data. We can see that LCC can achieve a significant reduction in energy 

consumption with a small cache size, e.g., 45% reduction in total energy consumption when 

the cache size is 30%. Therefore, LCC is more efficient than other approaches in terms of 

total energy consumption, especially when the cache size is small, e.g., 30%. 

 

Fig. 5.2: Total energy consumption VS cache size 
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Fig. 5.3 demonstrates how the cache size influences the performance of the average 

number of hops. Similar to Fig. 5.2, all these caching approaches achieve a great reduction 

in the average number of hops when the cache size ranges from 0% to 30%. What’s more, 

LCC outperforms other caching approaches, and it can reduce about 28% in the average 

number of hops compared to no caching used. Because the more efficient the caching 

approach is, the more requests can be served from the intermediate nodes which are closer 

to the users. Notably, the performance of the caching transient data approach is better than 

the Prob caching approach regardless the change of cache size. This is due to the fact that 

the caching transient data approach considers the trade-off between the data freshness and 

the multi-hop communication cost. 

 
 

Fig. 5.3: Average number of hops VS cache size 
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5.3.3.2 Impact of Request Rate 

Based on the simulation results of the impact of the cache, as described in the previous sub-

section, this thesis sets the cache size to 30%. In addition, the request rate is varied (𝜆 = 

1/s, 5/s, 10/s, 15/s, 20/s, 25/s, 30/s) to explore the impact of total energy consumption and 

the average number of hops.  

Fig. 5.4 shows the effect of the request rate 𝜆  on the total energy consumption. 

Obviously, the total energy consumption keeps decreasing when the request rate increases. 

In fact, a higher 𝜆 indicates that the data items could be requested multiple times before 

they expire. Hence, the caching approach can reduce more energy consumption with higher 

request rates. Fig. 5.4 demonstrates that the performance in total energy consumption of 

the proposed LCC approach is the best for all request rates. When 𝜆 = 30/𝑠, LCC provides 

reduction of about 70% and 40% in terms of total energy consumption compared to no 

caching used and LCE, respectively. 

 
 

Fig. 5.4: Average number of hops VS request rate 
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Fig. 5.5 describes the trend for the average number of hops with different 𝜆 . As 

expected, all these caching approaches have a poor performance when 𝜆 = 1/𝑠, the reason 

of this phenomenon is that data may expire before the next request arrives when 𝜆 is small. 

When the request rate is increased, all the caching approaches achieve a notable reduction 

in the average number of hops. The proposed LCC approach outperforms other caching 

approaches for all different request rates; it can reduce around 47% in terms of the average 

number of hops compared to no caching used, and about 20% compared to LCE when 𝜆 =

30/𝑠. 

5.4 Summary 

This chapter proposes an IoT data lifetime-based cooperative caching (LCC) approach 

for ICN-IoT networks. Both the IoT data lifetime and the request rate are taken into 

consideration to reduce the IoT devices’ energy consumption and the data retrieval delay. 

 
 

Fig. 5.5: Total energy consumption VS request rate 
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An auto-configuration mechanism was proposed to adjust the caching threshold 

dynamically so that the LCC approach can perform well under varying request rates. The 

evaluation results show that the proposed LCC approach is significantly more efficient 

compared to existing caching approaches in reducing the total energy consumption of IoT 

devices and the data retrieval delay. 
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Chapter 6: Proactive Caching for Autonomous Vehicle Users 

6.1 Introduction 

Video streaming over vehicular networks will play an increasing role in the near future. It 

will become a new way of entertainment for users in vehicular networks. Hence, how to 

distribute videos efficiently for vehicular networks will become a huge challenge. 

AVs are equipped with smart sensors and intellectual analytic tools and are expected to 

drive themselves safely with little or no human input. Recently, the rapid development of 

AVs has boosted its testing and deployment within a much shorter time than previously 

expected. Companies like Google, Tesla, Uber, Baidu, etc., have brought self-driving 

vehicles closer to reality than ever. With the help of AVs, drivers do not need to focus on 

the road all the time. Instead, they can relax for a while and enjoy the scene of the trip, 

especially when the full self-driving vehicles (which is the highest level of AVs [112]) 

become a reality. 

Recent advances in wireless networking technologies, such as 5G cellar networks, have 

reshaped the ways of entertainment for users in vehicular networks to browse the web, 

listen to the radio, play online games and watch videos. In the near future, AVs will become 

new entertainment places for mobile users. However, due to the short transmission range 

of RSUs and BSs in 5G networks [77], users will incur frequent handoffs and shorter 

connection durations. Therefore, users may have to reconnect to the original video content 

provider for some applications once a handoff occurs, which induces heavy overheads and 

high video retrieval delay. Compared to pedestrians, this situation will be worst for AV 

users due to their higher velocity. Furthermore, the high demand for entertainment services 

(such as video streaming services) also creates a huge pressure for the vehicular networks. 
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Hence, how to improve users’ QoE and reduce the vehicular networks backhaul load are 

becoming crucial challenges. 

To cope with these challenges, caching videos at the edge nodes (e.g., BSs, RSUs) has 

been proposed. In this way, users (drivers and/or passengers) can retrieve videos from the 

edge nodes, which can reduce the video retrieval delay and the backhaul load of 5G 

networks. However, the existing IP-based Internet paradigm is unsuitable for vehicular 

networks, since it was designed for host-to-host communications, not for mobile content 

delivery. More specifically, it cannot support in-network caching and mobility without 

additional techniques, e.g., DNS for supporting in-network caching lookup, mobile IP for 

supporting mobility. Information-Centric Networking (ICN) [1] was proposed to cope with 

the issues of the current Internet. Unlike traditional IP-based networks, ICN supports name-

based routing, in-network caching and mobility by nature, which makes ICN more suitable 

for vehicular networks to support video streaming services for AV users [57]. With the 

help of the in-network caching feature of ICN, proactive caching can be implemented 

directly in ICN-based vehicular networks. Therefore, 5G-ICN is a promising paradigm for 

providing video streaming services for AV users. 

Generally, caching can be categorized into reactive caching and proactive caching [61]. 

In reactive caching, videos can only be cached at a node when they are transmitted through 

that particular node. In other words, if a video has never been requested via a specific node, 

then there is no cached copy of this video at this node. Unlike reactive caching, proactive 

caching can fetch videos in advance from the content provider or cloud servers before 

users’ requests arrive. This means that although a video has never been requested from a 

RSU, the RSU can still proactively cache the particular video and send it back to the AV 
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users when requested. Due to the limited storage space available in RSUs, they are only 

able to cache a limited number of videos. Further, the high diversity of users’ preferences 

makes it extremely difficult for the next user to request the exact same videos as the last 

few users. Hence, proactive caching is more suitable for AV users compared to reactive 

caching. 

Existing research efforts on proactive caching are at the video-level [12] [36] [116], 

which is not suitable for AV users. In fact, the high velocity of AVs and the short 

transmission range of 5G BSs/RSUs lead to short connection durations which means that 

AV users can only retrieve a small portion of a video from a BS/RSU. As a result, the 

storage of BSs/RSUs is wasted for caching the rest of the same video. Hence, to improve 

the efficiency of proactive caching for mobile users, some recent works (such as [118]) 

propose caching videos at the chunk-level. This chapter also follows this idea and proposes 

a chunk-level caching approach for AVs users. 

For proactive caching, two sub-problems need to be solved: the “What” problem deals 

with what to cache, and the “Where” problem addresses where to cache. Hence, future 

demands (the “what” problem) and user mobility (the “where” problem) are two major 

factors that need to be considered in proactive caching for AV users in vehicular networks. 

For future demands prediction, the most recent research trend is to use machine learning 

techniques [12] [36] [116].  

On the other hand, matrix factorization (MF), an advanced machine learning technique 

[43], is another popular approach to predict users’ future demands. As users’ preferences 

are the primary reason that makes videos have different levels of popularity, future user 

demands can be predicted by predicting the ratings of videos that have not been watched. 
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Since MF-based approaches consider users preferences, they can achieve a notable 

improvement in terms of the user satisfaction, average video retrieval delay and hit ratio 

compared to traditional proactive caching approaches [12] [37] [95]. Recently, some MF-

based proactive caching approaches [12] [37] [95] are proposed from the users’ preferences 

perspective. The authors of [12] propose a singular value decomposition (SVD) based 

proactive approach that outperforms the reactive caching approach. But SVD may generate 

negative ratings as predictions for low rated videos which is considered impractical for real 

life networks [37]. To overcome this shortcoming, non-negative matrix factorization 

(NMF) based proactive caching schemes are proposed. The recent work in [37] predicts 

the users’ future demands by using NMF and making caching decision based on the 

predicted user demands. However, they model the proactive caching as a mixed-integer 

linear programming (MILP) problem which is a typical an NP-hard problem [29]. Hence, 

their proposed approach is impractical due to the high computational complexity. 

Before the rapid development of networking technologies, e.g., 5G, the user mobility 

information, such as moving direction, velocity, destination, route, etc., was really hard to 

obtain in real time in traditional vehicular networks. Therefore, Markov-based predictors 

[84] were used in the past to predict the user mobility. However, nowadays, all the 

aforementioned information can be easily retrieved from the self-driving system of AVs. 

As a result, the mobility information can be calculated based on the information. Therefore, 

a more accurate proactive caching approach can be achieved. 

Although some excellent research efforts have been reported on proactive caching, most 

of the existing works only consider either the future demand or the user mobility, i.e., only 

one problem (either “what” or “where”) is answered. This chapter considers both the future 



 141 

demand and the user mobility to propose a novel hierarchical proactive caching approach. 

Compared to the statistic model and the neural network model, NMF has less number of 

parameters. Furthermore, NMF also considers users’ preferences, which makes NMF more 

suitable than other techniques for caching videos for AV users. Therefore, this chapter uses 

the NMF technique to predict the user future demands. The distinct features of this research 

are as follows: 

 Unlike the existing proactive caching approaches [12] [37] [36] [95] [110] [116] 

that use traditional IP networks as the basic infrastructure for vehicular 

networks, the chapter proposes to use the ICN paradigm, as it supports in-

network caching and mobility by nature. 

 This chapter proposes a hierarchical approach which caches videos at both edge 

nodes (BSs and RSUs) and core network nodes (routers). 

 As AV users have a very short connection duration with edge nodes, they may 

only retrieve a few chunks of a video. As a result, the proposed hierarchical 

approach works at the chunk-level to improve the caching efficiency. On the 

other hand, AV users will keep a long connection duration with the core 

networks for watching the entire video. Hence, the proposed hierarchical 

approach works at the video-level for nodes in the core networks. 

 Traditional MF-based approaches (NMF, SVD) can predict future demands by 

predicting the user future ratings on videos. However, they may generate 

inaccurate predictions for unpopular but highly rated videos. To resolve this 

issue, not only the predicted ratings are considered, but also the previous 

popularity of videos are used to predict the users’ future demands. 
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 A user mobility prediction module for vehicular networks is proposed to 

calculate the user future position and to decide which chunks should be cached 

at the future BSs/RSUs that the user will be connected to. 

The remainder of this chapter is organized as follows: Section 6.2 describes the system 

model. In Section 6.3, the details of the NMF algorithm are presented. Section 6.4 

illustrates the details of our proposed proactive caching approach. Simulation setups and 

numerical results are shown in Section 6.5. Finally, Section 6.6 concludes this chapter and 

outlines the future research directions. 

Table 6.1: Notations 

Symbol Definition 

𝑉 Set of videos 

𝑈 Set of AVs users 

𝐼 Set of nodes 

𝑀 Total number of videos 

𝑁 Total number of AVs users 

𝑣𝑚 Video 𝑚 

𝑢𝑛 AVs user 𝑛 

𝑠𝑣𝑚 Size of video 𝑣𝑚 

𝐾(𝑣𝑚) Number of chunks that a video 𝑣𝑚 can be divided  

𝜉 Size of a video chunk 

𝑅𝑒𝑞(𝑖, 𝑡) Set of requests for all videos from node 𝑖 at time 𝑡 

𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡) 
Total number of requests for the kth chunk of 

video 𝑣𝑚 of node 𝑖 at time 𝑡 

𝜆 Arrival rate 

𝐶(𝑖, 𝑡) Caching status of node 𝑖 at time 𝑡 

𝑐𝑣𝑚𝑘 (𝑖, 𝑡) If video chunk 𝑣𝑚
𝑘  is cached at node 𝑖 at time 𝑡 

𝑐𝑠𝑖 Cache size of node 𝑖 

𝐴 Caching decision 

𝑅 Rating matrix 

𝑟(𝑢𝑛, 𝑣𝑚)  Rating of user 𝑢𝑛 on video 𝑣𝑚 
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6.2 System Model 

This section presents the system model for the proposed proactive caching approach, 

including the network architecture, the caching model and the rating model. The symbols 

(and their definition) that will be used in this section are summarized in Table 6.1. 

6.2.1 Network Architecture 

This chapter considers an ICN-based vehicular network for AVs users. More specifically, 

5G technologies, including mmWave, massive MIMO, beamforming, etc., are used for the 

wireless communications at the physical layer, while ICN is used as the basic network 

architecture at network and transport layer.  

AV users (both drivers and passengers) can send requests to retrieve videos from the 

video provider. This chapter denotes all AV users as 𝑈 = {𝑢1, 𝑢2, . . . 𝑢𝑁} where 𝑁 is the 

total number of AVs users. The set of nodes, including BSs, RSUs, and routers, is denoted 

as 𝐼 , where any node in this network can be represented as 𝑖 ∈ I . We use 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑀} to indicate the set of videos that can be retrieved from the video provider, 

where M is the total number of videos. 𝑠𝑣𝑚 represents the size of video 𝑣𝑚. Any video 𝑣𝑚 ∈

𝑉  can be divided into multiple chunks, e.g., 𝑣𝑚  = {𝑣𝑚
1 , 𝑣𝑚

2 , … , 𝑣𝑚
𝑘 , … , 𝑣𝑚

𝐾(𝑣𝑚) } . For 

simplicity, all videos chunks are assumed to have the same size which is denoted as 𝜉. 

Consequently, the number of chunks that a video 𝑣𝑚 can be divided into is 𝐾(𝑣𝑚) =
𝑠𝑣𝑚

𝜉
. 

As mentioned before, AV users in the ICN-based vehicular networks can send interest 

packets to retrieve videos. The requests for videos at time 𝑡 are denoted as 𝑅𝑒𝑞(𝑖, 𝑡) =

{𝑟𝑒𝑞𝑣11(𝑖, 𝑡), 𝑟𝑒𝑞𝑣12(𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣1
𝐾(𝑣1)(𝑖, 𝑡), 𝑟𝑒𝑞𝑣21(𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣𝑀

𝐾(𝑣𝑀)(𝑖, 𝑡)} 

where 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡) represents the total number of requests for the kth chunk of video 𝑣𝑚 of 
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node 𝑖  at time 𝑡 . Since Poisson distribution is widely used to represent users’ request 

pattern, the arrival of video requests is assumed to follow a Poisson distribution with arrival 

rate 𝜆. 

6.2.2 Caching Model 

All nodes (BSs, RSUs, and routers) in this ICN-based vehicular network have the capability 

to cache videos. The caching status of node 𝑖 at time 𝑡 can be represented by a binary array 

𝐶(𝑖, 𝑡) = {𝑐𝑣11(𝑖, 𝑡), 𝑐𝑣12(𝑖, 𝑡), … , 𝑐𝑣1𝑘
(𝑖, 𝑡), … , 𝑐𝑣21(𝑖, 𝑡), … , 𝑐𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑐𝑣𝑀

𝐾(𝑣𝑀)(𝑖, 𝑡)} , 

where 𝑐𝑣𝑚𝑘 (𝑖, 𝑡)  represents if video chunk 𝑣𝑚
𝑘  is cached at node 𝑖  at time 𝑡 . More 

specifically, 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) = 1 means that video chunk 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) is cached at node 𝑖 at time 𝑡, 

while 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) = 0 indicates that 𝑣𝑚
𝑘  is not cached at node 𝑖 at time 𝑡. Since each node in 

the network can only cache a limited number of video chunks, the total size of all cached 

videos should be smaller than the node’s storage capacity, hence we can have 

∑ ∑ [𝜉 ⋅ 𝑐𝑣𝑚𝑘 (𝑖, 𝑡)] ≤ 𝑐𝑠𝑖𝑘∈𝐾(𝑣𝑚)
𝑀
𝑚=1 , where 𝜉 is the unit size of a video chunk, 𝑐𝑠𝑖 is the 

cache size of node 𝑖. 

A centralized server is deployed to make caching decisions for all nodes. With a caching 

decision 𝐴, the caching status of node 𝑖 at time 𝑡 can be changed to the new caching status 

at time 𝑡 + ∆𝑡, i.e., 𝐶(𝑖, 𝑡)
𝐴
→ 𝐶(𝑖, 𝑡 + ∆𝑡). 

6.2.3 Rating Model 

All AV users will rate the videos that they have watched to express their degree of 

preference. The ratings of AV users in 𝑈 on videos in 𝑉 can be presented as a matrix which 

is denoted as 𝑅 . Each user-video pair in 𝑅  is denoted as 𝑟(𝑢𝑛, 𝑣𝑚) which presents the 
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rating of user 𝑢𝑛 on video 𝑣𝑚. The rating matrix 𝑅 is stored in the centralized server and it 

is used to predict users’ future ratings on all videos by using the NMF technique. 

6.3 Problem Formulation 

This section presents how the caching decision problem is formulated. Then, the NMF 

technique, which will be used to predict the users’ future ratings on all videos, and the 

application of NMF to the target problem are illustrated. 

6.3.1 Caching Decision Problem Formulation 

𝐻(𝑖, 𝑡) is used to represent the number of requests that can be served from node 𝑖 at time 

𝑡, i.e., it indicates the number of cache hits. 𝐻(𝑖, 𝑡) can be calculated as: 

 

 

𝐻(𝑖, 𝑡) = |𝑅𝑒𝑞(𝑖, 𝑡) ⋅  𝐶(𝑖, 𝑡)| 

                                                                    = ∑ ∑ 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)

𝑘∈𝐾(𝑣𝑚)

⋅ 𝑐𝑣𝑚𝑘 (𝑖, 𝑡)                  (6.1)

𝑀

𝑚=1

 

Obviously, 𝐻(𝑖, 𝑡) can be used to represent the efficiency of caching. Since a caching 

decision 𝐴  can update the caching status of a node, namely, 𝐶(𝑖, 𝑡) , the efficiency of 

caching is highly dependent on the caching decision. In order to achieve the maximum 

efficiency of caching, a proper caching decision policy which can make effective caching 

decisions needs to be found. To find a proper caching decision policy, two sub-problems 

need to be solved: the “What” and the “Where” problems. 
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6.3.1.1 The “What” Problem 

Since the cache size of a node is limited, only a limited number of videos can be cached at 

the node at a time. However, caching different videos will lead to different caching status, 

(𝐶(𝑖, 𝑡)) which may have an impact on the efficiency of caching, (𝐻(𝑖, 𝑡)). Therefore, it is 

essential to find out what videos should be cached to solve the first sub-problem. More 

specifically, the goal of the “What” problem is to find a binary 

array {𝑐𝑣11(𝑖, 𝑡), 𝑐𝑣12(𝑖, 𝑡), … , 𝑐𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑐𝑣𝑀
𝐾(𝑣𝑀)(𝑖, 𝑡)}  that can achieve the maximum 

𝐻(𝑖, 𝑡) under the condition of 𝑐𝑠𝑖. 

6.3.1.2 The “Where” Problem 

Once we know what video chunks should be cached, the next problem consists to find 

where these video chunks should be cached. 𝐷𝑖𝑗(𝑣𝑚
𝑘 ) is used to denote the delivery cost for 

video chunk 𝑣𝑚
𝑘  from node 𝑖 to node 𝑗, and it can be calculated as follows: 

                                                                𝐷𝑖𝑗(𝑣𝑚
𝑘 ) =

𝑑𝑖𝑗

𝑐𝑣𝑚𝑘 (𝑗, 𝑡)
                                                   (6.2) 

where 𝑑𝑖𝑗  is the end to end delay from node 𝑖 to node 𝑗. If 𝑐𝑣𝑚𝑘 (𝑗, 𝑡) = 1, it means that 

video chunk 𝑣𝑚
𝑘  is cached at node 𝑖, and therefore 𝐷𝑖𝑗(𝑣𝑚

𝑘 ) = 𝑑𝑖𝑗; otherwise, 𝐷𝑖𝑗(𝑣𝑚
𝑘 ) =

∞ . Moreover, 𝑑𝑖𝑗 can be calculated as follows: 

                                              𝑑𝑖𝑗 = ∑ (
𝜉

𝐵𝑊ℎ
+

𝐷𝑖𝑠𝑡ℎ
3 × 108

+ 𝑄ℎ)                                          (6.3)

ℎ∈𝐻

 

where  𝐻 is the set of hops that a video needs to be delivered where ℎ is the ℎth hop in 𝐻. 

𝐵𝑊ℎ is the available bandwidth of the link for the ℎth hop, 𝐷𝑖𝑠𝑡ℎ is the physical link length 

for the ℎth hop, 𝑄ℎ is the queueing delay for the ℎth hop, and 3 × 108 (in meters) is the 

approximate speed of light in a vacuum, which can be considered as the speed of electronic 
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signals that travel in the physical cable (or electromagnetic waves that travel through the 

air). Clearly, 
𝜉

𝐵𝑊ℎ
 is the transmission delay and 

𝐷𝑖𝑠𝑡ℎ

3×108
 is the propagation delay for 

transmitting video chunk 𝑣𝑚
𝑘  at the ℎth hop. 

Therefore, the goal of the “Where” problem is to find the proper node 𝑖 for the binary 

array 𝐶(𝑖, 𝑡) to achieve the minimum delivery cost for transmitting video 𝑣𝑚 to the user. 

6.3.2 Non-negative Matrix Factorization Technique 

NMF, as stated earlier, is one of the MF techniques [43] classified as an advanced machine 

learning technique. NMF has been widely used in recommender systems to predict users’ 

ratings on never watched videos. Compared to other MF techniques such as SVD, NMF 

does not generate negative predictions, which is considered more suitable for video ratings 

in real life. 

The idea of NMF is that there are 𝑊 latent features that have impacts on the rating 

conducted by a user on a video. NMF tries to explain the ratings by characterizing both 

users and videos [43]. For example, features of a video could be actions, adventure, science 

fiction, etc. Similarly, features of a user could measure how much the user likes a movie 

on the corresponding movie features. By factorizing the original 𝑅 (a 𝑁 ×𝑀 matrix) into 

user feature matrix 𝑃  and video feature matrix 𝑄  where 𝑃  is a 𝑁 ×𝑊  matrix which 

measures the extent of the association between users and user features, and 𝑄 is a 𝑀 ×𝑊 

matrix which denotes the extent of the relations between videos and video features. All 

elements in 𝑃 and 𝑄 are non-negative, namely, ∀𝑝𝑛𝑤 ∈ 𝑃, 𝑝𝑛𝑤 ≥ 0, ∀𝑞𝑚𝑤 ∈ 𝑄, 𝑞𝑚𝑤 ≥ 0. 

By calculating the dot product of 𝑃 and 𝑄, the estimated rating matrix �̃�, which is the 

approximation of the original matrix 𝑅, can be found and all missing ratings are filled with 
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the estimated ratings denoted as 𝑟(𝑢𝑛, 𝑣𝑚)̃ . According to the descriptions of [43], 

𝑟(𝑢𝑛, 𝑣𝑚) can be calculated as follows: 

                                                                     𝑅 ≈ �̃� = 𝑃𝑄𝑇                                                         (6.4) 

or 

              [

𝑟11      𝑟12 ⋅⋅⋅  𝑟1𝑀
𝑟11     𝑟22 ⋅⋅⋅  𝑟2𝑀
⋮        ⋮    ⋱    ⋮   
𝑟𝑁1   𝑟𝑁2 ⋅⋅⋅  𝑟𝑁𝑀

] = [

𝑝11      𝑝12 ⋅⋅⋅  𝑝1𝑊
𝑝21     𝑝22 ⋅⋅⋅  𝑝1𝑊
⋮        ⋮    ⋱    ⋮   

𝑝𝑁1      𝑝𝑁2 ⋅⋅⋅  𝑝𝑁𝑊

] × [

𝑞11       𝑞21  ⋅⋅⋅ 𝑞𝑀1
𝑞12     𝑞22 ⋅⋅⋅  𝑞𝑀2
⋮        ⋮    ⋱    ⋮   

𝑞1𝑊    𝑞2𝑊 ⋅⋅⋅  𝑞𝑀𝑊

]                (6.5) 

To predict how an AV user would rate a video, the dot product of user 𝑢𝑛 and video 𝑣𝑚 

vector will result in a single number as: 

                                     𝑟(𝑢𝑛, 𝑣𝑚) ≈ 𝑟(𝑢𝑛, 𝑣𝑚)̃ = 𝑝𝑛𝑞𝑚
𝑇 = ∑ 𝑝𝑛𝑤𝑞𝑤𝑚

𝑊

𝑤=1

                            (6.6) 

where 𝑝𝑛𝑤 ∈ 𝑃, 𝑞𝑤𝑚 ∈ 𝑄𝑇, 𝑝𝑛 is a 𝑛th row vector, 𝑞𝑚
𝑇  is a 𝑚th column vector. 

The goal of the model is to generalize those previous ratings in a way that can predict 

future (i.e., unknown) ratings. Hence, the model should avoid overfitting the observed data 

by regularizing the learned parameters. Consequently, a regularization parameter, 𝜆 > 0 is 

involved to control the weight of the regularization term. Thus, to learn the latent features 

(𝑃 and 𝑄), the most common approach is to minimize the regularized squared error on the 

set of know ratings [43]: 

                       𝑚𝑖𝑛 [ ∑ (𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚
𝑇 )2 + 𝜆(‖𝑝𝑛‖

2 + ‖𝑞𝑚‖
2)

𝑚∈𝑀,𝑛∈𝑁

]                     (6.7) 



 149 

where  𝑝𝑛 > 0, 𝑞𝑚 > 0, and ‖⋅‖2 represents the Euclidean norm of the vector. 

Fig. 6.1 presents an example to show how the NMF technique works. The left table 

shows the original ratings (out of 5) of users on videos and the right table illustrates the 

predicted ratings of users on videos by performing the NMF technique. From the left table, 

we can see that user 3 has no rating on video 2 and user 1 has no rating on video 3. By 

performing the NMF technique based on Equation (6.4), the predicted rating of user 3 on 

video 2 is 2.89 and the predicted rating of user 1 on video 3 is 1.21. Based on these two 

predicted ratings, we can see that user 1 may not like video 3, while user 3 may prefer 

video 2 over video 1. 

6.3.3 Alternating Least Squares Algorithm 

Stochastic gradient descent (SGD) [43] and alternating least squares (ALS) [43] are two 

common algorithms to minimize Equation (6.7). Compared to stochastic gradient descent 

algorithm, ALS can be executed in parallel, which makes ALS much faster and more 

suitable for distributed systems such as cloud servers. 

Taking the derivative of Equation (6.7) with respect to 𝑝𝑛  (holding 𝑞𝑚  constant), 

Equation (6.8) can be obtained as follows: 

  

Fig. 6.1: An example for NMF technique 
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𝑑

𝑑(𝑝𝑛)
[∑ (𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚

𝑇 )2 + 𝜆(‖𝑝𝑛‖
2 + ‖𝑞𝑚‖

2)

𝑚∈𝑀

] 

= ∑ 2(𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚
𝑇 )(−𝑞𝑚

𝑇 ) + 2𝜆𝑝𝑛)           

𝑚∈𝑀

 

                                   = 2 ∑ [(𝑞𝑚
𝑇 𝑞𝑚

𝑇 + 𝜆)𝑝𝑛 − 𝑟(𝑢𝑛, 𝑣𝑚)𝑞𝑚
𝑇 ]

𝑚∈𝑀

                                          (6.8) 

Let Equation (6.8) equal 0. Based on Equation (6.6), we have:  

                                           ∑ (𝑞𝑚
𝑇 𝑞𝑚

𝑇 + 𝜆)𝑝𝑛 = ∑ 𝑟(𝑢𝑛, 𝑣𝑚)𝑞𝑚
𝑇                                     (6.9)

𝑚∈𝑀𝑚∈𝑀

 

                                            ⟹ 𝑝𝑛 = 𝑟(𝑢𝑛)𝑄(𝑄𝑄
𝑇 + 𝜆𝐸)−1                                                (6.10) 

where 𝐸 is the unit matrix. 

Similarly, taking the derivative of Equation (6.7) with respect to 𝑞𝑚  (holding 𝑝𝑛 

constant) yields Equation (6.11) as follows: 

                                                       𝑞𝑚 = 𝑟(𝑣𝑚)𝑃(𝑃𝑃
𝑇 + 𝜆𝐸)−1                                           (6.11) 

To learn the suitable user feature matrix (𝑃) and video feature matrix (𝑄), ALS first 

assigns random values to one matrix, e.g., 𝑄. Then, since only one variable is unknown, 

the optimization problem for Equation (6.10) becomes quadratic which can be solved 

optimally. Similarly, Equation (6.11) can be solved optimally by using the previously 

solved 𝑃. Thus, the ALS technique keeps switching between these two steps until Equation 

(6.7) has converged. 

6.4 Proposed Proactive Caching Approach 

In this section, the proposed proactive caching approach is presented. The approach 

consists of three components: user future ratings prediction module, user mobility 
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prediction module and caching decision module. All these modules are implemented in the 

same centralized server. 

6.4.1 User Future Ratings Prediction Module 

The user future ratings prediction module (UFRPM) predicts the user future ratings by 

using the NMF technique. The historical user watching information can be retrieved from 

the content provider and stored at the centralized server. Since NMF requires high 

performance computing capability, the UFRPM is implemented at the centralized server as 

well. As both the historical user watching information and the UFRPM are located at the 

centralized server, the UFRPM can use this data directly to predict user future ratings 

without extra data transmission cost. Since new videos may be released and user may watch 

videos that they haven’t watched before, the historical user watching information should 

be updated periodically, and the UFRPM should be triggered periodically as well. The 

periodical update time is denoted as 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 which may vary for different data set, because 

different content providers may have different updating cycle or users in different places 

share different watching behavior. 

6.4.2 User Mobility Prediction Module 

The user mobility prediction module (UMPM) predicts the future position of AV users 

based on the velocity and position information of the AVs. The reason to predict the 

position is to find out in advance the video chunks that could be proactively cached before 

the AV reaches the next RSU. For AVs, the destination is set before the trip, and the route 

is planned accordingly. During the trip, the current position of the AVs and the velocity 

information can be easily obtained from the AVs’ GPS module and relevant sensors. Based 

on the destination, route, current position and velocity information, the UMPM can easily 
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predict the next position of the AVs. Therefore, video chunks can be proactively cached at 

the node which can serve the predicted position. 

Compared to the existing methods to predict user mobility (such as Markov-based 

predictors [84]), the proposed UMPM can predict a more accurate future position of an 

autonomous vehicle since all mobility information can be obtained from the self-driving 

system of the vehicle. 

The current velocity vector of an autonomous vehicle is denoted as 𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡𝑏 represents 

the time that an AV user needs to finish watching the video chunks buffered at the AV 

before fetching new chunks from the next RSU, and 𝑡𝑐 is the current time. Therefore, the 

total distance (denoted as 𝐷) that an AV user can travel without fetching new video chunks 

can be calculated as follows: 

                                                           𝐷 = ∫ 𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑡                                                              (6.12)
𝑡𝑏

𝑡𝑐

 

Let 𝑓(𝑥, 𝑦) represent the planned route for the vehicle, (𝑥𝑐, 𝑦𝑐) is the current position 

of the vehicle, and (𝑥𝑝, 𝑦𝑝)  is the predicted position of the vehicle. To calculate the 

predicted position (𝑥𝑝, 𝑦𝑝) from the current location (𝑥𝑐, 𝑦𝑐), we have: 

                                                         𝐷 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑠                                                      (6.13)
𝑥𝑝,𝑦𝑝

𝑥𝑐,𝑦𝑐

 

where 𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑦)2 is the distance along the route. 

Since 𝐷 can be calculated by Equation (6.12), the predicted position (𝑥𝑝, 𝑦𝑝) can be 

calculated as follows: 

                                                         𝐹(𝑥𝑝, 𝑦𝑝) = 𝐹(𝑥𝑐, 𝑦𝑐) + 𝐷                                             (6.14) 
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where 𝐹(𝑥, 𝑦) is the integral of 𝑓(𝑥, 𝑦). Hence, the predicted position, (𝑥𝑝, 𝑦𝑝) can be 

easily calculated based on 𝐹(𝑥𝑝, 𝑦𝑝). 

6.4.3 Caching Decision Module 

The caching decision module (CDM) makes the final hierarchical caching decisions for 

core network nodes (e.g., routers) and edge nodes (e.g., RSUs) based on the predicted user 

future ratings, node cache size, the videos’ previous popularity and the AVs mobility 

information. More specifically, the CDM makes caching decisions for core network nodes 

first based on the predicted ratings, core network cache size and the videos’ previous 

popularity. Then, the CDM selects video chunks from videos that are already cached at the 

core network and proactively caches them at the edge nodes based on the edge nodes’ cache 

size and the AVs mobility information. If a requested video is not previously cached either 

at the edge nodes or the core network nodes, the next several chunks of this video will be 

fetched directly from the video server and proactively cached at the edge nodes based on 

the outputs of UMPM. Moreover, nodes in the core network cache videos at the entire 

video level, while the edge nodes, e.g., RSUs, cache videos at the chunk level. 

6.4.3.1 Caching for Core Network Nodes 

Since all video chunks need to go through the core network, caching videos at the entire 

video level is more efficient compared to caching videos at the chunk level. Therefore, the 

CDM considers the videos’ ratings and popularity to make caching decisions for core 

network nodes. 

In addition, the predicted user future ratings are used to predict if a video will be liked 

by users, these predicted ratings have a strong impact on the CDM to make the final caching 
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decisions. Hence, one thing we cannot ignore is that the NMF technique may generate 

inaccurate predictions for high rated but unpopular videos, e.g., cult films which have a 

strong attraction on their fans. Unfortunately, this issue has not been addressed in the 

existing NMF-based proactive caching approaches [12]. To describe this issue, this 

research assumes that a video 𝑣𝑚 is only requested by 𝑒 users, where 𝑒 ≪ 𝑁 (i.e., video 

𝑣𝑚 is not popular). Further, this research assumes that each of the 𝑒 users gives a high rating 

for video 𝑣𝑚. When performing the NMF technique to learn the video feature matrix 𝑄, 

𝑣𝑚 will get high values for its features in 𝑄, namely 𝑞𝑚𝑤 (𝑤 ∈ 𝑊, 𝑊 is the number of 

features) have high values, due to its high rating in the historical data set. Therefore, the 

predicted ratings for each user on video 𝑣𝑚 would be higher than real ratings as the product 

of 𝑞𝑚
𝑇 𝑝𝑛 is the estimated rating for user 𝑢𝑛 on video 𝑣𝑚. Thus, the predicted user future 

ratings for video 𝑣𝑚 will be overestimated, which will lead to biased caching decisions. 

To solve this issue, we take the previous video popularity into consideration to make 

the final caching decision. As each node has a limited caching storage to cache videos, the 

cache size of the node is another important factor that needs to be considered. Thus, 𝑏𝑣𝑚 ∈

𝐵 is denoted as the benefit of caching video 𝑣𝑚, where 𝐵 is the total benefit that can be 

achieved for the entire network by performing proactive caching with the node cache 

condition. Therefore, the aim of the CDM for node 𝑖 is to achieve the maximum 𝐵: 

𝑂𝑏𝑗:                                                           max𝐵 = ∑ 𝑏𝑚                                                  (6.15)

𝑚∈𝑀

 

                                                      𝑠. 𝑡.     ∑ [𝐶(𝑖, 𝑡) ⋅ 𝑠𝑣𝑚] ≤ 𝑐𝑠𝑖                                       (6.16)

𝑚∈𝑀 

 

where 𝑠𝑣𝑚 is the size of video 𝑣𝑚, and 𝑐𝑠𝑖 is the cache size of node 𝑖. Equation (6.16) states 

that node 𝑖 can only cache a limited number of videos at time 𝑡. 
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The maximum 𝐵 can be found by calculating 𝑏𝑚 as follows:  

                                                     𝑏𝑚 = [𝑃𝑟𝑒𝑑(𝑣𝑚) ⋅
𝑃𝑜𝑝(𝑣𝑚)

𝑛𝑠𝑣𝑚
]                                    (6.17) 

where 𝑃𝑟𝑒𝑑(𝑣𝑚) is the normalization of the predicted ratings for video 𝑣𝑚, 𝑃𝑜𝑝(𝑣𝑚) is 

the normalization of the historical popularity of video 𝑣𝑚 and 𝑛𝑠𝑣𝑚is the normalized size 

of video 𝑣𝑚. 

𝑃𝑟𝑒𝑑(𝑣𝑚) is calculated as follows: 

                                                             𝑃𝑟𝑒𝑑(𝑣𝑚) =
𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑀𝑎𝑥𝑅𝑎𝑡𝑒
                                             (6.18) 

where 𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the average predicted rating of video 𝑣𝑚 , and 𝑀𝑎𝑥𝑅𝑎𝑡𝑒  is the 

maximum rating in video set 𝑉. 

𝑃𝑜𝑝(𝑣𝑚) is calculated as follows: 

                                        𝑃𝑜𝑝(𝑣𝑚) =∑∑
𝑚𝑎𝑥 {𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)}𝑘=1

𝐾(𝑣𝑚)

 

𝑀𝑎𝑥𝑅𝑒𝑞
                             (6.19)

𝑖∈𝐼𝑡∈𝑇

 

where 𝑚𝑎𝑥 {𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)}𝑘=1

𝐾(𝑣𝑚)

 is maximum number of requests for the most requested 

chunk in video 𝑣𝑚, it can be regarded as the maximum number of requests for video 𝑣𝑚 at 

time 𝑡. 𝑀𝑎𝑥𝑅𝑒𝑞 is the maximum number of requests in the video set 𝑉 . 

Equation (6.20) is used to normalize video size: 

                                                             𝑛𝑠𝑣𝑚 =
𝑠𝑣𝑚

𝑀𝑎𝑥𝑆𝑖𝑧𝑒
                                                         (6.20) 

where 𝑠𝑣𝑚 is the real size of video 𝑣𝑚, 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 is the maximum size of video in 𝑉. 

The CDM works as follows to make caching decisions for nodes in the core network: 

By calculating 𝑏𝑚 with Equation (6.17), the benefit for caching each video can be obtained. 

Then, the CDM ranks all videos based on the calculated 𝑏𝑚, and proactively caches videos 
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from the top ranked video until the cache size of node 𝑖 is full. For example, there are two 

videos (A and B) that are considered for caching, 𝑏𝐴 is 20, 𝑏𝐵 is 10, and one RSU which 

can only cache one video. To perform the proposed proactive caching approach, the CDM 

first ranks videos A and B based on 𝑏𝐴 and 𝑏𝐵, and finds out video A is the 1st ranked video, 

hence, the CDM decides to cache video A at the RSU. However, the RSU can only cache 

one video, therefore CDM will terminate the process without selecting video B.  

6.4.3.2 Caching for Edge Nodes 

To reduce the retrieval delay and the backhaul traffic, videos should be proactively cached 

at the edge nodes. Different from caching videos at the video level for core network nodes, 

edge nodes cache videos at the chunk level due to the fact that AV users are moving fast, 

and the short range of RSUs only allows AV users to fetch a small number of chunks from 

the edge nodes. Therefore, caching entire videos at edge nodes will waste their cache 

storage, i.e., the efficiency of caching will be degraded. 

Also, the arrival time 𝑡𝑎(𝑢𝑛, 𝑖) and departure time 𝑡𝑑(𝑢𝑛, 𝑖) of an AV user 𝑢𝑛 at an edge 

node 𝑖 can be calculated, since the UMPM can predict AV users’ future position based on 

the planned route, velocity, and current position information. Let 𝜏 represent the duration 

that a video chunk can be played, the number of video chunks (denoted as 𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚)) 

that will be played during the period 𝑡𝑑(𝑢𝑛, 𝑖) and 𝑡𝑎(𝑢𝑛, 𝑖) can be calculated as follows: 

                        𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚) =
𝜏

[𝑡𝑑(𝑢𝑛, 𝑖) − 𝑡𝑎(𝑢𝑛, 𝑖)] ⋅ 𝐵𝑅(𝑣𝑚)
                                     (6.21) 

where  𝐵𝑅(𝑣𝑚) is the bitrate of video 𝑣𝑚. 
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If the last chunk that the AV user watches before arriving at node 𝑖 is denoted as 𝑘𝑙, 

then the video chunks that need to be cached for AV user 𝑢𝑛 at node 𝑖 during time 𝑡𝑑(𝑢𝑛, 𝑖)  

and 𝑡𝑎(𝑢𝑛, 𝑖)  are from 𝑘𝑙+1 to 𝑘𝑙+𝑛𝑐(𝑢𝑛,𝑖,𝑣𝑚), where 𝑘𝑙+𝑛𝑐(𝑢𝑛,𝑖,𝑣𝑚) ≤ 𝐾(𝑣𝑚),. 

6.5 Performance Evaluation 

In this section, the evaluation metrics are illustrated first. The two metrics used are the hit 

ratio and the average number of hops. Following that, the simulation settings and results 

are presented. The proposed proactive caching approach is evaluated in two scenarios: a 

highway scenario and a grid street scenario.  

6.5.1 Evaluation Metrics 

Hit ratio is a common metric for evaluating the efficiency of a caching decision policy. 

Although the definition of hit ratio is mentioned in Chapter 3, the calculation of hit ratio 

used in this chapter is different due to the different nature of the problem.  The hit ratio is 

calculated as: 

                                              𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =∑∑
𝐻(𝑖, 𝑡)

|𝑅𝑒𝑞(𝑖, 𝑡)|
𝑖∈𝐼

𝑇

𝑡=1

                                              (6.22) 

where |𝑅𝑒𝑞(𝑖, 𝑡)| is the total number of requests of node 𝑖 at time 𝑡 and 𝐻(𝑖, 𝑡) 

(mentioned in Section 6.3) is the number of requests that can be served from node 𝑖 at 

time 𝑡. 

Average number of hops: The average number of hops (denoted as 𝐻𝑜𝑝𝑠̅̅ ̅̅ ̅̅ ̅) can be used 

to measure the QoE of AVs users, it can be calculated as follows: 

                                              𝐻𝑜𝑝𝑠̅̅ ̅̅ ̅̅ ̅ = ∑∑
𝐻𝑜𝑝𝑠(𝑅𝑒𝑞(𝑖, 𝑡), 𝐶(𝑖, 𝑡))

|𝑅𝑒𝑞(𝑖, 𝑡)|
𝑖∈𝐼

𝑇

𝑡=1

                              (6.23) 
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where 𝐻𝑜𝑝𝑠(𝑅𝑒𝑞(𝑖, 𝑡), 𝐶(𝑖, 𝑡))  is the total number of hops of node 𝑖  at time 𝑡  under 

caching status 𝐶(𝑖, 𝑡). 

6.5.2 General Settings 

In this chapter, the proposed proactive caching approach is compared with an SVD-based 

approach and LCE. LCE is the default caching decision policy in ICN where each content 

is cached at every node along the content delivery path. In [12], the user future ratings are 

predicted with SVD (one of the matrix factorization techniques), and the predicted ratings 

are regarded as the user future demands. The only difference between SVD and NMF is 

that NMF does not generate negative values in the feature matrices, hence, these two 

techniques should have the same performance. Then a caching decision is made based on 

the predicted user future ratings.  

Since the proposed proactive caching approach considers a hierarchy of cache storage 

(cache storage at the edge and core network) and has two key modules: UFRPM and 

UMPM, this chapter evaluates these two modules separately and together. More 

specifically, if UFRPM is turned off, the core network nodes only adopt the SVD-based 

approach and LCE. On the other hand, if UMPM is turned off, the edge nodes only adopt 

LCE due to the fact that LCE can support the video check level, but the SVD-based 

approach works at the entire video level. Therefore, we can have 6 different combinations 

for core network nodes and edge nodes respectively:  

 UFRPM + UMPM which is the proposed approach 

 UFRPM + LCE 

 SVD-based + UMPM 
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 SVD-based + LCE (because the SVD-based approach only works at the video level, 

LCE is used for the edge nodes so that they can work at chunk level) 

 LCE + UMPM 

 LCE + LCE (the default approach in ICN) 

The request data used for the evaluation comes from the latest public MovieLens dataset 

[33] in which 610 users request 9,742 videos 100,836 times. This chapter sorts all request 

entries by time stamp and uses the first 80% of the request entries as the training set for the 

UFRPM. The remaining 20% is used to evaluate the various approaches based on [12]. The 

parallel computing toolbox of MATLAB [60] is used to perform the ALS algorithm and to 

evaluate the proposed proactive caching approach. The video sizes range from 500 MB to 

5 GB, and the size of each chunk is fixed at 64 KB. 

6.5.3 Performance Evaluations 

In this subsection, the simulation results of a highway scenario and a grid street scenario 

are presented to illustrate different situations. But these two scenarios could be combined 

for a planned route that covers both. 

6.5.3.1 Highway Scenario  

In real life, traveling on a highway is a very common scenario for AVs, especially for a 

long-distance trip. For AV users, entertainment services are more attractive for them during 

the trip. Therefore, it is essential to evaluate the proposed proactive caching scheme for the 

highway scenario. The important features of the highway scenario are: 

 All AVs are moving in the same direction, and cannot change their moving 

direction. 
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 The velocity of AVs is much faster (between 80 to 100 km/hr) than the grid street 

scenario. 

6.5.3.1.1 Simulation Setting 

This chapter assumes that the arrival of requests follows a stationary Poisson process, and 

sets the arrival rate as 30/min to simulate the traffic for highway scenario. As shown in Fig. 

6.2, all vehicles are moving in the same direction. AVs are connected to RSUs directly to 

fetch videos. RSUs are then connected to BSs which are then connected (using optical 

cables) to the core network. Videos are sent from the content provider via the Internet to 

the core network. The velocity of all vehicles ranges from 80 to 100 km/hour. The total 

length of the simulated highway is 5 km. The default RSU cache size is set to 300 video 

chunks, while the default core network cache size is set as 20% of the total videos.  
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6.5.3.1.2 Performance Results of Highway Scenario 

Fig. 6.3 demonstrates how RSU cache size influences the performance of the hit ratio when 

the core network cache size is set at 20%. The number of chunks that can be cached at the 

RSU is used to represent the cache size of RSU. Notably, with the increase of RSU cache 

size, approaches that use the UMPM can significantly improve the hit ratio, because bigger 

RSU cache size means that edge nodes can store more chunks, which can increase the 

chance of hit. We can see that the blue line (i.e. UFRPM + UMPM) has the best 

performance among the 6 combinations. Comparing the blue line, the yellow dash line and 

  

Fig. 6.2: Highway scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 162 

the black line, we can see that the proposed proactive caching approach can achieve higher 

hit ratio compared to the SVD-based approach and the default approach in ICN. The 

increasing rate of the hit ratio slows down when the RSU cache size is greater than 1,700 

chunks. The reason behind this phenomenon is that most AV users’ requests can be 

satisfied under the given arrival rate, namely 30/min. No matter how the RSU cache size 

increases, the hit ratio cannot be improved if the requested videos are not cached at the core 

network, which means that the requested videos have to be fetched from the content 

provider. Similarly, comparing the red dash line, the purple dash line and the black line, 

 

Fig. 6.3: Impact of RSU cache size on hit ratio 
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we can see that applying the UFRPM can achieve the best performance in terms of hit ratio 

compared to using the SVD-based approach and LCE for core network nodes.  

Fig. 6.4 shows the impact of core network cache size on the hit ratio. The proportion of 

the total video’s size that can be cached at the core network is represented as the core 

network cache size. Notably, with the increase of core network cache size, all approaches 

can increase the hit ratio. More specifically, UFRPM + UMPM has the best performance 

in terms of hit ratio among all combinations. Similar to Fig. 6.3, applying UFRPM 

outperforms the approach that uses the SVD-based approach and LCE for core network 

nodes whether the UMPM is applied or not for edge nodes. Another important point is that 

a higher hit ratio can be obtained for the same approach that is applied to core network 

 

Fig. 6.4: Impact of core network cache size on hit ratio 
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nodes if the UMPM is turned on, i.e., the blue line (UFRPM + UMPM) is better than the 

red dash line (UFRPM + LCE).  

To evaluate the impact of arrival rate on hit ratio, the cache size of RSUs and core 

network nodes should be fixed first. Consider that both RSUs and core network nodes have 

limited storage, the cache size of RSUs is set to 300 (the number of video chunks that can 

be stored at a RSU), the cache size of core network is set to 20% (proportion of the total 

videos). As shown in Fig. 6.5, the hit ratio decreases with the increase of the arrival rate 

for approaches where UMPM is turned on. The reason is that higher arrival rate means 

more requests from the AV users and therefore, the proportion of unsatisfied requests will 

increase due to the limited cache size of edge nodes. The arrival rate has significantly less 

impact for approaches that apply LCE as the caching decision policy for edge nodes, 

 

Fig. 6.5: Impact of arrival rate on hit ratio 
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because the arrival rate does not affect the performance of LCE, as LCE always caches 

everything that goes through the node, while the UMPM will degrade to first-in first-out 

(FIFO) if the cache size of edge nodes is full and the number of AV requests keeps 

increasing. For example, the only difference between the green dash line and the black line 

is if the UMPM is turned on. With the increase of the arrival rate, the improved hit ratio 

that is generated by the UMPM is decreasing. When the arrival rate reaches 60/min, the 

green dash line and the black line achieve the same hit ratio, which means the UMPM has 

the same performance in terms of the improved hit ratio as LCE. Although the performance 

in terms of hit ratio decreases with the increase of the arrival rate, the proposed proactive 

caching approach for both core network nodes and edge nodes is always the best among 

all these 6 combinations.  

 

Fig. 6.6: Impact of RSU cache size on the average number of hops 
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  Fig. 6.6 illustrates the impact of RSU cache size in terms of the average number of 

hops. Obviously, UFRPM + UMPM is the best among all these 6 combinations in terms of 

the average number of hops. For all combinations that disables the UMPM, the 

combination that uses UFRPM achieves the smallest average number of hops. However, 

the reduced average number of hops is slightly affected by the RSU cache size. If UMPM 

is enabled, the average number of hops can be significantly reduced, such as the 

comparison of the blue line and the red dash line.  

 Fig. 6.7 presents how the core network cache size influences the average number of 

hops. Similar to Fig. 6.3, the proportion of the total videos’ size that can be cached at the 

 

Fig. 6.7: Impact of core network cache size on the average number of hops 
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core network nodes is used as the core network cache size. We can see that all these 6 

combinations can reduce the average number of hops with the increase of core network 

cache size. The proposed approach (UFRPM + UMPM) shows the best performance, 

especially when the core network cache size is small, e.g., 10%–30%. As the core network 

nodes in real life can only cache a small proportion of the total videos, the proposed 

proactive caching approach is more efficient compared to other approaches.  

Considering that both RSUs and core network nodes have limited storage, the cache size 

of RSUs is set to 300 (the number of video chunks that can be cached) and the cache size 

of core network is set to 20% (proportion of the total videos). Next, the impact of the arrival 

rate on the average number of hops is evaluated. Fig. 6.8 shows that the increase of the 

 

Fig. 6.8: Impact of arrival rate on the average number of hops 
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arrival rate has a negative impact on the average number of hops for combinations which 

use UMPM, and has a slight positive impact for combinations which do not use UMPM. 

The reason behind this phenomenon is that higher arrival rates may increase the chance for 

requesting the same video chunk at a given time period, which can increase the efficiency 

of LCE. Evidently, the proposed proactive caching approach, namely UFRPM + UMPM, 

can achieve the best performance in terms of the average number of hops for all arrival rate 

settings, although the increase of the arrival rate has a negative impact.  

6.5.3.2 Grid Street Scenario  

Grid street scenario is another common scenario of AV users in real life. Compared to the 

highway scenario, the features of the grid street scenario are: 

 The AVs in the grid street are moving in different directions (they have to follow 

streets). 

 This chapter assumes that all AVs would not move back and forth on the same road, 

i.e., AVs would not change their current moving direction to the opposite one and 

repeat their previous routine. 

 AVs could change their moving direction at each crossroad. 

 The speed of the AVs is lower than that in the highway scenario (typically around 

20-60 km/hr). 

6.5.3.2.1 Simulation Setting 

Similar to the highway scenario, the arrival of requests is assumed to follow a stationary 

Poisson process. The grid street scenario is shown in Fig. 6.9. The arrival rate is set as 

30/min as well, and the velocity of all vehicles ranges from 20 to 60 km/hr. The grid street 
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is set as 2 km × 2 km. The default RSU cache size is set to 300 video chunks, while the 

default core network cache size is set to 20% of the total videos.  

6.5.3.2.2 Performance Results of Grid Street Scenario 

Fig. 6.10 shows the impact of RSU cache size on the hit ratio. The first observation is that 

it shares a similar trend with the results from the highway scenario (Fig. 6.3). However, 

combinations with UMPM enabled can achieve higher hit ratio with smaller RSU cache 

size compared to the highway scenario. For example, the proposed proactive caching can 

achieve about 84% hit ratio when RSU cache size is 900 for the grid street scenario, while 

the proposed approach can only obtain 72% hit ratio under the same conditions for the 

 

Fig. 6.9: Grid street scenario 
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highway scenario. The reason is that the various moving directions of AVs in the grid street 

scenario increases the chance of overlapping for a particular video. Obviously, the 

proposed proactive caching approach outperforms the other combinations regardless of the 

RSU cache size.  

Fig. 6.11 demonstrates how the hit ratio changes with the increase of the core network 

cache size. Apparently, all combinations can improve the hit ratio if the core network cache 

size increases. Results in Fig. 6.11 share a very similar trend to that in Fig. 6.4. Comparing 

UFRPM + UMPM (blue line) with UFRPM + LCE (red dash line), we can see the UMPM 

can improve the hit ratio up to 14% from 41% to 55%. Comparing UFRPM + UMPM (blue 

line) with SVD + UMPM (yellow dash line), we can see that UFRPM (which considers the 

 

Fig. 6.10: Impact of RSU cache size on hit ratio 
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historical popularity of videos) outperforms the SVD-based approach by approximately 

5% from 50% to 55%. 

 As shown in Fig. 6.12, when the arrival rate is 10/min, all combinations with UMPM 

can achieve the highest hit ratio. After that, the hit ratio that can be achieved with the 

different approaches decreases with the increase of the arrival rate. The increase of the 

arrival rate does not have too much impact on the combinations which use LCE as the 

caching decision policy for edge nodes. The reason is the same as described for Fig. 6.5. 

When the RSU cache size is greater than 1,300, all the 6 combinations cannot generate 

significant improvement in the reduction of the average number of hops, which means that 

the core network size becomes the bottleneck.  

 

Fig. 6.11: Impact of core network cache size on hit ratio 
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The impact of RSU cache on the average number of hops is shown in Fig. 6.13. The 

increase of RSU cache size can reduce the average number of hops for all 6 combinations. 

By comparing the blue line and red dash line, we can see that the UMPM is much more 

efficient than LCE in terms of reducing the average number of hops. Comparing the blue 

line with the purple dash line and the black line, we can see that the proposed approach 

(UFRPM + UMPM) outperforms the existing approaches. When the RSU cache size is 

greater than 1,300 video chunks, increasing the RSU cache size is inefficient in reducing 

the average number of hops. The reason is that the RSU cache size is large enough for 

caching video chunks. However, if the requested videos are not cached at the core network, 

 

Fig. 6.12: Impact of arrival rate on hit ratio 
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RSUs have to retrieve those video chunks from the content provider instead of from the 

core network nodes, which will cause an increase of the average number of hops.  

  Fig. 6.14 illustrates the impact of core network size on the average number of hops. 

Similar to Fig. 6.7, all combinations can reduce the average number of hops with the 

increase of core network cache size. Compared to the highway scenario, the proposed 

approach and the SVD-based approach in the grid street scenario are more efficient in terms 

of reducing the average number of hops. More precisely, the proposed approach can 

achieve 3.6 hops in Fig. 6.14 when core network cache size is 10%, while it can only 

achieve 4 hops in Fig. 6.7. The reason behind this outcome is that AVs in the highway 

scenario are moving much faster than AVs in the grid street scenario. RSUs in the highway 

scenario will replace the cached videos much more frequently than RSUs in the grid street 

 

Fig. 6.13: Impact of RSU cache size on the average number of hops 
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scenario. Consequently, the time of video chunks that stay at the RSUs in the highway 

scenario is much shorter than in the grid street scenario, which lowers the chance of the 

cached video to be requested by another AV user. Comparing the proposed approach 

(UFRPM + UMPM) with the SVD-based approach (SVD + LCE) and the default approach 

in ICN (LCE + LCE), we can see that the proposed approach is always the best regardless 

of the core network cache size.  

Fig. 6.15 demonstrates how the arrival rate influences the average number of hops. We 

can see that the proposed approach outperforms the other 5 combinations regardless of the 

arrival rate. Notably, combinations with UMPM are getting inefficient in reducing the 

average number of hops when the arrival rate increases, while combinations with LCE 

 

Fig. 6.14: Impact of core network cache size on the average number of hops 
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generate less impact with the increase of arrival rate. Because edge nodes are more 

sensitive to the changes of the arrival rate due to the fact that video chunks are cached at 

the edge nodes based on the mobility information of AV users, while videos are cached at 

the core network nodes based on the predicted ratings and historical popularity of videos. 

When the arrival rate increases, more requests will arrive at the edge nodes. However, the 

limited storage of RSUs increases the chance that a request cannot be satisfied at the RSUs. 

Hence, those unsatisfied requests have to be forwarded to the core network nodes, or even 

the content provider, which increases the average number of hops.  

 

Fig. 6.15: Impact of arrival rate on the average number of hops 
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6.6 Summary 

This chapter proposed a novel hierarchical proactive caching approach for ICN-based AV 

networks. By adopting the NMF technique to predict the user future ratings, users’ future 

demands can be predicted by considering the historical popularity of videos and users’ 

preferences, namely, the predicted ratings. Based on the predicted demands, the proposed 

proactive caching approach can cache videos at the video level at the core network nodes. 

Videos can be proactively cached at the edge nodes at the chunk level using the proposed 

UMPM before the AV users arrive, which can improve QoE in general. 

The proposed proactive caching approach was evaluated in two scenarios: a highway 

scenario and a grid street scenario. The evaluation results from both scenarios show that 

the proposed approach is significantly more efficient compared to the existing approaches 

in terms of hit ratio and the average number of hops. 

 

 

 

 

 

 

 

 

 

 

 



 177 

Chapter 7: Conclusion and Future Research 

This chapter first summarizes the contributions that have been done for the thesis. Then, it 

provides several potential research directions. 

7.1 Conclusion 

In this thesis, the concept of ICN in-network caching has been used in conjunction with 

different types of networks to make a step forward towards next-generation networks. More 

specifically, the thesis has made contributions in the following five areas. 

1) RPC for pure ICN networks: The proposed RPC approach tries to cache videos 

hierarchically, i.e., edge, core. More specifically, RPC tries to cache popular videos 

at the edge of the network, which is closer to the users. Consequently, the average 

video retrieval delay and the workload of on the video providers can be significantly 

reduced. Compared to ABC, RPC can reduce the publisher load ratio by 23%, and 

reduce the average number of hops by 26.7% when the cache size is 15 GB. 

2) SDN-based caching approach for pure ICN networks: By leveraging the global 

view that is provided by the SDN controller, the SDN-based caching approach can 

make effective caching decisions. Extensive simulation results showed that the 

proposed SDN-based approach can achieve similar performance outcomes 

compared to that of the optimal solution in terms of the cache hit ratio (less than 

2% difference) and the average number of hops (less than 4% difference) for 

content retrieval, while substantially reducing the computational complexity. 

Moreover, the simulation results also show that the SDN-based approach also 
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outperforms RPC in terms of hit ratio and the average number of hops. Hence, it is 

suitable for caching in dynamic networks. 

3) ICN-based caching approach for ICN-5G networks: To overcome the frequent 

handoffs and shorter connection durations in 5G networks, an ICN-based caching 

approach was proposed in this thesis. The proposed approach makes caching 

decision based on the mobility of users and the popularity of requested videos. 

Popular videos which are requested by high mobility users will be cached at the CR 

which is connected to multiple BSs, while popular videos which are requested by 

low mobility users will be cached at the BS. Therefore, high mobility users can 

fetch the requested videos from a CR instead of the video provider, while low 

mobility users can fetch the requested videos from the BS directly. In this way, the 

QoE for mobile users in terms of average retrieval delay can be improved 

significantly (up to 23 ms compared to CDIC), and the network traffic (up to 57%) 

can be reduced as well.  

4) LCC approach for ICN-IoT networks: To reduce the energy consumption of IoT 

devices, an IoT data lifetime-based cooperative caching (LCC) approach was 

proposed in Chapter 5. LCC caches IoT data at intermediate nodes (e.g., BS) based 

on the freshness of the IoT data and the data request rate. Hence, users can fetch 

the requested data from the intermediate nodes without waking up IoT devices. 

Consequently, IoT devices can spend more time in sleep mode to save energy, while 

user requests can still be served. Simulation results show that LCC can reduce the 
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energy consumption by up to 48.9% and the average number of hops by 31% 

compared to no caching. 

5) Proactive caching approach for AV users: By using the NMF technique to predict 

user future ratings of videos and considering the historical popularity of videos, the 

proposed proactive caching approach can predict the future demands, which 

improves the caching effectiveness. Since routes are pre-planned, current location 

and velocity of the AVs can be easily obtained from the self-driving system of AVs. 

Therefore, the future position of AVs can be easily predicted. Based on these two 

predictions, the proposed proactive caching approach can proactively cache the 

video that AV users may like at the next RSU. Simulation results showed that the 

proposed proactive caching approach is more efficient than the existing approaches 

in terms of the hit ratio (up to 40% compared to the SVD-based approach in both 

the highway scenario and the grid street scenario) and the average number of hops 

(up to 62.5% compared to the SVD-based approach in the highway scenario, and 

up to 62% in the grid street scenario). 

In summary, by using the in-network caching feature of ICN, the performance of ICN-

based in-network caching can be improved for various potential next-generation network 

architectures. 

7.2 Future Works 

ICN is still an emerging research area. A number of interesting research problems and 

directions warrant future investigation. The following describes four such areas. 

1. For the reactive caching approaches, caching videos at the chunk level is not 

considered in this dissertation. Further, chunks of the same video may have 
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different popularities. However, a video may have hundreds or thousands of 

chunks, which means that tracking and storing the popularity of each chunk in the 

traditional fashion is challenging and complex. Hence, how to track and store the 

popularity of each chunk in an efficient way is a new research problem.  

2. For caching in ICN-IoT networks, one potential direction is to extend the proposed 

LCC approach for more complicated IoT scenarios, including machine-to-machine 

(M2M) communications, in which mobile devices can transmit IoT data with each 

other. Thus, the energy consumption of mobile devices needs to be considered as 

well. 

3. For proactive caching approach, the NMF technique based on ratings is used to 

predict the users’ future ratings on videos. However, users in real life may not rate 

a video, which will cause inaccurate NMF prediction ratings. A potential solution 

to this problem is that some other information, such as the completion rate of 

watching a video, can be used to generate ratings. Therefore, how to solve this 

problem in another research problem. 

4. For proactive caching for AV users, this dissertation only considers the vehicle-to-

infrastructure (V2I) communications. On the other hand, videos can be cached at 

AVs as well. As a result, vehicle-to-vehicle (V2V) communications should also be 

considered for caching. Consequently, how to make an efficient caching decision 

at AVs is a future research direction. 

5. Since caching needs power, storage, memory and computation cost, it would be 

interesting to evaluate the caching performance with respect to the cost. Hence, 
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finding out the relationships between the cost and the benefit would be another 

potential research direction. 
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