
Performance Improvements of In-network Caching in

ICN-Based Networks

by

Zhe Zhang, B. Eng., M. Sc.

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

August, 2019

© Copyright

Zhe Zhang, 2019

 1

Acknowledgement

Pursing my Ph.D. degree in Canada was an exciting and amazing journey for me, and it

started when I wrote my first email to my supervisor, Prof. Chung-Horng Lung. Hence, I

would like to begin this section by expressing my deeply heartfelt thanks and gratitude to

him, not only for his wholehearted guidance on my life as a student, but also for his

profound influence on my values as a human being. From him, I learned how to perform

research with rigorousness, and how to treat others with patience. Without his

encouragements and supports, I would not have such a wonderful study.

I would also like to thank my co-supervisor, Prof. Marc St-Hilaire, for his valuable

comments and guidance. The academic writing skills and research methodologies he taught

me helped me during my entire Ph.D. study and will continue to benefit my future work.

More importantly, his rigorous attitude to academic is the most valuable treasure that I

learned from him.

Special thanks to Prof. Ioannis Lambadaris for offering me the internship opportunity

at Ericsson. Besides, his immense knowledge and kind suggestions not only improve the

quality of the research but also broaden my mind for my future career.

I would also like to thank the committee members, Prof. Amiya Nayak, and Prof. F.

Richard Yu for their helpful and insightful questions and suggestions.

Many thanks also go to my friends Andy Yin, Chenguang Yu, Chris Dydula, Decheng

Zhang, Ming Liu, Qiao Lu, Robbin Gao, Rick Luo, Xiaoying Chang, Yanran Li, Yi Lin,

Yingzhe Wang, Yundu Cao. With their company, my life here becomes colorful and is full

of joy and happiness.

 2

Besides, I would like to thank my Master’s supervisor, Prof. Yuchun Guo, for

encouraging and supporting me to pursuit a Ph.D. degree.

I would also like to thank my family members. There is no word to express my gratitude

to my family, and in particular, my grandfather, my grandmother, my parents, and my

cousin. Their love is and will always be my source of power and courage.

 3

Abstract

The continuous development of networking technologies and smart devices has led Internet

traffic, especially for the multimedia content traffic, to increase drastically both in wired

and wireless networks. Similarly, the fast developing of wireless networks, such as 5G, has

led the Internet of things (IoT) to be growing at an unprecedented pace. However, the

traditional host-centric IP Internet is based on host-to-host communications which is not

suitable for satisfying the requirements of content delivery. Hence, information-centric

networking (ICN), one of the emerging next-generation Internet paradigms, is proposed to

overcome these challenges. With the ubiquitous in-network caching, ICN can facilitate

content delivery and reduce network delay. Both 5G and IoT can use the concept of ICN

to constitute ICN-5G and ICN-IoT networks respectively.

However, the requirements of in-network caching may vary for different networks. This

thesis focuses on designing in-network caching approaches for different networks,

including pure ICN networks, ICN-5G networks and ICN-IoT networks, from a theoretical

perspective and a practical perspective. Both reactive and proactive caching approaches

are discussed in this thesis. Moreover, by leveraging the concepts of software-defined

networking (SDN) and machine learning (ML), the efficiency of in-network caching can

be significantly improved.

 4

Table of Contents

Acknowledgement ... 1

Abstract .. 3

Table of Contents .. 4

List of Tables ... 9

List of Figures .. 10

List of Abbreviations .. 13

List of Symbols .. 16

Chapter 1: Introduction ... 26

1.1 Background... 26

1.1.1 Information-centric Networking .. 27

1.1.2 ICN In-network Caching .. 29

1.1.2.1 Reactive Caching Approaches ... 30

1.1.2.2 Proactive Caching Approaches .. 30

1.1.3 ICN-based Networks .. 30

1.1.3.1 ICN-5G Networks ... 31

1.1.3.2 ICN-IoT Networks... 31

1.1.3.3 Software-defined Networking ... 32

1.1.4 Matrix Factorization Techniques ... 32

1.2 Motivations ... 33

1.3 Contributions of this Research ... 35

1.4 Thesis Organization .. 36

Chapter 2: Literature Review .. 39

2.1 ICN in-network Caching .. 39

2.2 In-network Caching in ICN-5G networks .. 43

 5

2.3 In-network Caching in ICN-IoT networks ... 46

2.4 Machine Learning for Proactive Caching ... 49

Chapter 3: Caching Approach for Pure ICN Networks.. 53

3.1 Introduction .. 53

3.2 System Model and Problem Formulation ... 54

3.2.1 System Model... 54

3.2.2 Problem Formulation ... 55

3.2.2.1 Static Scenario ... 57

3.2.2.2 Real-time Scenario .. 59

3.3 Router Position-based Cooperative Caching .. 62

3.3.1 Principle of RPC .. 62

3.3.2 How RPC Works .. 63

3.3.3 Caching threshold decision policy ... 65

3.3.3.1 Topology level decision .. 65

3.3.3.2 Caching Threshold Calculation ... 67

3.3.4 Performance Evaluation ... 67

3.3.4.1 Topology and Data .. 69

3.3.4.2 Simulation Parameters Setting .. 70

3.3.4.3 Simulation Results ... 70

3.3.4.4 Parameter Configuration of Caching Threshold Decision Model 72

3.4 SDN-based Caching Approach ... 72

3.4.1 How SDN Can Improve the Caching Efficiency for ICN .. 72

3.4.2 How the proposed SDN-based caching decision policy works 74

3.4.3 Responsibilities of the SDN Controller .. 77

3.4.4 Computational Complexity .. 78

3.4.5 Performance Evaluation ... 79

 6

3.4.5.1 Evaluation Metrics... 82

3.4.5.2 Comparisons of the Optimal Solution and the Proposed SDN-Based Caching

Decision Policy ... 82

3.4.5.2.1 Simulation Setting .. 82

3.4.5.2.2 Simulation Results .. 83

3.4.5.3 Comparisons of the Proposed SDN-Based Caching Decision Policy and the

Existing Caching Decision Policies .. 87

3.4.5.3.1 Simulation Setting .. 87

3.4.5.3.2 Simulation Results .. 88

3.5 Summary... 97

Chapter 4: Caching Approach for ICN-5G Networks .. 99

4.1 Introduction .. 99

4.2 System Model ... 101

4.2.1 A Simple Scenario.. 102

4.2.2 User Mobility Calculation Model .. 104

4.2.3 Content Popularity Calculation Model ... 107

4.2.4 Caching Decision Model .. 107

4.3 Performance Evaluation ... 109

4.3.1 Evaluation Metrics ... 110

4.3.2 Evaluation Settings ... 111

4.3.2.1 Topology and Input Data ... 111

4.3.2.2 Parameter Setup ... 112

4.3.2.3 Simulation Results ... 113

4.4 Summary... 117

Chapter 5: Caching Approach for ICN-IoT Networks ... 118

5.1 Introduction .. 118

 7

5.2 IoT Data Lifetime-based Cooperative Caching .. 121

5.2.1 Basic Concepts ... 121

5.2.2 IoT Data Lifetime-based Cooperative Caching Approach 122

5.2.2.1 System Model .. 122

5.2.2.2 Caching Decision Policy ... 125

5.2.2.3 Auto-configuration Mechanism ... 126

5.3 Performance Evaluation ... 128

5.3.1 Evaluation Metrics ... 128

5.3.2 Simulation Setup .. 130

5.3.3 Simulation Results ... 131

5.3.3.1 Impact of Cache Size ... 131

5.3.3.2 Impact of Request Rate ... 134

5.4 Summary... 135

Chapter 6: Proactive Caching for Autonomous Vehicle Users 137

6.1 Introduction .. 137

6.2 System Model ... 143

6.2.1 Network Architecture ... 143

6.2.2 Caching Model ... 144

6.2.3 Rating Model .. 144

6.3 Problem Formulation .. 145

6.3.1 Caching Decision Problem Formulation .. 145

6.3.1.1 The “What” Problem ... 146

6.3.1.2 The “Where” Problem ... 146

6.3.2 Non-negative Matrix Factorization Technique .. 147

6.3.3 Alternating Least Squares Algorithm ... 149

6.4 Proposed Proactive Caching Approach .. 150

 8

6.4.1 User Future Ratings Prediction Module ... 151

6.4.2 User Mobility Prediction Module .. 151

6.4.3 Caching Decision Module .. 153

6.4.3.1 Caching for Core Network Nodes ... 153

6.4.3.2 Caching for Edge Nodes .. 156

6.5 Performance Evaluation ... 157

6.5.1 Evaluation Metrics ... 157

6.5.2 General Settings ... 158

6.5.3 Performance Evaluations ... 159

6.5.3.1 Highway Scenario ... 159

6.5.3.1.1 Simulation Setting .. 160

6.5.3.1.2 Performance Results of Highway Scenario .. 161

6.5.3.2 Grid Street Scenario .. 168

6.5.3.2.1 Simulation Setting .. 168

6.5.3.2.2 Performance Results of Grid Street Scenario ... 169

6.6 Summary... 176

Chapter 7: Conclusion and Future Research ... 177

7.1 Conclusion .. 177

7.2 Future Works .. 179

References .. 182

 9

List of Tables

Table 3.1: Notations .. 56

Table 3.2: Optimal Parameter Settings of the Existing Caching Decision Policies 89

Table 3.3: Comparisons in Terms of Execution Time .. 95

Table 4.1: Symbols Used for the Mobility Calculation Model 105

Table 4.2: Popular Video Table .. 107

Table 4.3: Parameters Setup ... 113

Table 5.1: Parameter Settings ... 130

Table 6.1: Notations .. 142

 10

List of Figures

Fig. 3.1: Different topology levels from multiple immediate upstream routers 66

Fig. 3.2: Topology of CERNET2 [40] .. 69

Fig. 3.3: Reduced video server load ratio VS cache size .. 70

Fig. 3.4: Average number of hops VS cache size ... 71

Fig. 3.5: An example for proposed SDN-based approach .. 77

Fig. 3.6: Overview of the simulator .. 80

Fig. 3.7: System architecture .. 83

Fig. 3.8: Comparison between the optimal solution and the SDN-based caching decision

policy in terms of the average number of hops ... 84

Fig. 3.9: Hit ratio of the optimal solution and the SDN-based caching decision policy for

different network cache size ... 85

Fig. 3.10: Execution time of the optimal solution and the SDN-based caching decision

policy for different network cache size ... 86

Fig. 3.11: Simulation topology ... 87

Fig. 3.12: Network cache size VS hit ratio ... 90

Fig. 3.13: Network cache size VS average number of hops ... 91

Fig. 3.14: Network cache size VS number of requests ... 92

Fig. 3.15: Exponent parameter α VS hit ratio ... 93

Fig. 3.16: Exponent parameter α VS the average number of hops 94

Fig. 3.17: Impacts of the simulation time on the number of caching decisions made 97

Fig. 4.1: System model ... 101

Fig. 4.2: A simple scenario ... 103

 11

Fig. 4.3: An illustration for user mobility calculation .. 105

Fig. 4.4: Topology for evaluation ... 112

Fig. 4.5: Impact of cache size on average retrieval delay ... 114

Fig. 4.6: Impact of cache size on average number of choppy playback 115

Fig. 4.7: Impact of cache size on average miss ratio .. 116

Fig. 5.1: System model ... 123

Fig. 5.2: Total energy consumption VS cache size ... 132

Fig. 5.3: Average number of hops VS cache size ... 133

Fig. 5.4: Average number of hops VS request rate ... 134

Fig. 5.5: Total energy consumption VS request rate .. 135

Fig. 6.1: An example for NMF technique ... 149

Fig. 6.2: Highway scenario ... 161

Fig. 6.3: Impact of RSU cache size on hit ratio .. 162

Fig. 6.4: Impact of core network cache size on hit ratio ... 163

Fig. 6.5: Impact of arrival rate on hit ratio .. 164

Fig. 6.6: Impact of RSU cache size on the average number of hops 165

Fig. 6.7: Impact of core network cache size on the average number of hops 166

Fig. 6.8: Impact of arrival rate on the average number of hops 167

Fig. 6.9: Grid street scenario ... 169

Fig. 6.10: Impact of RSU cache size on hit ratio .. 170

Fig. 6.11: Impact of core network cache size on hit ratio ... 171

Fig. 6.12: Impact of arrival rate on hit ratio .. 172

Fig. 6.13: Impact of RSU cache size on the average number of hops 173

 12

Fig. 6.14: Impact of core network cache size on the average number of hops 174

Fig. 6.15: Impact of arrival rate on the average number of hops 175

 13

List of Abbreviations

5G Fifth Generation of Cellular Mobile Communications

ABC Age-based Cooperative Caching

ARMA Auto-Regressive and Moving Average

AV Autonomous Vehicle

BS Base Station

CDM Caching Decision Module

CF Collaborative Filtering

CR Content Router

DNS Domain Name System

EPC Evolved Packet Core

EU European Union

FIB Forwarding Information Base

FIFO First-in First-out

HD High-Definition

ICN Information-centric Networking

ILP Integer Linear Programming

IoT Internet of Things

IP Internet Protocol

LAC Latency-aware Caching

LCC Lifetime-based Cooperative Caching

LCD Leave Copy Down

LCE Leave Copy Everywhere

 14

LFF Least Fresh First

LFU Least Frequently Used

LRU Least Recently Used

MaaS Mobility as a Service

MCD Move Copy Down

MF Matrix Factorization

ML Machine Learning

MPC Most Popular Content

MU Mobile User

NAT Network address translation

NDN Named Data Networking

NMF Non-negative Matrix Factorization

NP-hard Non-deterministic Polynomial-time Hard

P-CLS Popularity-driven Caching Location and Searching

PIT Pending Interest Table

PURSUIT Publish-Subscribe Internet Technology

QoE Quality of Experience

RAN Radio Access Network

RPC Router Position-based Cooperative Caching

RNN Recurrent Neural Network

RS Recommender System

RSU Road Side Unit

SDN Software-defined Networking

 15

SVD Singular Value Decomposition

TE Traffic Engineering

UFRPM User Future Ratings Prediction Module

UHD Ultra-high-definition

UMPM User Mobility Prediction Module

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

VNI Visual Networking Index

VoD Video on Demand

 16

List of Symbols

Symbols for Chapter 3

𝛼 Configurable weight for 𝑡𝑟

𝛽 Configurable weight for 𝑙𝑖

𝐴 Average number of hops

𝑎𝑚𝑛 ∈ {0, 1} If node n retrieves video from node m

𝑎𝑚𝑛(𝑡) ∈ {0, 1} If node n retrieves video from node m

𝐵𝑛(𝑣) The delay that can be reduced by caching video 𝑣 at node 𝑛

𝐶 Caching state set of all nodes

𝑐𝑛(𝑣) ∈ {0, 1} Caching state of node n for video v

𝑐𝑛(𝑣, 𝑡) Caching state of node n at time 𝑡

𝐷(𝑛) Reduced video transmission delay by performing caching at node n

𝐷(𝑛, 𝑡) Reduced video transmission delay by performing caching at node n

from time 0 to time t

𝐷𝐶(𝑣) Total delivery delay for delivering video 𝑣 from the video server to

all users at current time

𝑑0𝑛 The delivery delay from the video server to node 𝑛

𝑑𝑚𝑛(𝑣) Video transmission delay for video v from node m to node n

𝑑𝑚𝑛(𝑣, 𝑡) Video transmission delay for video v from node m to node n at

time t

𝐹 Total amount of traffic for all requests transmitted from the video

server if no caching is used

𝐺 Gain (the total reduced transmission delay)

 17

𝐺(𝑡) Total reduced video transmission delay (gain) from time 0 to time t

ℎ𝑖 The number of hops needed to deliver video request 𝑖

𝐼 The number of interest packets

𝑙𝑖 The topology level value of router 𝑖

𝐿𝑣 Length of video v

𝑁 Set of nodes

|𝑁| Total number of nodes

𝑛𝑜𝑏𝑗 Objective node

𝑃 Caching decision policy

𝑅 Reduced video server load ratio

𝑅(𝑛) Number of requests can be served from node n

𝑅𝑒𝑞 Set of requests for the videos

|𝑅𝑒𝑞| Total number of requests

𝑟𝑒𝑞𝑛(𝑣) Total number of requests for video v from node n

𝑟𝑒𝑞𝑛(𝑣, 𝑡) Number of requests for video v from node n at time 𝑡

𝑇 Simulation time

𝑇𝑐 Video cost rank table

𝑇𝑑 Caching decision calculation table

𝑇𝐻 Caching threshold for MPC

𝑡𝑖 Threshold of router 𝑖

𝑡𝑟 Threshold of root router

𝑉 Set of videos

|𝑉| Total number of videos

 18

𝑍𝑛 Cache size of node n

 19

Symbols for Chapter 4

𝛼 Angle between user moving direction and the BS

𝐶̅ The average number of choppy playback

𝑐𝑖 The number of choppy playback for video 𝑖

�̅� The average retrieval delay

𝑑 Distance that a user moves in the coverage area of the BS

𝑑𝑖 The retrieval delay of video 𝑖

𝑑𝑡0−𝑏𝑠 Distance between a mobile user and the BS at time 𝑡0

𝑑𝑡1−𝑏𝑠 Distance between a mobile user and the BS at time 𝑡1

𝑑𝑡1−𝑡0 Distance moved by a mobile user between time 𝑡0 and 𝑡1

𝐻 Handoff indicator

�̅� The average miss ratio

𝑚𝑖 ∈ {0, 1} If video 𝑖 is cached at a BS or a CR locally

𝑃0 The position when user enters the coverage area of a BS

𝑃1 The position of user at time 𝑡1

𝑃2 The predicted position when user is about to leave the coverage

area of a BS

𝑅𝑖 Bit rate of video i

|𝑅𝑒𝑞| Total number of requests

𝑟 Radius of the BS coverage

𝑆𝑖 Size of video i

𝑥𝑏𝑠 𝑥 coordinate at of BS

𝑥𝑡0 𝑥 coordinate at time 𝑡0

 20

𝑥𝑡1 𝑥 coordinate at time 𝑡1

𝑦𝑏𝑠 𝑦 coordinate at of BS

𝑦𝑡0 𝑦 coordinate at time 𝑡0

𝑦𝑡1 𝑦 coordinate at time 𝑡1

 21

Symbols for Chapter 5

𝛼, 𝛽, 𝛾 ∈{0,1} Parameters

𝜃 Configurable weight

𝜎 Configurable weight

𝐴 Caching policy

𝑎 Path loss factor

𝑎𝑔𝑒(𝑖) Set of data lifetime for intermediate node i in a sliding time

window

𝑏 Energy cost of the transmitter amplifier

𝐶(𝑖, 𝑡) Caching status of node 𝑖 at time 𝑡

𝑐𝑑𝑙(𝑖, 𝑡) ∈ {0, 1} Decision variable representing if data item 𝑑𝑙 is cached at node 𝑖 at

time 𝑡

𝐷 Set of data items

|𝐷| Total number of data items

𝐷𝑗 Euclidean distance between IoT device j and the gateway node

𝑑𝑙 The lth data item

𝑒𝑎𝑤𝑎𝑘𝑒 Energy consumed when transferring from the sleep mode to the

active mode

𝑒𝑗 Energy consumed by IoT device 𝑗

𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔 Energy consumed by IoT devices for sensing one bit

𝑒𝑡 Energy consumed by a transmitter for transmitting one bit

𝑓 The freshness requirement

𝑓𝑒() Threshold decision function of the edge nodes

 22

𝑓𝑚() Threshold decision function of the middle-level nodes

𝑓𝑟() Threshold decision function of the root nodes

 𝐻𝑜𝑝̅̅ ̅̅ ̅̅ Average number of hops

ℎ𝑜𝑝𝑛(𝑡) Number of hops from the content producer to the user at time 𝑡

𝐼 Set of intermediate nodes

|𝐼| Total number of intermediate nodes

𝐽 Set of IoT devices

𝑛𝑗 Number of times that IoT device j is activated

𝑃 Packet size

𝑅𝑒𝑞(𝑡) Requests for the IoT data items at time 𝑡

𝑟𝑖𝑡 Request rate of node 𝑖 at time 𝑡

𝑟𝑛(𝑖, 𝑡) ∈ {0, 1} If the nth request can be served from the intermediate nodes at time

𝑡

𝑟𝑒𝑞𝑛(𝑡) The nth request at time 𝑡

𝑠 Cache size of node 𝑖

𝑇 Total time

𝑇𝑔 The time that the data item is generated

𝑇𝐻𝑖 Threshold of node 𝑖

 23

Symbols for Chapter 6

𝜆 A regularization parameter

𝜏 The time that a video chunk can be played

𝜉 Size of a video chunk

𝐴 Caching decision

𝐵 Total benefit that can be achieved by performing proactive caching

with the node cache condition

𝐵𝑅(𝑣𝑚) Bitrate of video 𝑣𝑚

𝐵𝑊ℎ Available bandwidth of the link for the ℎth hop

𝑏𝑣𝑚 The benefit of caching video 𝑣𝑚

𝐶(𝑖, 𝑡) Caching status of node 𝑖 at time 𝑡

𝑐𝑣𝑚𝑘 (𝑖, 𝑡) If video chunk 𝑣𝑚
𝑘 is cached at node 𝑖 at time 𝑡

𝑐𝑠𝑖 Cache size of node 𝑖

𝐷 Total distance

𝐷𝑖𝑗(𝑣𝑚
𝑘) Delivery cost for video chunk 𝑣𝑚

𝑘 from node 𝑖 to node 𝑗

𝐷𝑖𝑠𝑡ℎ Physical link length for the ℎth hop

𝑑𝑖𝑗 End to end delay from node 𝑖 to node 𝑗

𝐹(𝑥, 𝑦) The integral of 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦) Planned route for the vehicle

𝐻 Set of hops that a video needs to be delivered

𝐻(𝑖, 𝑡) Number of requests that can be served from node 𝑖 at time 𝑡

𝐻𝑜𝑝𝑠̅̅ ̅̅ ̅̅ ̅ Average number of hops

ℎ The ℎth hop in 𝐻

 24

𝐼 Set of nodes

𝐾(𝑣𝑚) Number of chunks that a video 𝑣𝑚 can be divided

𝑘𝑙 The last chunk that the AV user watches before arriving node 𝑖

𝑀 Total number of videos

𝑀𝑎𝑥𝑅𝑎𝑡𝑒 The maximum rating in video set 𝑉

𝑀𝑎𝑥𝑅𝑒𝑞 The maximum number of requests in video set 𝑉

𝑀𝑎𝑥𝑆𝑖𝑧𝑒 The maximum size of video in 𝑉

𝑁 Total number of AV users

𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚) Number of video chunks that will be played during the period

𝑡𝑑(𝑢𝑛, 𝑖) and 𝑡𝑎(𝑢𝑛, 𝑖)

𝑛𝑠𝑣𝑚 The normalized size of video 𝑣𝑚

𝑃 User feature matrix

𝑃𝑜𝑝(𝑣𝑚) Historical popularity of video 𝑣𝑚

𝑃𝑟𝑒𝑑(𝑣𝑚) The normalization of the predicted ratings for video 𝑣𝑚

𝑝𝑛 A 𝑛th row vector

𝑝𝑛𝑤 The 𝑛th row 𝑤th column element in 𝑃

𝑄 Video feature matrix

𝑄ℎ Queueing delay for the ℎth hop

𝑞𝑚
𝑇 A 𝑚th column vector

𝑞𝑚𝑤 The 𝑚th row 𝑤th column element in 𝑄

𝑅 Rating matrix

�̃� The estimated rating matrix

𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ The average predicted rating of video 𝑣𝑚

 25

𝑅𝑒𝑞(𝑖, 𝑡) Set of requests for all videos from node 𝑖 at time 𝑡

|𝑅𝑒𝑞(𝑖, 𝑡)| Total number of requests of node 𝑖 at time 𝑡

𝑟(𝑢𝑛, 𝑣𝑚) Rating of user 𝑢𝑛 on video 𝑣𝑚

𝑟(𝑢𝑛, 𝑣𝑚)̃ The estimated rating of user 𝑢𝑛 on video 𝑣𝑚

𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡) Total number of requests for the kth chunk of video 𝑣𝑚 of node 𝑖 at

time 𝑡

𝑠𝑣𝑚 Size of video 𝑣𝑚

𝑡𝑎(𝑢𝑛, 𝑖) The arrival time of an AV user 𝑢𝑛 at an edge node 𝑖

𝑡𝑏 The time that AV user needs to finish watching the buffered video

chunks before fetching new chunks from RSUs

𝑡𝑐 Current time

𝑡𝑑(𝑢𝑛, 𝑖) The departure time of an AV user 𝑢𝑛 at an edge node 𝑖

𝑈 Set of AV users

𝑢𝑛 AV user 𝑛

𝑣𝑚 Video 𝑚

𝑉 Set of videos

𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ Current velocity vector of an autonomous vehicle

𝑊 Number of features

(𝑥𝑐, 𝑦𝑐) Current position of the vehicle

(𝑥𝑝, 𝑦𝑝) Predicted position of the vehicle

 26

Chapter 1: Introduction

Information-centric networking (ICN) is proposed as a significant common approach of

several future Internet research activities. The ICN architecture leverages in-network

caching to improve the efficiency of content distribution, and uses name-based routing to

support mobility by nature.

This chapter is divided into four parts. The first part presents a brief background on

current Internet shortcomings and several future network scenarios for ICN in-network

caching. The second part describes the motivation of the research on ICN in-network

caching. The third part presents the contributions of this research. Finally, the last part

shows the thesis organization.

1.1 Background

With the tremendous increase of content transmissions, the current Internet traffic has

shifted from host-centric to content-centric [1]. According to the Cisco’s Visual

Networking Index (VNI) report [27], the Internet traffic will increase around threefold from

2016 to 2021, the sum of all forms of video and multimedia traffic will account for 82% of

global consumer traffic by 2021. Further, the mobile video will account for 78% of the

total mobile traffic by 2021. This trend causes a huge challenge for today’s Internet on how

to distribute videos efficiently. Moreover, billions of devices will be connected to the

Internet over the next five years, which leads the current IP-based Internet to facing

tremendous challenges, such as limited expressiveness of IP addressing multicast, complex

 27

mobility support and the requirements of energy efficiency for IoT resource-constrained

devices.

To address these challenges, many future Internet architectures have been proposed.

Among all the proposed architectures, information-centric networking (ICN) [1] is a

promising paradigm to facilitate content delivery, reduce retrieval delay and save energy

for resource-constrained devices by performing in-network caching. Since ICN supports

name-based routing, it decouples contents from the locations, which means that ICN

supports mobility by nature. Therefore, by combining ICN and 5G, we can get ICN-5G

networks [76]; by combing ICN and IoT, we can get ICN-IoT networks [1]. With the help

of emerging technologies, such as software-defined networking (SDN) [45] and machine

learning algorithms (e.g., recommender system algorithms [98]), the efficiency of in-

network caching can be further improved.

1.1.1 Information-centric Networking

The evolution of social networking, mobile applications, multimedia streaming services,

and IoT networks has caused the current IP-based Internet to shift from host-centric to

content-centric. However, the current IP-based Internet which was originally designed for

host-to-host communications, is a host-centric network. The current host-centric IP-based

Internet is inefficient for today’s content transmissions, hence ICN has been proposed to

provide efficient content transmissions for future networks.

The basic principle of ICN is that content is identified by using a unique and location-

independent identifier, so that users can fetch the content by its name instead of its IP

address as used in the current Internet. Therefore, ICN can provide native support for

scalable and highly efficient content retrieval, support mobility, and overcome the limited

 28

expressiveness of IP addressing of IP-based networks. Many projects or architectures have

been proposed for ICN, such as the European Union (EU) funded project Publish-Subscribe

Internet Technology (PURSUIT) [31], and the United State funded project called Named

Data Networking (NDN) [8]. However, NDN is currently the dominant one and it has been

widely accepted in the research community.

Routers in ICN route and forward packets based on names, which eliminate three

problems caused by addresses in the IP-based Internet: address space exhaustion, NAT

traversal, and address management [113]. Since the namespace is unbounded, there is no

address exhaustion problem in ICN. There is no NAT traversal problem since NDN does

away with addresses, public or private. Finally, address assignment and management is no

longer required in local networks. Conventional routing protocols, such as OSPF and BGP,

can be adapted to route on name prefixes by treating names as a sequence of opaque

components and doing component-wise longest prefix match of a name in an Interest

packet against the forwarding information base (FIB) table. The research of the Name-

based routing is beyond the scope of this thesis. Although the details of name-based routing

are outside the scope of this research, interested reader is referred to [11].

In general, when a node receives an interest packet, it first checks if the requested

content has been cached locally. If it is cached, this node will directly return the content

back to the user. Otherwise, this node will check if the name of the content is in its pending

interest table (PIT). The PIT table stores the interest packets that the node has received but

not satisfied yet. If there is a matching entry in the PIT, this node will simply add the

incoming interface of this interest packet in the corresponding entry. Once the requested

content is available, it will be sent back to users through all the interfaces that are recorded

 29

in the PIT entry. On the other hand, if there is no matching entry in its PIT, it will forward

the interest packet toward the content provider based on information in its FIB.

In-network caching is one of the most important features of ICN to reduce duplicated

content transmissions and network delay. Contents can be cached at every node (e.g.,

router) in ICN. For example, users can fetch the contents from a nearby node instead of the

remote content provider. Therefore, the workload of the content provider and the network

delay can be reduced simultaneously. Caching decision policies play a vital role in ICN.

This thesis exploits the concept of in-network caching in different network architectures

(e.g., pure ICN networks, ICN-5G networks and ICN-IoT networks), and proposes novel

caching decision policies for autonomous vehicle (AV) users.

1.1.2 ICN In-network Caching

Generally, an in-network caching approach includes two parts: a caching decision policy

and a caching replacement policy. The caching decision policy decides what contents

should be cached at which node. The caching replacement policy decides which content

should be evicted when the cache is full. For efficiency reasons, the replacement policy

should be performed as fast as possible, which means that complicated replacement

policies are unsuitable for ICN [115]. Moreover, even a simple random replacement policy

can achieve similar performance results compared to the Least Recently Used (LRU)

replacement policy [78]. On the other hand, an efficient caching decision policy can

improve the performance of ICN in-network caching significantly [115]. Therefore, how

to design an efficient caching decision policy is a crucial issue in the ICN in-network

caching research field.

 30

Caching decision policies can be divided into two categories: reactive caching

approaches and proactive caching approaches. They are discussed in the next subsections.

1.1.2.1 Reactive Caching Approaches

For reactive caching approaches, contents will only be cached if they were repeatedly

requested in the past. If a content has never been requested before, then there is no copy of

this content in the cache. Therefore, the first request of a video will have to be served by

the remote content provider. Moreover, processing and caching videos at a cache also needs

additional time since checking if videos are cached locally (reading) and writing video into

the storage memory take time. This means that during a small time period ∆𝑡, when a

particular content is being cached, requests for the same video will not be served by the

cache either.

1.1.2.2 Proactive Caching Approaches

Proactive caching approaches try to predict future contents that will be requested by the

users, and pre-cache videos before users are requesting them. Consequently, proactive

caching is more efficient than reactive caching, especially for bursts of requests during

peak hours. Obviously, how to make accurate predictions is the main issue for proactive

caching approaches.

1.1.3 ICN-based Networks

To date, 5G is considered as a key enabling technology for the development of current

networks. Using 5G in conjunction with ICN could provide significant performance

improvements. As a result, ICN is a promising next-generation network architecture, where

future networks could be built on top of ICN. In addition, next-generation networks should

 31

deal with the transition from host-centric communications to content-centric

communications. By combing ICN with recent technologies in wired and wireless

networks, next-generation network architectures could be classified into pure ICN

networks (wired networks), ICN-5G networks (wireless networks) and ICN-IoT networks

(wireless and wired networks).

1.1.3.1 ICN-5G Networks

Since the amount of wireless traffic is increasing at a fast pace and ICN is a promising

candidate network architecture to realize various 5G objectives [76], ICN-5G has great

potential for future wireless networks. Compared to the traditional IP network, ICN

supports name-based routing, in-network caching and mobility by nature, which makes

ICN suitable for wireless networks. The name-based routing naturally decouples contents

from the locations. In-network caching enables every node in ICN-5G networks to cache

contents. Consequently, 5G-ICN can provide contents to mobile users (MU) with lower

latency than 5G networks, i.e., better quality of experience (QoE).

1.1.3.2 ICN-IoT Networks

IoT networks are content-centric in nature. Users or applications focus on “what” not

“where”. In other words, IoT users (or applications) care about the data itself not where the

data is stored in. ICN works in a receiver-driven model. This means users send an interest

packet to the network to retrieve a content, and any node in the network that has the

requested content can send the content back to the user. Moreover, the content in ICN is

named by using a unique and location-independent identifier, so that users can fetch the

content by its name instead of its IP address. This feature allows ICN to overcome the

 32

limited expressiveness of IP addressing of IP-based networks, which is suitable for IoT

networks. Based on these advantages, ICN-IoT networks also have potential to be the next-

generation IoT networks, and some pioneer works have already been conducted [8] [69]

[35] [64].

1.1.3.3 Software-defined Networking

Software-defined networking (SDN) is an emerging network architecture that decouples

the control plane from the data plane [45]. The network intelligence and states are logically

centralized to provide a global view of the network. This feature can potentially overcome

the drawbacks of the existing works in the field of in-network caching [15] [35] [64] [80]

[109]. Some pioneer research works about the combination of ICN and SDN have been

conducted recently [22] [41] [94] [102]. However, they only proposed an SDN-based ICN

architecture without discussing the caching decision policy. This thesis proposes to

leverage the global view provided by the SDN controller to improve the efficiency of in-

network caching.

1.1.4 Matrix Factorization Techniques

Recent advances in machine learning algorithms and their applications will have profound

impacts on computing, networking and caching [49]. For example, the future popularity of

content can be predicted by extreme-learning machine techniques (e.g., matrix

factorization (MF) [12], feedforward neural networks [86]). Since the future popularity of

content can be predicted, popular contents can be pre-fetched before users request them. In

this way, the caching efficiency can be improved.

Since users’ preferences are the direct reason that makes videos have different levels of

popularity, the popularity of videos can be predicted by using users’ ratings on those

 33

videos. Singular value decomposition (SVD) and non-negative matrix factorization (NMF)

are two typical MF techniques that can be used to predict user ratings in recommender

systems (RS) [43]. SVD and NMF can achieve similar performance. The only difference

between SVD and NMF is that SVD may generate negative ratings for low rated videos,

which is considered not practical in real life networks [37].

The idea of the NMF technique is that there are W latent features that have impacts on

the rating conducted by a user on a video. NMF tries to explain the ratings by characterizing

both users and videos [43]. By learning the latent features, NMF can predict the ratings of

videos that have not been watched by users.

1.2 Motivations

Although a great deal of research on caching has been conducted for traditional IP-based

networks, most of it cannot be applied directly to ICN due to its specific features such as

caching-transparency, ubiquity and fine-granularity [115]. Hence, it is necessary to

conduct research on caching decision policies for ICN. Moreover, with the potential of ICN

to incrementally replace the current IP-based Internet architecture, the combination of 5G

and ICN, IoT and ICN have become the current trends [8] [35] [64] [69]. However, the in-

network caching decision policies for the pure ICN are not suitable for those combinations

due to the particular caching requirements and special challenges of the combined network

technologies. Hence, it is necessary to design caching decision polices for different

potential network scenarios based on their particular caching requirements and special

challenges.

Since ICN supports mobility by nature, ICN is more suitable for 5G than the IP-based

Internet. Meanwhile, in-network caching is a key component of 5G. There are existing in-

 34

network caching approaches [2] [20] [38] [72] [55] [87–88] [100] [101] [106] [120], but

they are based on the IP-based Internet which only provides weak support for mobility. On

the other hand, although some recent works [42] [63] [84] [108] [114] propose ICN-based

caching approaches, they only focus on paradigms for ICN-5G networks without focusing

on the caching decision policies. Moreover, 5G users will experience more frequent

handoffs and shorter connection durations in 5G networks due to the short transmission

range of millimeter wave (mmWave) [3]. Unfortunately, most of the existing caching

approaches do not consider the impact of frequent handoffs in 5G networks. Due to the

aforementioned problems, it is essential to design efficient caching decision policies for

ICN-5G networks.

Another challenge for next-generation networks is related to ICN-IoT networks. As

devices in ICN-IoT networks are typically battery-powered, energy efficiency is a major

challenge for ICN-IoT networks. Through caching IoT data at different nodes (such as a

content router, a base station (BS), etc.), IoT devices can stay in sleep mode for a longer

period of time and therefore reduce the overall energy consumption. However, caching IoT

data is more challenging than caching traditional Internet data since it is only valid for a

limited period of time after being generated by the content producer [90]. Once the IoT

data has expired, it becomes meaningless for users and will be dropped immediately. Some

pioneering research works have been performed recently [8] [35] [64] [69] [90] to leverage

in-network caching to gain benefits (i.e., energy efficiency) for ICN-IoT networks.

Unfortunately, they only used simple caching decision policies, such as random caching

and LCE (leave copy everywhere) [1], which are inefficient for saving energy in ICN-IoT.

 35

Motivated by the lack of research on caching decision policies for ICN-IoT networks, this

thesis designs a novel caching decision policy for ICN-IoT networks.

The motivation of this thesis is to make original contributions to the ICN community,

shed light on designing caching decision policies for different scenarios in next-generation

networks.

1.3 Contributions of this Research

The research focuses on developing ICN in-network caching decision policies that can be

used to simultaneously improve the performance of different network scenarios and the

QoE of the end users. Some advanced techniques are also leveraged to enhance the

efficiency of ICN in-network caching. To date, the contributions to the literature resulted

from this research are listed below.

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, S.S. Rao. “Router Position-

Based Cooperative Caching for Video-on-Demand in Information-Centric

Networking”, Proceedings of the 2017 conference on 41st Annual IEEE Computer

Software and Applications Conference (COMPSAC), pp. 523-528, July 2017.

(Chapter 3)

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, “When 5G Meets ICN: An

ICN-based Caching Approach for Mobile Video in 5G Networks”, Computer

Communications (Elsevier), 118:81–92, 2018. (Chapter 4)

 Z. Zhang, C.H. Lung, I. Lambadaris, M. St-Hilaire, “IoT Data Lifetime-Based

Cooperative Caching Approach for ICN-IoT Networks”, Proceedings of the 2018

IEEE International Conference on Communications (ICC), pp. 1-7, May 2018.

(Chapter 5)

 36

 Z. Zhang, C.H. Lung, M. St-Hilaire, I. Lambadaris, “Smart Caching: Empower the

Video Delivery for 5G-ICN Networks”, Proceedings of the 2019 IEEE

International Conference on Communications (ICC), pp. 1-7, May 2019. (Chapter

6)

 Z. Zhang, C.-H. Lung, M. St-Hilaire, I. Lambadaris, “An SDN-based Caching

Decision Policy for Video Caching in Information-centric Networking”, to appear

in IEEE Transactions on Multimedia. (Chapter 3)

 Z. Zhang, C.-H. Lung, M. St-Hilaire, I. Lambadaris, “Smart Proactive Caching:

Empower the Video Delivery for Autonomous Vehicles in ICN-based Networks”,

ready for submission. (Chapter 6)

1.4 Thesis Organization

The rest of this thesis is organized as follows:

In Chapter 2, related research works for ICN in-network caching in pure ICN networks,

ICN-5G networks and ICN-IoT networks are provided. Advanced techniques (e.g., SDN

and machine learning techniques) which can be used to improve the efficiency of ICN in-

network caching are also presented in this chapter.

In Chapter 3, the caching decision problem is formulated as a 0-1 static integer linear

programming (ILP) problem. By introducing the notation of time, the formulated 0-1 static

ILP problem becomes a 0-1 dynamic ILP problem which is NP-hard. As future video

requests cannot be known in a real network, this chapter uses the next time slot’s video

requests as the input and uses the current time’s optimal solution as the caching decision.

Therefore, a more accurate optimal solution for the dynamic networks which change its

states dynamically can be found. In order to overcome the high computational complexity

 37

of finding optimal solutions, a light-weight cooperative caching decision policy is

proposed. The proposed approach (called router position-based cooperative caching

(RPC)) is based on the router’s topology position to cache popular video on the edge

routers. Since the proposed approach does not require knowledge of the popularity of

videos a priori, it is more practical compared to existing approaches [1] [7] [17] [25] [47–

48] [62] [79] [103]. This chapter also evaluates the proposed approach with a realistic

topology and real data traces. Simulation results show that the proposed approach

outperforms existing approaches in terms of the average number of hops and server load

ratio.

Since the proposed RPC approach makes caching decisions locally, the efficiency can

be improved if the caching decisions are made from a controller with a global view. The

concept of SDN is leveraged in this chapter to improve the performance of caching. With

the global view of the network, a more efficient caching approach is proposed. Through

simulations, the proposed SDN-based approach is more efficient than RPC, and the

performance is close to the optimal solution.

In Chapter 4, motivated by a few research works that aim at reducing the retrieval delay

due to frequent handoffs in ICN-5G networks, an ICN-based caching decision policy for

ICN-5G networks is proposed. Since user mobility has rarely been considered in existing

works [2] [20] [38] [72] [87–88] [100] [101] [106] [120], this chapter exploits user mobility

to reduce the retrieval delay caused by frequent handoffs. Videos can be retrieved from the

router which is directly connected to the BS instead of the original content provider when

a handoff happens. Simulation results show that the proposed caching decision policy

outperforms the traditional IP-based RAN (radio access network) caching and a recent

 38

proposed ICN-based caching decision policy [114] in terms of retrieval delay and network

traffic reduction.

Chapter 5 applies the concept of in-network caching in ICN-IoT. Specifically, this

chapter proposes a novel cooperative caching decision policy based on the IoT data lifetime

and user request rate to improve the energy efficiency of ICN-IoT networks. By caching

IoT data at different nodes (such as content routers, BSs, etc.), IoT devices can stay in sleep

mode for a longer period of time and, therefore, reduce the overall energy consumption.

With the help of an auto-configuration mechanism, the proposed IoT data lifetime-based

cooperative caching (LCC) decision policy can dynamically adapt to the change of request

rate. Extensive evaluations were performed and the simulation results show that LCC

outperforms existing approaches in terms of total energy consumption (reduction up to

40%) and average number of hops (reduction up to 20%), which is also directly related to

the response time.

In Chapter 6, a novel hierarchical proactive caching approach is proposed for

autonomous vehicle (AV) users. By using the NMF technique, the users’ future ratings on

videos can be predicted. To solve the shortcoming of the NMF technique that generates

inaccurate predictions for high rated but unpopular videos, the proposed approach also

takes video historical popularity into consideration. Thus, the users’ future demands can

be predicted based on the user preferences (i.e., the predicted ratings) and the historical

popularity of videos. Since the traveling route, velocity and current location information of

AV users can be easily obtained from the self-driving system of AVs, the future position

of AVs can be predicted based on this information. As a result, the proposed approach can

decide what videos should be cached at which road side unit (RSU) before the AV users

 39

arrive. The proposed approach is evaluated in two scenarios: a highway scenario and a grid

street scenario. The simulation results show that the proposed proactive caching is more

efficient in terms of cache hit ratio and the average number of hops compared to existing

approaches.

Finally, Chapter 7 concludes the thesis by providing an overview of the main results and

discusses the potential research directions.

Chapter 2: Literature Review

2.1 ICN in-network Caching

Caching can be defined as having data, information and object temporarily stored in a

 40

location for predictive usage on frequent or closely related interval [1]. In ICN, every node

(e.g., content router (CR)) has the capability to cache contents or a part of a content locally,

which makes caching in ICN become in-network caching. Since ICN works in a receiver-

driven model and uses content’s name instead of IP address for routing, it decouples

contents from the locations and supports mobility. When requesting content, the user

issues an interest packet which carries the name of the content to his/her neighbor CRs. If

any of the neighbor CRs has the content, the user can fetch the content from the storage

memory of that CR. Otherwise, this interest packet will be forwarded based on the

information in each of the forwarded interest packets in the PIT. The PIT stores the interest

packets that CR has received but not satisfied yet. When users request contents, they don’t

care where the contents are (e.g., at the BS, router, gateway, or the original content

provider), they only care about how fast they can fetch the contents. Therefore, if the

nearest node has the requested content, the user can fetch the content from the node directly

instead of from the original content provider (typically located far away). In this way, the

retrieval delay and network traffic can be reduced considerably.

 As in–network caching is a key feature of ICN, how to improve the efficiency of in-

network caching has become a curial problem. Since the caching decision policy plays a

key role in in-network caching, how to design an efficient caching decision policy is a

challenging issue. In fact, many caching decision policies in ICN have been proposed in

recent years [1] [7] [17] [25] [47–48] [62] [79] [103]. Generally, the in-network caching

can be categorized into two types: coordinated and non-coordinated.

Non-coordinated caching approaches have less overhead and are simpler than

coordinated approaches. However, they have more overlapped contents and lower hit

 41

ratios. For example, Jacobson et al. [1] proposed leave copy everywhere (LCE). This

approach lets every router cache all the packets that go through it, which leads to a high

redundancy. Leave copy down (LCD) [47] and move copy down (MCD) [48] have been

used to replace LCE for the sake of reducing object redundancy. In [7], Prob caching is

proposed to cache content by a fixed probability. Carofiglio et al. [17] proposed the

latency-aware caching (LAC) policy which takes popularity and latency into consideration.

They calculate a probability according to the content’s popularity and latency, and let the

routers decide to cache the content according to this probability. Evaluation results showed

that they achieved a higher hit ratio and lower delivery time compared to LCD. However,

all the approaches mentioned above let each router make its own decision locally. In other

words, there is no cooperation between the routers which prevents them from having a

global view to make better caching decisions.

On the other hand, coordinated caching approaches can achieve higher hit ratios and

lower network delay at the expense of higher overhead and complexity. “Coordination”,

“cooperation” and “collaboration” are all used in ICN literature for coordinated caching

approaches. Coordinated in-network caching carefully picks contents to store with the

intention of avoiding duplicates in the cache. In WAVE [25], an upstream router

recommends to its downstream router the number of chunks to be cached. As a popularity-

based cache replacement policy, WAVE can achieve effective performance compared to

Prob caching [7]. However, WAVE has a high cooperation overhead for each

recommendation from an upstream router to a downstream router. Salah et al. [79]

proposed a centralized coordinated caching approach by designing a caching controller in

each domain. The caching controller is responsible for deciding and advertising the caching

 42

decisions to each caching node. This approach is complicated and has a high overhead.

 Liu et al. [58] took video drop ratio into consideration to design their user-behavior

driven caching approach. Li et al. [51] presented a cooperative caching strategy for ICN

video delivery which combines directory-based and traditional hash-based caching

approaches. However, the cooperation only happens among the one-hop neighbors instead

of the whole network. Besides, this approach also introduces some extra delay and

overhead due to the fact that a router only caches a part of the segments of a video. It needs

to collaborate with other routers to satisfy a user’s request for an entire video.

Several light-weight approaches are designed to simplify the coordinated caching

approach to suit ICN caching requirements. For example, Ming et al. [62] proposed a light-

weight aged-based cooperative caching approach (ABC) with an aim to spread popular

contents to the network edge. This policy assigns an age to each content according to the

content’s popularity and the distance to the content server. However, ABC requires

knowledge of content’s popularity a priori which is impractical.

Xu et al. [107] designed the popularity-driven caching location and searching (P-CLS)

approach which considers router’s position and video’s popularity. However, similar to

LCD [47], once a hit occurs, the hit chunk will be pulled down from the upstream router to

the downstream router. They did not regard router position as a parameter which makes a

notable impact on the performance of ICN in-network caching.

A partial popularity-based approach is proposed in [70], they only cache part of the total

requested contents by comparing content’s popularity. They also consider the dynamic

content popularity. Authors in [14] present MPC, a popularity-based caching approach

which will cache a content once its number of requests exceeds the popularity threshold.

 43

But similar to WAVE [25], MPC also induces high overhead during each recommendation

from a router to its neighbors. Moreover, it is inefficient to push popular contents to edge

routers as all routers have the same popularity threshold.

2.2 In-network Caching in ICN-5G networks

The rapid development of wireless networking technologies and mobile devices has led the

dominated traffic in cellular network to be changing from voice and text to data content,

especially the big files such as video files. The rich bandwidth and high downloading speed

provided by 5G technologies make more and more MUs watch videos on their mobile

devices. However, the wireless network will be facing a tremendous traffic. Therefore, how

to reduce the traffic load for wireless network and improve the user QoE have become

major challenges.

Deploying caches at the edge of wireless networks, especially in the RAN, is regarded

as a promising way to alleviate the increasing pressure of wireless network traffic growth

and improve MU QoE. Generally, RAN devices have storage and computing capabilities

in 5G networks, therefore it is possible to deploy caches at the RAN. With RAN caching,

MUs can fetch cached contents and thus significantly improving the MU QoE and reducing

the backhaul traffic load.

The existing IP-based RAN caching approaches are based on the packet-level.

Unfortunately, they are not content-aware and they suffer from a scalability problem [96].

Moreover, the packet-level RAN caching is inefficient to cope with todays’ content-

oriented 5G networks. To overcome these shortcomings, the name-based forwarding and

routing mechanisms of ICN can be leveraged to realize content awareness for 5G and make

 44

5G more scalable. With the help of its in-network caching, the content retrieval delay and

the amount of mobile traffic can be reduced effectively.

ICN is a state-of-the-art networking paradigm. It naturally supports client mobility and

can make 5G mobility management simple. For example, in traditional IP-based wireless

network, the IP address of a MU will change if the MU moves to another location. To deal

with this issue, cellular network service providers have to use additional methods or

protocols such as mobile IP. However, mobile IP suffers from issues such as triangular

routing, control overhead to manage the routing states between the current point of

attachment and the home agent. In contrast, MUs can fetch contents without any mobility

issue in ICN-based wireless networks, e.g., ICN-5G networks. Because ICN is a receiver-

driven network, its naming mechanism decouples the location and identity. Each content,

user, and content provider has a unique name in ICN, and this name will not change no

matter how their location changes. MUs send interest packets to the networks to fetch

contents. Any node that has the requested contents can send the contents back to them

based on the name of the MU. Recently, ICN-5G (the combination of 5G and ICN) has

been proposed [42] [63] [84] [108] [114]. In [42], a mobility tracking node is used to

redirect consumer’s request from an old position to a new position of a producer. In this

way, the content retrieval delay can be reduced once a handoff occurs. However, they are

focusing on the producer mobility issue. For video services, the producer (i.e. video

provider) has no mobility while consumers (i.e. users) have high mobility. Nishiyanma et

al. [68] have proposed a routing-based mobility architecture to provide seamless mobility

management for 5G by adopting ICN. The evaluation results show that their proposed

architecture reduces signaling overhead and paging overhead significantly. In [76], an

 45

application-driven framework is introduced to realize ICN-5G. The ICN-5G architecture

can achieve the mobility as a service (MaaS) objectives. The work in [63] proposed an

efficient access control framework for ICN-5G. Legitimate users can access the content

directly without verification/authentication by the content provider authentication

mechanism, which can reduce the delivery latency.

In-network caching is the key feature of ICN and as a result, a lot of work has been

conducted in ICN caching. However, there are only a few papers discussing ICN-5G

caching algorithms [40] [84] [96] [108]. In [114], a cooperative caching approach is

proposed to reduce cache redundancy and improve the diversity of content distribution.

Content popularity and availability are considered to make the caching decision in a

probabilistic way. However, they did not propose any method to reduce the retrieval delay

once a handoff occurs, which is a crucial issue for 5G video caching. For the sake of

improving the performance of video distribution, Si et al. [84] investigated the use of

harvested bands for proactively caching videos closed to the users. They formulated the

allocation of harvested bands as a Markov decision process. Based on the Markov decision

process, a spectrum management mechanism is developed to improve the efficiency of

proactive video caching and spectrum utilization. This thesis focuses on the caching

algorithm, therefore, the spectrum management is beyond the scope of investigation. In

[108], an innovative video streaming solution for ICN mobile networks is proposed. In

order to achieve better performance, a content-centric multi-region video content

management method and a mobility-adaptive content-centric video delivery strategy is

designed. The optimal video provider and delivery path can be achieved by these two

methods. However, their caching strategy only considers the caching space which is

 46

inefficient in improving the performance of video distribution. Wang et al. [96] explored

current content delivery and caching techniques in 5G networks. Based on their trace-

driven evaluation results, the deployment of in-network caching into 5G networks can

potentially help reduce mobile traffic compared to RAN caching and evolved packet core

(EPC) caching. Conclusively, ICN-based caching can cope with the ever growing demand

of mobile users for huge amount videos efficiently. However, they did not propose any

new caching decision strategy.

2.3 In-network Caching in ICN-IoT networks

The rapid development of networking technologies, such as 5G, also boosts the

development of IoT networks. Billions of devices will be connected to the Internet, about

44 trillion GB traffic will be generated over the next 5 years [27], which will bring a huge

pressure for the current IP-based networks. The three major challenges that IoT networks

are facing are limited expressiveness of IP addressing, complex mobility support and the

requirement of energy efficiency. The first two challenges can be easily resolved by using

ICN as the infrastructure for IoT networks. Then, the third challenge will be the only

challenge left.

There are two major methods to improve the energy efficiency of IoT devices: energy-

saving mechanisms and charging solution which is beyond the scope of this thesis.

Designing particular protocols [81] for IoT networks is a basic method to improve the

energy efficiency for IoT devices. Since the radio module is the main component that

causes energy consumption of IoT devices, some researchers have tried to optimize radio

parameters to make the hardware more efficient [104]. Moreover, idle states are major

sources of energy consumption at the radio component. Therefore, letting IoT devices stay

 47

in sleep mode can also save energy. Duty cycling schemes are the basic methods to

schedule the IoT devices in different states based on the network activity [5].

Deploying in-network caching at intermediate nodes, e.g., CRs and BSs, is another

efficient method to let IoT devices stay in sleep mode. When the cached data are requested

by users or applications, the intermediate nodes can send the requested data back to them

directly. Hence, these requests will not be forwarded to wake up the IoT devices.

Consequently, IoT devices can stay in sleep mode most of the time to reduce their energy

consumption.

Although the caching decision policy in ICN has been extensively studied [1] [7] [17]

[25] [47–48] [62] [79] [103], the ICN caching decision approaches cannot be applied to

IoT directly, since the IoT data items are usually transient and small [75]. Unfortunately,

very few studies have been conducted related to the ICN-IoT caching decision approach.

Baccelli et al. [8] explore the feasibility, advantages, and challenges of an ICN-based

approach in IoT. Through ICN experiments in a life-size IoT deployment, they show that

caching provides significant benefits to ICN-IoT in terms of energy efficiency. However,

the paper does not consider the temporal properties of IoT data for caching decision

making, even though they mention the freshness requirement of IoT data.

The study in [90] proposes a probability-based caching decision which makes a trade-

off between IoT data freshness and multi-hop communications cost so that IoT data can be

cached at the content router. An auto-configuration mechanism is used to adjust the data

caching probability by comparing the data freshness and the multi-hop communication

cost. Least Fresh First (LFF) replaced policy is used as the replacement policy. However,

 48

their caching decision approach is quite complicated and needs heavy computation, which

is not suitable for the content router.

Similar to [90], the authors in [69] also consider the IoT data freshness by maintaining

a timer. However, they regard the capacity of sensor energy as a parameter when making

a caching decision for the IoT with energy harvesting. As their caching approach is

threshold-based, a threshold adaptation is introduced to allow the nodes to dynamically

adjust the parameter of caching to achieve better performance. However, the approach only

caches data at the wireless gateway which is inefficient due to its limited amount of

resources. The ideal caching decision approach should not only cache data at the gateway

node but also at all intermediate nodes between the gateway node and the content

consumers. Through cooperating among the nodes, the caching efficiency can be

significantly improved, and IoT devices can spend more time in sleep mode without being

activated too frequently, hence reducing the overall energy consumption.

The recent research work in [35] leverages the in-network caching of ICN to gain

benefits for IoT energy efficiency. The authors propose a simple side protocol called

cooperative caching side-protocol (CoCa) to exploit data names together with the

interaction between cooperative caching and power-save sleep capabilities on IoT devices.

By performing extensive, large-scale experiments on real hardware with IoT networks,

they report that the IoT devices can significantly reduce their energy consumption while

maintaining recent IoT data availability above 90%. However, their caching decision

approach is based on random caching with a probability p = 0.5, a widely used approach

in previous studies. The random caching approach is inefficient compared to existing

approaches, such as [90]. Since the request rate varies, some contents may have a higher

 49

request rate in a certain time period. If they are not cached at this time, and the approach

cannot adjust the caching probability dynamically to cache them, then this will lead to poor

caching performance.

2.4 Machine Learning for Proactive Caching

Proactive caching is an efficient approach to improving users’ QoE and reducing the

network backhaul load for 5G networks, hence a great deal of research has been conducted

on the topic. Most of the existing research works about proactive caching for 5G networks

are based on traditional IP networks. However, IP-based networks are inefficient for

caching, because users cannot retrieve the cached videos without any other additional

techniques, e.g., domain name system (DNS) redirection. Since ICN uses content name

instead of IP address for communications, it makes it suitable for in-network caching and

mobile content delivery. Hence, it is believed that ICN is a more suitable candidate for 5G

networks. Although a great deal of research has been conducted on in-network caching

[14] [96], proactive caching for 5G networks has not been well investigated yet. Some

pioneer works about the combinations of ICN and 5G networks [42] [63] [84] [108] [114]

have been conducted, but most of them focus on the architecture level.

In previous studies [9–10], videos are only cached based on historical popularity. But

even a popular video cannot be guaranteed to remain popular in the future. To address this

issue, recent research efforts [5] [12] [36] [37] [59] [71] [110–111] [119] use machine

learning techniques to predict the future demands of users.

Using ML algorithms for improving the performance of traffic engineering is a hot topic

nowadays [5] [12] [36] [37] [59] [71] [110–111] [119]. The traditional ICN in-network

caching approaches are usually reactive. Nodes in ICN decide “where” to cache “what”

 50

contents based on the previous requests. Even proactive caching approaches pre-cache

contents based on the previous requests without any predictions. However, the popularity

of contents and the location of users are changing over time, which lowers the efficiency

of traditional ICN in-network caching. If the popularity of videos and the mobility of users

can be known in advance, then popular contents can be cached at nodes that are closer to

the user future location. Therefore, the caching efficiency can be significantly improved.

Thanks to the rapid development of ML techniques, both the content popularity and the

user mobility can be predicted by using proper ML techniques. Based on those predictions,

proactive caching can be more intelligent and more efficient.

Statistical models, such as auto-regressive and moving average (ARMA) [36] have been

used for predicting the video popularity. Similarly, methods based on neural network are

also popular to predict the video popularity. For example, Yin et al. [110] use echo state

networks (ESN), a type of RNN, to predict users’ future demands. Although neural network

model-based methods can achieve more accurate predictions compared to approaches

using historical popularity only, the prediction accuracy of those methods highly depends

on the configured parameters. A slight change of in the configured parameters can lead to

inaccurate predictions. Moreover, finding the best set of configured parameters is also

challenging. Furthermore, neural network model-based approaches do not consider users’

preferences which also plays a vital role in improving QoE of mobile users.

In recent years, RS has been used to improve the efficiency of caching since it can shape

the network traffic. For example, RS is used as a TE tool to shape the content demand in

[21]. The authors in [21] first formulated the caching problem and the recommendation

problem as a joint optimization problem. To provide a light-weight algorithm for its

 51

solution, they also proposed a practical algorithm. An experiment with 40 YouTube-using

volunteers was conducted in [46]. The experiment results show that users may change their

original content request when they are recommended videos that are cached locally and

may attract them. Hence, the efficiency of caching can be improved by implementing RS

on a cache system. Authors in [105] leverage the algorithms of RS to predict what a single

user is going to watch in the future. Based on this prediction, they can pre-fetch videos

before user requests come. However, their prefetching algorithm is designed for a single

user, which does not reduce the network traffic, since duplicate videos still need to be

transmitted from the content provider to the users. In [97], an important user is selected as

the helper to cache the recommended contents which are generated by a RS in a mobile

network. Other users can fetch their interested contents from the important user. A more

recent work [83] proposed a soft cache hits approach which can provide users a relevant

content when the requested content is not cached at the local cache.

Instead of implementing RS on a cache system, this thesis plans to leverage the

algorithms of RS to predict the future user demands. Collaborative filtering (CF) [82] is

the basic algorithm of RS due to its efficiency and simplicity to implement. In order to

improve the performance of RS, matrix factorization (MF) technique is proposed in [44].

Singular value decomposition (SVD) [44] and non-negative matrix factorization (NMF)

[44] are two major techniques to perform MF. Even though SVD can achieve similar

performance in general, NMF is believed to be more suitable for preference prediction due

to the fact that SVD will generate negative predicted ratings, which does not apply to

ratings for this problem in the real world [37]. Generally, MF-based approaches can predict

if a video will be liked by a user through learning the latent features of users and videos,

 52

and predicting the rating of videos based on these two latent features. Since MF-based

approaches consider the users’ preference, they can achieve a notable improvement in

terms of the user satisfaction, the average video retrieval delay and the hit ratio compared

to traditional proactive caching approaches [12] [37].

 53

Chapter 3: Caching Approach for Pure ICN Networks

3.1 Introduction

Nowadays, video traffic accounts for a huge volume (more than 73%) of the total Internet

traffic. Moreover, the ultra-high-definition (UHD) will attribute to 20.7% of video traffic

in 2020 [27]. This trend causes a huge challenge for today’s Internet on how to distribute

videos efficiently. Unfortunately, the current IP-based Internet paradigm is designed for

host-to-host communications, it is not suitable for content delivery, especially for the video

delivery due to the fact that videos are usually large files.

Videos can be cached on each router in ICN. This means that users can fetch the content

from a nearby router instead of the remote video server (i.e. content provider), so that the

video server load and the network delay can be reduced simultaneously.

A caching approach includes two parts: a caching decision policy and caching a

replacement policy. The caching decision policy is used to decide what content should be

cached, whereas the caching replacement policy is used to decide what content should be

evicted. Because of the requirement of efficiency, the replacement policy should be

performed as fast as possible, which makes complicated replacement policies unsuitable

for ICN [115]. Moreover, even a simple random replacement policy can achieve similar

performance results attained by the Least Recently Used (LRU) replacement policy [78].

On the other hand, an efficient caching decision policy can improve the performance of

ICN caching significantly [115]. Therefore, how to design an efficient caching decision

policy is a crucial issue in the ICN research field.

In this chapter, the caching decision problem is first formulated as a 0-1 integer linear

programming (ILP) problem. Then, this thesis introduces the notion of time and divides it

 54

into time slots. By finding the optimal solution for each time slots, a more accurate optimal

solution can be achieved as the theoretical bound for further research.

Since the formulated ILP problem is NP-hard, a router position-based cooperative

(RPC) caching decision policy which is a novel and practical approach is proposed in this

chapter. The aim of the proposed approach is to allow edge routers to cache the most

popular videos to reduce the server load, network usage, and network delay.

Software-defined networking (SDN) is a promising technology that can enhance traffic

engineering. As SDN can provide a global view of the network, and forwarding decisions

are made by the centralized controller [45], SDN is a suitable technology that can be used

to overcome the drawbacks of the existing approaches in pure ICN. Hence, an SDN-based

practical approach is also proposed in this chapter.

3.2 System Model and Problem Formulation

This section first describes the system model for the proposed SDN-based centralized

caching decision policy. Then, it formulates the caching decision problem as a 0-1 integer

linear program problem. The symbols and their definition that will be used in the rest of

this chapter are summarized in Table 3.1.

3.2.1 System Model

In this thesis, 𝑉 is used to indicate the set of videos where 𝑣 (𝑣 ∈ 𝑉) stands for a specific

video and |𝑉| is the total number of videos. Users send interest packets to edge routers

directly to retrieve videos. The set of requests for the videos is denoted as 𝑅𝑒𝑞, where

|𝑅𝑒𝑞| is the total number of requests. Each request in this set is represented by 𝑟𝑒𝑞𝑛(𝑣) ∈

𝑅𝑒𝑞 which indicates the total number of requests for video 𝑣 from node 𝑛.

 55

All nodes (e.g. routers) in this thesis have the capability to cache videos that go through

them. Let 𝑁 denote the set of nodes, and each node is denoted by 𝑛 ∈ 𝑁, where |𝑁| is the

total number of nodes, including routers and the video server. Let 𝑛 = 0 indicate the video

server and 𝑛 ≠ 0 represents the routers. The caching state of node 𝑛 can be represented by

an array of binary values, denoted as 𝑐𝑛(𝑣). If video 𝑣 is cached at node 𝑛, 𝑐𝑛(𝑣) = 1;

otherwise, 𝑐𝑛(𝑣) = 0. Let 𝐶 denote the caching state set of all nodes, we can easily get

∀ 𝑐𝑛(𝑣) ∈ 𝐶 . Since each node (except the video server) has a limited cache size, the

constraint that ensures that each node cannot cache more videos than its cache size is

denoted as follows:

 ∑𝐿𝑣 ∙

𝑣∈𝑉

𝑐𝑛(𝑣) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑛 ≠ 0) (3.1)

where 𝐿𝑣 is the size of video 𝑣, if 𝑛 ≠ 0, 𝑍𝑛 is the cache size of router 𝑛; otherwise 𝑛 = 0

means that node 𝑛 is the video server. Since the video server has all videos, we assume it

has infinite storage, i.e., 𝑍0 = ∞ . Furthermore, we use 𝑅(𝑛) , where 𝑛 ∈ 𝑁, 𝑛 ≠ 0 to

represent how many requests can be served from switch 𝑛. 𝑅(𝑛) can be calculated by

Equation (3.2):

 𝑅(𝑛) =∑𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑐𝑛(𝑣), (𝑛 ∈ 𝑁, 𝑛 ≠ 0)

𝑣∈𝑉

 (3.2)

3.2.2 Problem Formulation

This subsection first formulates the caching decision problem as a 0-1 ILP. An optimal

solution can be obtained without considering the effect of time. However, the solution is

 56

not suitable for a real-time scenario due to the fact that the popularity of videos and the

number of requests vary over time. Hence, this subsection divides the time into time slices.

Table 3.1: Notations

Symbol Definition

𝑉 Set of videos

|𝑉| Total number of videos

𝑅𝑒𝑞 Set of requests for the videos

|𝑅𝑒𝑞| Total number of requests

𝑟𝑒𝑞𝑛(𝑣) Total number of requests for video v from node n

𝑁 Set of nodes

|𝑁| Total number of nodes

𝑐𝑛(𝑣) ∈ {0, 1} Caching state of node n

𝐶 Caching state set of all nodes

𝐿𝑣 Length of video v

𝑅(𝑛) Number of requests can be served from node n

G Gain (the total reduced transmission delay)

𝐷(𝑛)
Reduced video transmission delay by performing

caching at node n

𝑑𝑚𝑛(𝑣)
Video transmission delay for video v from node m

to node n

𝑍𝑛 Cache size of node n

 𝑎𝑚𝑛 ∈ {0, 1} If node n retrieves video from node m

T Simulation time

𝑟𝑒𝑞𝑛(𝑣, 𝑡)
Number of requests for video v from node n at

time 𝑡

𝑐𝑛(𝑣, 𝑡) Caching state of node n at time t

𝐷(𝑛, 𝑡)
Reduced video transmission delay by performing

caching at node n from time 0 to time t

𝑑𝑚𝑛(𝑣, 𝑡)
Video transmission delay for video v from node m

to node n at time t

G(t)
Total reduced video transmission delay (gain)

from time 0 to time t

 𝑎𝑚𝑛(𝑡) ∈ {0, 1} If node n retrieves video from node m

P Caching decision policy

 57

By solving the optimal solution for each time slice, more accurate optimal solutions can be

obtained and applied to dynamic networks.

3.2.2.1 Static Scenario

First, this subsection considers the caching decision problem as a static scenario like that

in existing approaches [16] [28] [29] [53] [56] [87]. Since the transmission delay is the key

performance metric for video streaming services in network caching, e.g., long waiting

time for video buffering may lead users giving up watching the video [56], the goal of this

work is to minimize the video transmission delay. By performing caching, users can

retrieve videos from nearby nodes; therefore, the video transmission delay can be reduced

significantly. The total reduction in video transmission delay is defined as gain (denoted as

G). Since users can retrieve a video either from the video server, or from a router, the

restriction of (3.2) can be removed, and it can be expressed as follows:

 𝑅(𝑛) =∑𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑐𝑛(𝑣)

𝑣∈𝑉

, (𝑛 ∈ 𝑁) (3.3)

Therefore, G can be calculated as follows:

 𝐺 = ∑𝑅(𝑛)

𝑛∈𝑁

∙ 𝐷(𝑛) (3.4)

where 𝐷(𝑛) represents the reduced video transmission delay by performing caching at

node n which can be expressed by the following equation:

 𝐷(𝑛) =∑ ∑(𝑑0𝑛(𝑣) − 𝑑𝑚𝑛(𝑣)), (𝑛 ∈ 𝑁) (3.5)

𝑚∈𝑁𝑣∈𝑉

where 𝑑0𝑛(𝑣) is the video transmission delay for video 𝑣 from the video server to node n,

𝑑𝑚𝑛(𝑣) is the video transmission delay for video 𝑣 from node m to node n. When m = 0,

𝑑𝑚𝑛(𝑣) stands for the video transmission delay from the video server to router n; when m

 58

= n, 𝑑𝑚𝑛(𝑣) = 0, which means the video is cached locally (i.e., there is no transmission

delay).

By substituting Equations (3.3) and (3.5) into (3.4), Equation (3.4) can be reformulated

as follows:

 𝐺 = ∑ ∑ ∑𝑎𝑚𝑛 ∙ 𝑟𝑒𝑞𝑛(𝑣)

𝑣∈𝑉

∙ 𝑐𝑛(𝑣)

𝑚∈𝑀𝑛∈𝑁

∙ (𝑑0𝑛(𝑣) − 𝑑𝑚𝑛(𝑣)) (3.6)

where 𝑎𝑚𝑛 is a binary value, 𝑎𝑚𝑛 = 1 indicates that node n fetches the video from node

m; otherwise there is no video transmission between node n and m.

Then, the objective function is formulated as a 0-1 ILP, expressed as follows:

 max 𝐺 (3.7)

 𝑠. 𝑡. ∑𝐿𝑣 ∙

𝑣∈𝑉

𝐶𝑛(𝑣) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑛 ≠ 0) (3.8)

 ∑ 𝑎𝑚𝑛 = 1，(𝑛 ∈ 𝑁)

𝑚∈𝑁

 (3.9)

 𝑎𝑚𝑛 ∈ {0, 1} ，(𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁) (3.10)

As defined in Constraint (3.1), 𝐿𝑣 is the length of video 𝑣. As mentioned in Section

3.2.1.1, N is the set of nodes. Constraint (3.9) is used to guarantee that only one node (a

router or the video server) sends the requested video back to the user.

The caching problem has been proven to be NP-hard in [52]. Since the above formulated

0-1 ILP is similar to the one formulated in [52], then, we can conclude that the formulated

problem in this thesis is also NP-hard. However, using exhaustive searching to find an

optimal solution is unacceptable due to its high computational complexity. Instead, branch

and cut method is a better method which is integrated in many general solvers, such as

 59

CPLEX [91], to find an optimal solution. Therefore, if all the prior information is known,

the maximum G can be found by CPLEX.

3.2.2.2 Real-time Scenario

By solving the objective function Equation (3.7), an optimal caching decision can be found.

However, the achieved optimal caching decision is not suitable for a real-time scenario due

to the fact that the video popularity and request pattern vary over time. Since the

aforementioned optimal caching decision is achieved based on the historical data, it is only

valid for a particular time period.

If we want to find a more accurate optimal solution for dynamic networks, it is essential

to divide the time into time slots and use the current time slot’s optimal solution as the next

time slot’s caching decision. In this way, the optimal caching decision can be calculated

incrementally over time. Through evaluating the performance of the caching decision over

time, a more accurate optimal solution for dynamic networks can be obtained.

Let 𝑟𝑒𝑞𝑛(𝑣, 𝑡) stand for the number of requests for video 𝑣 from node n at time 𝑡 ∈ 𝑇,

where 𝑟𝑒𝑞(𝑣, 𝑡) ∈ 𝑅𝑒𝑞. The caching state of node n at time t is denoted by 𝑐𝑛(𝑣, 𝑡). By

performing a caching decision policy P, 𝑐𝑛(𝑣, 𝑡)
𝑃
→𝑐𝑛(𝑣, 𝑡 + 1), the new caching state of

node n at time t+1 can be achieved. Hence, Constraint (3.8) can be reformulated as follows:

 ∑𝐿𝑣 ∙

𝑣∈𝑉

𝑐𝑛(𝑣, 𝑡) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑛 ≠ 0) (3.11)

Let 𝑅(𝑛, 𝑡) indicate the number of requests that are served at node n from time 0 to time

t. Then, Equation (3.3) can be reformulated as follows:

 𝑅(𝑛, 𝑡) =∑∑𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡)

𝑣∈𝑉𝑡∈𝑇

 (3.12)

 60

where ∑ 𝑟𝑒𝑞(𝑣, 𝑡)𝑡∈𝑇 represents the total number of requests for video 𝑣 from time 0 to

time t.

This thesis denotes the reduced video transmission delay by performing caching at node

n from time 0 to time t as 𝐷(𝑛, 𝑡) which can be represented as follows:

 𝐷(𝑛, 𝑡) =∑∑ ∑(𝑑0𝑛(𝑣, 𝑡) − 𝑑𝑚𝑛(𝑣, 𝑡)) (3.13)

𝑚∈𝑁𝑣∈𝑉𝑡∈𝑇

where 𝑑𝑚𝑛(𝑣, 𝑡) is the video transmission delay for video 𝑣 from node m to node n at time

t, 𝑑0𝑛(𝑣, 𝑡) is the video transmission delay for video 𝑣 from the video sever to node n,

∑ 𝑑𝑚𝑛(𝑣, 𝑡)𝑡∈𝑇 indicates the total video transmission delay for video 𝑣 from node m to

node n during the time period (from time 0 to time t). 𝐺(𝑡) is used to represent the total

reduced video transmission delay, i.e., gain, from time 0 to time t. Equation (3.14) is used

to calculate 𝐺(𝑡).

 𝐺(𝑡) = ∑ 𝑅(𝑛, 𝑡) ∙ 𝐷(𝑛, 𝑡)

𝑛∈𝑁

 (3.14)

Substitute Equation (3.12) and (3.13) to (3.14), we can get Equation (3.15) as follows:

 𝐺(𝑡) =∑∑ ∑∑𝑎𝑚𝑛(𝑡) ∙ 𝑟𝑒𝑞𝑛(𝑣, 𝑡)

𝑣∈𝑉

∙ 𝑐𝑛(𝑣, 𝑡) ∙ 𝑑𝑚𝑛(𝑣, 𝑡) (3.15)

𝑛∈𝑁𝑚∈𝑁𝑡∈𝑇

Finally, the objective function can be reformulated as follows:

 max 𝐺(𝑡) (3.16)

 𝑠. 𝑡. ∑𝐿𝑣 ∙

𝑣∈𝑉

𝐶𝑛(𝑣, 𝑡) ≤ 𝑍𝑛, (𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑛 ≠ 0) (3.17)

 ∑ 𝑎𝑚𝑛(𝑡) = 1，(𝑛 ∈ 𝑁)

𝑚∈𝑁

 (3.18)

 𝑎𝑚𝑛(𝑡) ∈ {0, 1}，(𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁) (3.19)

 61

where N is the set of nodes, 𝑎𝑚𝑛(𝑡) indicates if node n retrieves video from node m

(𝑎𝑚𝑛(𝑡) = 1 indicates yes; otherwise no).

Proposition 1: As the time 𝑡 increases, the caching state 𝑐𝑛(𝑣, 𝑡) becomes more stable

than in the previous time period, namely, the difference between 𝑐𝑛(𝑣, 𝑡) and 𝑐𝑛(𝑣, 𝑡 + 1)

decreases.

Proof: Let us consider the caching state of a cache-enabled node 𝑛 in a network. We

assume there is one video provider, which can provide 𝑉 videos for users; that the request

generation follows a stationary Poisson process with an arrival rate 𝜆; and that the video

popularity follows the Zipf distribution [24]. The cache size of node 𝑛 is 𝑍𝑛. 𝑍𝑛 < 𝑉 ∙ 𝑆𝑣;

hence, node 𝑛 cannot cache all the videos. At the beginning, node 𝑛 will cache every

requested video until its cache is full. After that, node 𝑛 begins to cache the most popular

video 𝑣 and since there is only one video provider and the transmission delay for caching

each video is the same for node 𝑛, caching popular videos will result in higher gain. With

the increase of time 𝑡, popular videos are being requested more frequently, which leads to

𝑟𝑒𝑞𝑛(𝑣𝑝𝑜𝑝𝑢𝑙𝑎𝑟, 𝑡) > 𝑟𝑒𝑞𝑛(𝑣𝑢𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , 𝑡) and this difference continues to increase. In

addition, the top 20% of the videos account for 80% of the total network traffic since the

video popularity follows the Zipf distribution; hence, 𝑟𝑒𝑞𝑛(𝑣𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , 𝑡) ≫

𝑟𝑒𝑞𝑛(𝑣𝑢𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑟, 𝑡). As a result, the rank of videos becomes increasingly stable, which

means that the popularity of the videos does not change substantially from time 𝑡 to time

𝑡 + 1. Since caching the most popular video at node 𝑛 will result in a larger gain for node

𝑛, node 𝑛 will always try to cache the most popular video. Consequently, the difference

between 𝑐𝑛(𝑣, 𝑡) and 𝑐𝑛(𝑣, 𝑡 + 1) → 0, i.e., the caching state becomes increasingly stable.

 62

The current optimal caching decision can be solved by calculating the historical data.

The achieved optimal caching decision can be used for the video caching at the next time

slice ∆𝑡. After that, the optimal caching decision for the next time slice ∆𝑡 can be solved

by calculating the historical data and the new request at the next time slice ∆𝑡. In this way,

the optimal decisions for the real-time network can be found.

However, the reformulated model for real-time scenario is still NP-hard. Even though a

solution can be obtained with a general solver, the computational complexity is extremely

high, which is not suitable for a real-time caching system. Therefore, a light-weight and

practical approach is needed.

3.3 Router Position-based Cooperative Caching

This section describes the proposed router position-based cooperative caching approach.

The main idea of RPC is to cache popular videos closer to the users. Along the video

delivery path, the proposed RPC allows a router to calculate its own topology level value

by adding 1 to the value of its immediate upstream router’s topology level value. Routers

also track the access count for each video locally, and stores all the access counts

information as a key-value structure (video name; access count).

3.3.1 Principle of RPC

The basic principle of RPC is described as follows:

 Each router has a caching threshold and keeps track of an access count for each

video (indicating the video’s popularity). Each router decides what video should be

cached according to the access count of the videos, its own caching threshold, and

the available storage space.

 63

 Least Recent Used (LRU) [47] is used for the replacement policy. Obviously, other

methods can be used as the replacement policy as well, such as Least Frequently

Used (LFU) [93].

 Along the video delivery path, routers need to transmit their topology level value

and root routers’ caching threshold to their immediate downstream routers. This

cooperation only happens once during the procedure of determining the caching

threshold, which has low overhead.

 The caching threshold of root routers is pre-configured. The other routers determine

their caching threshold using the proposed caching threshold decision policy

described in Section 3.2.3.

3.3.2 How RPC Works

A router decides what video to be cached based on its caching threshold and storage space.

A video can be cached if one of the following conditions is satisfied: 1) The access count

of the video is greater than the caching threshold of the router; 2) The router has enough

space to store the video. If a video access count exceeds a router’s caching threshold, but

the router does not have enough space to cache it, the router will perform the replacement

policy to discard videos until the router has enough space to cache the video.

In RPC, root routers are routers which are connected to video servers directly. Routers

collaborate with each other through transmitting their topology level value and root routers’

caching threshold value. The principle for setting the caching threshold is as follows: 1)

Root routers set a minimal caching threshold all over the network; 2) Downstream router’s

caching threshold should be less than that of its upstream routers, so that the popular videos

 64

can be cached in low level routers, e.g., edge routers; 3) Routers should use the same

threshold if they are at the same level in the topology.

The procedure for determining the caching threshold works as follows: at the initial

state, the root routers set a default value as their caching threshold, then inform this

threshold value and their topology level value to their immediate downstream routers.

When a downstream router receives this threshold value, it will use the caching threshold

decision policy (illustrated in Section 3.2.3) to calculate its caching threshold and advertise

its topology level value and the root routers’ threshold value to its immediate downstream

routers along the video delivery path. The rest of the routers repeat the above procedure

until all routers have a caching threshold.

Algorithm 3.1 Router position-based cooperative caching

Input: access count = 0 for all contents

caching threshold = a default value for root routers, or calculated (as

explained in Section 2.2.3) for other routers

 1: a request for content arrives

 2: content’s access count++

 3: checks whether it has this content

 4: if (has this content) then

 5: forward it

 6: else if (has enough space) then

 7: cache it once received from other nodes

 8: forward it

 9: else if (access count > caching threshold) then

10: while (not enough space) do

11: delete least requested replica

12: end while

13: cache it

14: forward it

15: else

16: forward it

17: end if

 65

After the caching threshold is set up, routers can perform the RPC as described in

Algorithm 3.1.

In RPC, only a router’s topology level value and the root routers’ caching threshold

value are transmitted in the caching threshold determining procedure, and this procedure

only happens once. Therefore, the cooperation overhead is significantly lower compared

to other cooperative caching decision policies [25] [51] [79] which require transmitting

recommendations between upstream routers and downstream routers for each video.

3.3.3 Caching threshold decision policy

This section describes how a router determines its caching threshold. First, it explains how

to calculate the topology level value for a router when it receivers multiple topology level

values from its immediate upstream routers. Second, it illustrates the caching threshold

decision policy based on the principle of RPC.

3.3.3.1 Topology level decision

As mentioned above, routers can calculate their topology level value as follows:

 𝑙𝑖 = 𝑙𝑖−1 + 1 (3.20)

where 𝑙𝑖 is the topology level value of router i, 𝑙𝑖−1 is the topology level value of the

immediate upstream router. However, if router 𝑖 has multiple immediate upstream routers,

it may receive multiple topology level values from these immediate upstream routers. As

shown in Fig. 3.1, edge router B has two immediate upstream routers, edge router A and

the root router. As the topology level value increases along the video delivery path, the

topology level value transmitted from edge router A to edge router B will be higher than

the one received from the root router. Hence, there are two options that router B can adopt

 66

to calculate its own topology level value: 1) use A’s topology level value; or 2) use the root

router’s topology level value.

It is important to note that the topology level and the caching threshold have a positive

correlation, i.e., a higher topology level value always leads to a higher caching threshold.

However, a higher caching threshold will lower the chance for contents to be cached at the

router. As a result, these contents have to be cached in upstream routers which causes the

video delivery path to be longer. Moreover, contents also need more time to increase their

access count to satisfy the router’s caching threshold. Finally, during this period, users have

to fetch these contents from the router’s upstream routers, or even from the video server.

Consequently, the number of hops for retrieving these contents will increase. Hence, for

the scenario illustrated in Fig 3.1, router B should use the root router’s topology level value

Fig. 3.1: Different topology levels from multiple immediate upstream routers

 67

to calculate its own topology level value. Therefore, when a router receives multiple

topology level values from its immediate upstream routers, it should use the lowest one to

calculate its own topology level value. Then Equation (3.20) can be modified as follows:

 𝑙𝑖 = 𝑚𝑖𝑛 𝑙𝑖−1 + 1 (3.21)

where 𝑚𝑖𝑛 𝑙𝑖−1 ∈ 𝐿, 𝐿 is the topology level value set for router 𝑖’s immediate upstream

routers, 𝑚𝑖𝑛 𝑙𝑖−1 is the lowest level value in 𝐿. If there are multiple video servers, routers

should maintain multiple topology level values correspond to these video servers. Once an

interest arrives, router can decide to use which topology level value based on the interest

and video server’s name prefix.

3.3.3.2 Caching Threshold Calculation

According to the principle of RPC mentioned above, a default caching threshold can be

configured for the root routers. Then, other routers’ caching thresholds will be determined

by two parts: 1) The root router’s caching threshold; and 2) Its own topology level.

Specifically, the caching threshold determining policy can be described as follows:

 𝑡𝑖 = 𝛼𝑡𝑟 + 𝛽𝑙𝑖 (3.22)

where 𝑡𝑖 is router 𝑖’s threshold, 𝑡𝑟 is the root router’s threshold, 𝑙𝑖 is the topology level

value of router 𝑖. Both 𝛼 and 𝛽 are configurable wrights for 𝑡𝑟 and 𝑙𝑖 respectively (each is

an integer ≥ 0) for the policy.

3.3.4 Performance Evaluation

This section presents the simulation and results. LCE [1] and ABC [62] are chosen as

comparisons, because LCE is the default caching strategy in ICN [1] and ABC outperforms

other popularity-based algorithms, such as WAVE [25]. A custom-built simulator (written

in C++) is used to perform the simulation, since the well-known simulators [18] [26] [66]

 68

[93] do not integrate the caching approach to be compared in this thesis and they are not

sufficient for large scale simulation [85]. The simulation is conducted by using a real

topology with real data traces. A shortest path routing protocol is applied in the simulation.

The reduced video server load ratio and the average number of hops are used as the

simulation metrics, which are described as follows.

Reduced video server load ratio: Equation (3.23) is used to calculate the reduced video

server load ratio. If there is a video request hit, the video will be transmitted from the router

without having to be transmitted from the video server, which causes a reduction of traffic

delivery. The reduced video server load ratio is defined as:

 𝑅 =
∑ 𝑇𝑖
𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡
𝑖=1

𝐹
 (3.23)

where 𝑇𝑖 stands for the traffic reduction contributed by router 𝑖 and 𝐹 is the total amount

of traffic for all requests transmitted from the video server if no caching is used.

Average number of hops: This thesis uses the average number of hops to indicate the

network delay from a general perspective. It is calculated by Equation (3.24).

 𝐴 =
∑ ℎ𝑖
𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡
𝑖=1

|𝑅𝑒𝑞|
 (3.24)

where ℎ𝑖 is the number of hops needed to deliver video request 𝑖 and |𝑅𝑒𝑞| is the total

number of requests. Since the number of request used in the simulation is high, the average

over all requests gives a good approximation of the performance of the various approaches.

This thesis uses the average number of hops to indicate the network delay from a general

perspective.

 69

3.3.4.1 Topology and Data

CERNET 2 [40] is the largest next-generation Internet backbone of China and it is also the

largest native IPv6 backbone network all over the world. As shown in Fig. 3.2, the topology

of CERNET 2 is used for the simulation. Each node represents the city’s core router, and

users request contents from them. This thesis assumes the video servers are deployed in

Beijing and Shanghai; therefore, the routers in Beijing and Shanghai are the root routers.

Data traces are collected from the video channel of Sina [92]. Sina video attracts more than

80 million users each day. This thesis filters the data traces and gets 278,262 unique

requests as the input. And these data are sorted according to the request time. Each video

Fig. 3.2: Topology of CERNET2 [40]

 70

is divided into small chunks. For simplicity, this thesis assumes all chunks have the same

size (4,000 bytes), video size ranges from 50 MB up to 3 GB randomly.

3.3.4.2 Simulation Parameters Setting

For the data traces, we evaluate the base age and maximum age for the ABC from 10

seconds to 180 seconds. The simulation results show that when the base age is set to 10

seconds and the maximum age is set to 30 seconds, the approach can achieve the best

performance. For RPC, a number of experiments are conducted by using different values

for the root router’s caching threshold, 𝛼 and 𝛽, and found that when the root router’s

caching threshold is set to 1, 𝛼 and 𝛽 are also set to 1, the best performance can be achieved.

3.3.4.3 Simulation Results

Fig. 3.3: Reduced video server load ratio VS cache size

 71

Fig. 3.3 shows the reduced video server load ratio for different approaches. We can see that

RPC outperforms ABC and LCE for the experiments. It is worth noticing that RPC has

significant performance gain when the cache size is small. In reality, routers have limited

storage and the size of video keeps growing, especially as HD-video (or even 4K videos)

becomes more and more popular. Under this circumstance, we can see RPC can achieve

evident benefits in reducing the publisher load compared with LCE and ABC.

Fig. 3.4 describes the trend for the average number of hops of LCE, ABC and RPC.

Obviously, RPC has the smallest average number of hops out of these three algorithms

despite the change of cache size. ABC slightly outperforms LCE with a reduction around

3% regardless of the cache size. In comparison RPC can reduce the average number of

hops by 26.7% compared to ABC when the cache size is 15 GB. The reason for this

phenomenon is that ABC is not sensitive user request rate, i.e., user may request a number

of contents in a short time, but routers do not make any change to this burst request, they

Fig. 3.4: Average number of hops VS cache size

 72

still replace contents only when they expire, which causes a higher number of hops. But

RPC can handle a burst of requests effectively, since it relies on access count, which can

adaptively cache new popular videos in time.

3.3.4.4 Parameter Configuration of Caching Threshold Decision Model

This section discusses how to configure parameters from equation (3.22). The caching

threshold is determined by root router’s pre-configured caching threshold 𝑡𝑟and router’s

topology level 𝑙𝑖, 𝑛 and 𝑤 are their weights. The smaller 𝑛 is, the more important role 𝑙𝑖

plays, which leads to a greater difference between 𝑡𝑖 and 𝑡𝑖−1, i.e., the caching thresholds

tend to be hierarchical, which suits contents following the Zipf–distribution. On the other

hand, the smaller 𝑤 is, the bigger impact 𝑡𝑟 has, and the difference between 𝑡𝑖 and 𝑡𝑖−1 is

smaller, i.e., the caching threshold tends to be uniform, which will perform better when

contents are requested uniformly. 𝑡𝑟 should be configured large enough to filter most

unpopular contents, e.g., 𝑡𝑟 = 1 for the data traces, as 90% of the videos are requested only

once. Obviously, if 𝑛 and 𝑤 are set to 0, RPC will become to LCE and its performance will

degrade to LCE’s performance.

3.4 SDN-based Caching Approach

The proposed SDN-based caching decision policy for dynamic caching is presented in this

section.

3.4.1 How SDN Can Improve the Caching Efficiency for ICN

In pure ICN, nodes make their caching decision locally, i.e., every node tries to cache the

most popular video, which leads to high caching redundancy and low caching efficiency.

Several cooperative caching schemes [3] [114] have been proposed to allow nodes to

 73

cooperate with each other to make the caching decision. However, in those schemes

cooperation only happens among the node and its neighbors. As a result, the caching

redundancy and efficiency can only be improved slightly, because nodes in those proposed

schemes still lack the global view to make caching decisions.

Since SDN provides a global view, we can leverage this feature to make caching

decisions from a global perspective. Generally, the more information we use, the more

efficient the caching decision can be. For instance, nodes in a specific area will always

cache the local popular videos if they only have the local information and make the caching

decision locally. However, some local popular videos may not be popular in other parts of

the whole network. Hence, caching those videos may obtain a lower caching efficiency for

the whole network. If these nodes have a global view and are coordinated by the centralized

SDN controller to make their caching decision, nodes can achieve better caching

performance for the whole network.

In current ICN, the content transmission is inefficient since nodes need to broadcast

interest packets to all of their neighbor nodes. This mechanism could cause significant

overhead and delay, especially for dynamic networks. By exploiting the SDN capabilities,

nodes can send interest packets to the SDN controller directly. The SDN controller is able

to forward the interest packets to the best node based on the current status, such as the

available bandwidth, the link latency, etc. Hence, the overhead caused by broadcasting

interest packets in the current ICN can be significantly reduced.

 74

3.4.2 How the proposed SDN-based caching decision policy works

The term “delivery cost” is used to represent the total delivery delay for delivering a video

from the video server to all users at current time, which is denoted as 𝐷𝐶(𝑣), 𝑣 ∈ 𝑉 .

Equation (3.25) is used to calculate 𝐷𝐶(𝑣).

 𝐷𝐶(𝑣) = ∑ 𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑑0𝑛
𝑛∈𝑁

 (3.25)

The term “benefit”, (denoted as 𝐵𝑛(𝑣)), is used to indicate how much delay can be reduced

by caching video 𝑣 ∈ 𝑉 at node 𝑛 ∈ 𝑁 locally. Since the video is cached locally, 𝑑𝑚𝑛

becomes to 𝑑𝑛𝑛, then we can calculate 𝐵𝑛(𝑣) as follows:

 𝐵𝑛(𝑣) = 𝑟𝑒𝑞𝑛(𝑣) ∙ (𝑑0𝑛 − 𝑑𝑛𝑛) (3.26)

where, 𝑟𝑒𝑞𝑛(𝑣) represents the number of requests for video 𝑣 from node 𝑛. 𝑑0𝑛 represents

the delivery delay from the video server to node 𝑛. Obviously, 𝑑𝑛𝑛 is 0 since the requested

content is cached locally, there is no delay to fetch the content. Therefore, the reduced

delay should be 𝑑0𝑛, and Equation (3.26) can be re-written as Equation (3.27):

 𝐵𝑛(𝑣) = 𝑟𝑒𝑞𝑛(𝑣) ∙ 𝑑0𝑛 (3.27)

In the proposed SDN-based caching decision policy, the centralized controller tracks

both the global popularity and the local popularity of each video through receiving statistic

information from all nodes periodically. The local video popularity information and the

global video popularity information are stored in the local video popularity rank table

(denoted as 𝑇𝐿) and the global video popularity rank table (denoted as 𝑇𝐺), respectively.

Both of these two tables are key-value structured, in which the video name is stored as the

key (character), and the popularity is stored as the value (integer). Generally, the average

number of characters of video titles is not too big, e.g., it is only 16.7 for on our dataset.

Considering one character is 1 byte, one integer variable is 4 bytes, each entry in 𝑇𝐿 and

 75

𝑇𝐺 only accounts 21 bytes in average, i.e., 1 MB memory can support 49000 entries at

least. Since the global and local video popularity, the video delivery delay, and 𝑟𝑒𝑞𝑛(𝑣)

are known, the controller can calculate 𝐵𝑛(𝑣) and can make the caching decision for each

node in the network based on 𝑟𝑒𝑞𝑛(𝑣) and 𝑑0𝑛.

The following steps illustrate how the proposed SDN-based caching decision policy works:

1. The controller maintains a video cost rank table (denoted as 𝑇𝑐) which is used to

store the delivery cost (𝐷𝐶(𝑣)) for each video from the entire network perspective.

2. The caching decision policy is triggered if the rank of any video cost in 𝑇𝑐 changes.

Then, a caching decision calculation table (a copy of the modified videos in the

video cost rank table, denoted as 𝑇𝑑) will be created temporarily to facilitate the

caching decision making.

3. The controller always checks the 1st ranked video (the video that changes its rank)

in the caching decision calculation table (𝑇𝑑) and marks it as 𝑣1𝑠𝑡 . Then, the

Algorithm 3.2 SDN-based caching decision policy

 1: the controller checks the video cost rank table

 2: if (the rank of videos in 𝑇𝑐 changes) then

 3: update and re-rank 𝑇𝐿 and 𝑇𝐺

 4: create 𝑇𝑑

 5: find the 1st ranked video (𝑣1st) in 𝑇𝑑

 6: decide which node should cache video 𝑣1 in order

 to achieve the maximum benefit (𝐵𝑛𝑜𝑏𝑗(𝑣1st))

 7: update the delivery cost of video 𝑣1st in 𝑇𝑐 and 𝑇𝑑

 8: re-rank 𝑇𝑑

 9: send caching decision to router 𝑛𝑜𝑏𝑗

10: if (∃𝑣 ∈ 𝑉, 𝐷𝐶(𝑣) ≠ 0)||(∃𝑛 ∈ 𝑁, 𝑍𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙)
 then
11: goto step 5

12: else

13: update 𝑇𝑐

14: re-rank 𝑇𝑐

15: end if

 76

controller determines which node (the objective node is marked as 𝑛𝑜𝑏𝑗) should

cache 𝑣1𝑠𝑡 to realize the maximum benefit, i.e., 𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡) ≥ 𝐵𝑛(𝑣), ∀𝑛 ∈

𝑁, ∀𝑣 ∈ 𝑉. Then the controller sends the name of the video 𝑣1𝑠𝑡 to node 𝑛𝑜𝑏𝑗 for

caching, i.e., node 𝑛𝑜𝑏𝑗 will cache video 𝑣1𝑠𝑡 once 𝑣1𝑠𝑡 goes through 𝑛𝑜𝑏𝑗.

4. Then, the controller updates 𝐷𝐶(𝑣1𝑠𝑡) in the caching decision calculation table; the

updated value is denoted as 𝐷𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑣1𝑠𝑡) , 𝐷𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑣1𝑠𝑡) = 𝐷𝐶(𝑣1𝑠𝑡) −

𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡).

5. The controller re-ranks the caching calculation table, and goes to step 3. The

calculation will terminate if (i) the cache size of each node (𝑍𝑛) is full; or (ii) in the

caching decision calculation table, all 𝐷𝐶(𝑣) = 0, ∀𝑣 ∈ 𝑉.

6. Since the popularity of video changes over time, a former popular video may not

be popular in the current time. To cache the recent popular videos, the video cost

rank table is calculated periodically.

Via the above steps, the controller can perform the proposed caching decision policy as

described in Algorithm 3.2.

Fig. 3.5 presents an example to show how the proposed SDN-based approach works.

There are two routers (routers 1 and 2), three videos (A, B and C). For simplicity, this

example uses the number of hops to indicate the delivery delay. The delivery delay from

the video server to router 1 and router 2 is 5 hops and 1 hop respectively. At time 𝑇1, video

A is requested 3 times, therefore the rank table needs to be updated. The entry of delivery

cost for video A is updated from 0 to 15, i.e., 3 × 5 according to Equation (3.27). Since the

rank of video A in the rank table changes, the caching decision is triggered. A caching

decision calculation table is created based on the updated rank table. The controller checks

 77

the 1st video (video A) in the caching decision calculation table, then decides to cache video

A at router 1. Video B is already cached at router 2 from a previous iteration.

3.4.3 Responsibilities of the SDN Controller

The controller is the core of the proposed SDN-based caching decision policy. The main

responsibilities of the controller are as follows:

 Making caching decision. The SDN-based caching decision policy is implemented

in the controller so that it can make caching decision.

 Tracking video popularity from both local and global perspectives. Nodes in the

network send their local information on video popularity to the controller

periodically. Based on this information, the controller can maintain the local video

popularity rank table 𝑇𝐿 and the global video popularity rank table 𝑇𝐺. 𝑇𝐿 is used

to find the objective node 𝑛𝑜𝑏𝑗, 𝑇𝐺 is used to obtain the video cost rank table 𝑇𝑐.

Fig. 3.5: An example for proposed SDN-based approach

 78

 Determining where to forward requests (interest packets). If a node does not have

the requested video, it will forward the interest packets to the controller. Then, the

controller will decide how to forward the request based on the network status, e.g.,

the available bandwidth, the link latency, etc.

3.4.4 Computational Complexity

As mentioned in Section 3.2, the problems formulated in Equation (3.7) and (3.16) are 0-1

ILP problems and are NP-hard. Although exhaustive searching methods can be used to find

a solution, the computational complexity of an exhaustive searching method is exponential

[99], which is unacceptable for dynamic networks. Even though the branch and cut method

or dynamic programming can be used to find an optimal solution for experiment purpose,

they are not suitable for practical scenarios as they are still computationally intensive.

The computational complexity of the proposed SDN-based caching decision policy

mainly depends on the sorting parts in Algorithm 3.2, i.e., steps 3, 6, 8 and 14. Since the

controller updates all the rank tables each time the caching decision policy is triggered, all

the rank tables are in a nearly sorted initial order, i.e., in each update, only a few videos’

ranks are changed; most videos’ rank remain unchanged. Therefore, insertion sort can be

used to re-rank those tables. Consequently, the computational complexity of steps 3 and 14

is 𝑂(|𝑉|), and the computational complexity of step 8 is 𝑂(𝑋), where 𝑉 is the set of videos

and X is the number of videos in 𝑇𝑑 . Step 6 identifies the node 𝑛𝑜𝑏𝑗 that satisfies

𝐵𝑛𝑜𝑏𝑗(𝑣1𝑠𝑡) ≥ 𝐵𝑛(𝑣), ∀𝑛 ∈ 𝑁, ∀𝑣 ∈ 𝑉. The benefit can be easily calculated by (3.27), we

only need to find the maximum benefit in step 6. Since the computational complexity of

finding the maximum value in a given data set is 𝑂(𝑛), where n is the total number of the

given videos, we can easily know that the computational complexity of step 6 is 𝑂(|𝑁|),

 79

where |𝑁| is the total number of nodes in the network. Moreover, step 6 is executed until

the conditions in step 10 are not satisfied. Hence, the final computational complexity of

step 6 should be 𝑂(𝑌|𝑁|), where Y is the number of iterations of step 10. Y could be

𝑂(max {|𝑉|, |𝑁|}) in the worst case; therefore, the computational complexity of step 6

could be 𝑂(max {|𝑉||𝑁|, |𝑁|2}). Obviously, the computational complexity of the proposed

SDN-based caching decision policy is constituted by the computational complexity of steps

3, 6, 8 and 14, it is 𝑂(|𝑉| + max{|𝑉||𝑁|, |𝑁|2} + 𝑋 + |𝑉|). Notably, the computational

complexity of step 6 (𝑂(max {|𝑉||𝑁|, |𝑁|2})) is the dominant part, because it is

exponential. Since the controller keeps track of table 𝑇𝑐 , even a slight change can be

detected by the controller, the value of Y would not be too big. What’s more, with an

increase in time, the video popularity tends to be stable and the cache of nodes becomes

full eventually; therefore, the value of Y will become much smaller than the earlier time

period. In fact, the practical computational complexity of the proposed scheme is much

lower than 𝑂(|𝑉| + max{|𝑉||𝑁|, |𝑁|2} + 𝑋 + |𝑉|); it could be 𝑂(|𝑉| + 𝑋 + |𝑁| + |𝑉|) =

𝑂(2|𝑉| + 𝑋 + |𝑁|) in the best case (when 𝑌 = 1, the computational complexity of step 6

is 𝑂(|𝑁|)). Notably, the proposed scheme reduces the computational complexity

significantly compared to the exhaustive searching method and branch and cut method, and

it can be implemented in a real network to make dynamic caching decisions.

3.4.5 Performance Evaluation

In this section, the evaluation metrics are described firstly, then the simulation setting and

results are presented.

 80

As mentioned in Section 3.2.1, the ILP problem in Equation (3.17) is NP-hard, even the

computational complexity of solving it by CPLEX is exponential, namely,

𝑂(22|𝑉|∙3|𝑅𝑒𝑞|∙2|𝑁|) [91], which can incur an incredibly long execution time when the

topology is large. Hence, firstly, a small topology is used to establish a baseline comparison

between the optimal solution using Equation (3.17) and the proposed SDN-based caching

decision policy. Then, this thesis uses a real topology and chooses several practical caching

decision policies, such as LCE [1], MPC [14] and RPC, to compare and evaluate the

proposed SDN-based caching decision policy.

Since well-known simulators such as ndnSIM [66] and ccnSIM [26] do not support

recent caching decision policies, including MPC and RPC, a simulator (written in C++) is

developed to evaluate the performance of the policies used in this thesis. Fig. 3.6 shows an

overview of our simulator. More specifically, we emulate the SDN Controller with a

Routing Manager, a Popularity Tracker, a Caching Decision Maker and a Video

Forwarding Handler. The Request Generator and the Topology Generator produce the

video requests and the topology information, respectively. The Routing Manager offers a

Fig. 3.6: Overview of the simulator

 81

global view of the network status by maintaining a global table that contains the network

status information (such as the shortest path for any given source-destination pair and the

delivery cost for each delivery path). The Popularity Tracker can track each video’s global

and local popularities. Based on the caching decisions and the routing information, the

Video Forwarding Handler can forward the video requests to the selected nearest node that

has cached the requested video or to the content provider if the video is not cached in the

network. Either the corresponding selected node or the remote video server will forward

the requested video to the user or the destination node.

The Caching Decision Maker decides what video should be cached at which node based

on the videos’ popularity, and the topology information. In addition, we set a configurable

parameter as the caching threshold for each node in the topology. By configuring the

caching threshold and disabling the Popularity Tracker’s global popularity tracking

function (i.e., it only tracks videos’ local popularity), we can easily perform LCE, RPC and

MPC policies. For instance, LCE can be realized by only setting the caching threshold to

0; RPC can be emulated by setting different threshold values to different nodes based on

their topological information relative to the video server; and MPC can be conducted by

setting the same threshold value (could be greater than 0) to each node.

If we set the caching threshold value to 0 and enable the Popularity Tracker’s global

popularity tracking function (i.e. global and local popularities will be tracked), we can

perform the proposed SDN-based approach. Finally, the Output Generator formulates and

writes the simulation performance results to a file, which can be used to evaluate the

caching performance. The simulations are executed on an 8-processor (Intel i7-4770) X86

desktop with 16 GB of RAM using Microsoft Windows 7 Enterprise edition.

 82

3.4.5.1 Evaluation Metrics

Hit Ratio: The cache hit ratio is a key metric to evaluate the efficiency of a caching

decision policy. Equation (3.28) shows how we calculate the hit ratio.

 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ [𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇]

∑ ∑ 𝑟𝑒𝑞𝑛((𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇
 (3.28)

Average Number of Hops: This thesis uses the average number of hops (denoted as 𝐴)

to indicate the average video retrieval latency. It can be calculated as follows:

 𝐴 =
∑ ∑ ∑ ∑ [𝑟𝑒𝑞𝑛(𝑣, 𝑡) ∙ 𝑐𝑛(𝑣, 𝑡) ∙ 𝑑𝑚𝑛(𝑣, 𝑡)]𝑛∈𝑁𝑚∈𝑁𝑣∈𝑉𝑡∈𝑇

∑ ∑ 𝑟𝑒𝑞𝑛((𝑣, 𝑡)𝑣∈𝑉𝑡∈𝑇
 (3.29)

Number of Interest Packets: The number of interest packets (denoted as 𝐼) that are

generated or broadcasted in the network is used to indicate the overhead. It can be

calculated by Equation (3.30).

 𝐼 =∑∑∑𝑟𝑒𝑞𝑛((𝑣, 𝑡)

𝑛∈𝑁𝑣∈𝑉𝑡∈𝑇

 (3.30)

3.4.5.2 Comparisons of the Optimal Solution and the Proposed SDN-Based

Caching Decision Policy

This subsection evaluates the performance of the optimal solution and the proposed SDN-

based caching decision policy in terms of the cache hit ratio and the average number of

hops.

3.4.5.2.1 Simulation Setting

This thesis uses the topology illustrated in Fig. 3.7 for the simulation. There are five

switches in the network, three of them at the bottom layer are edge switches which are

directly connected to users. The other two switches in the middle layer are connected to

 83

the video server. A centralized controller is deployed to manage the network and perform

the proposed SDN-based caching decision policy. In total, 120 videos are requested 1,000

times by the users, and their popularity distribution follows the Zipf–distribution [24],

which is widely used in Video-on-Demand (VoD) systems [50] [58] [117]. Users retrieve

videos through sending interest packets to the edge switches.

3.4.5.2.2 Simulation Results

Results shown in Fig. 3.8 compare the average number of hops between the optimal

solution and the proposed SDN-based caching decision policy. As can be seen, the average

number of hops decreases with the increase of the network cache size (the total size of all

nodes in the network) for both of the optimal solution and the proposed SDN-based caching

decision policy. The proposed SDN-based caching decision policy has a similar

performance with the optimal solution. Moreover, the gap between the optimal solution

Fig. 3.7: System architecture

 84

and the SDN-based caching decision policy is much smaller when the network cache size

ranges from 10% to 20%. In a real network, nodes have limited caching storage, which

means that the network can only cache a small portion of the total videos [115]. Hence, the

proposed SDN-based caching decision policy can achieve a high efficiency in terms of

cache hit ratio when it is implemented in dynamic networks in which the requests and

network states are changed frequently.

Fig. 3.9 describes the influence of the network cache size on the hit ratio. It is observed

that the optimal solution and the proposed SDN-based caching decision policy have

comparable performance in terms of hit ratio. Moreover, the proposed SDN-based caching

decision policy even outperforms the optimal solution in terms of hit ratio at some

particular cache size. The reason is that the objective of the optimal solution is to find the

maximum gain which is mainly affected by the average number of hops. Moreover, the

maximum gain only guarantees a minimum average number of hops instead of the hit ratio.

Fig. 3.8: Comparison between the optimal solution and the SDN-

based caching decision policy in terms of the average number of

hops

 85

For example, if a user sends a request to switch s3, as depicted in Fig. 3.7, for a particular

video which is cached at switch s1 only, it will travel 5 hops for this user to fetch the video

from switch s1. But it only traverses 4 hops if the user fetches the video from the video

server, but it will result in a miss which means the hit ratio is decreased.

Because the computational complexity of finding the optimal solution is NP-hard, the

execution time for realistic cache sizes is another important performance metric that needs

to be evaluated. Fig. 3.10 shows the comparison between the actual execution time of the

optimal solution and the proposed SDN-based caching decision policy versus the network

cache size. Based on the curves in Fig. 3.10, the execution time of the proposed SDN-based

policy is about 1 second, whereas the execution time required to find the optimal solution

is more than 7 minutes even for a simple topology which is presented in Fig. 3.7. The

computational complexity of the optimal solution is significantly higher than the

computational complexity of the proposed SDN-based caching decision policy, and it is

Fig. 3.9: Hit ratio of the optimal solution and the SDN-based caching

decision policy for different network cache size

 86

highly affected by the network cache size. Evidently, finding the optimal solution is not

suitable for real networks, especially for large networks, whereas the proposed SDN-based

caching decision policy is lightweight and can be implemented for dynamic scenarios for

real time calculation.

Based on the comparisons conducted above, we can see that the performance of the

proposed SDN-based caching decision policy can approximate the performance of the

optimal solution in terms of the hit ratio and the average number of hops, whereas the

execution time of the proposed algorithm is significantly shorter.

Fig. 3.10: Execution time of the optimal solution and the SDN-based caching

decision policy for different network cache size

 87

3.4.5.3 Comparisons of the Proposed SDN-Based Caching Decision Policy and the

Existing Caching Decision Policies

In this subsection, evaluations of the proposed SDN-based caching decision policy versus

existing caching decision policies (i.e., LCE, MPC and RPC) are presented in terms of the

hit ratio and the average number of hops.

3.4.5.3.1 Simulation Setting

 The Northern and the Eastern China regions of CERNET 2 [40], as shown in Fig. 3.11,

are used as the simulation topology. This thesis assumes that there is a video server which

is connected to the switch which is located in Beijing to provide video service for all users.

Each switch represents an aggregate network device of its associated city. Users are

Fig. 3.11: Simulation topology

 88

connected to the access network directly and send requests to them to retrieve videos. As

a result, Fig. 3.11 illustrates the logical view the network from the video server to other

switches. There are 1,000 identical videos that are requested 10,000 times by all 2,500

users, and the popularity of videos follows the Zipf–distribution [24]. Since there is only

one video server which sends video contents to all the users through the real topology, the

video server becomes the root, and the network becomes a logical tree topology. In other

words, you could have any physical topology, but when there is only one video server and

it is responsible for sending contents to users, the topology for content delivery will become

a tree topology. The concept is the same if there are multiple video servers.

Since the proposed SDN-based caching decision policy can be implemented in a real

network for real time caching, this thesis choses the following practical caching decision

policies as comparisons: LCE, MPC and RPC. LCE is the default caching decision policy

of ICN. In LCE, videos are cached at each node along the video delivery path. Also, in

comparison, MPC is selected as the non-cooperative caching decision policy, whereas RPC

is selected as the cooperative caching decision policy. Both MPC and RPC use a caching

threshold to filter the unpopular videos, i.e., a video can be cached at a node only if the

number of requests of the video exceeds the caching threshold of the node. The only

difference is that RPC takes the topology position of a node into consideration and assigns

a pre-configured caching threshold value to each node based on their topology position,

which leads RPC to be more efficient in caching.

3.4.5.3.2 Simulation Results

a) Description of the existing caching decision policies

 89

Based on the performance results from Section 3.4.5.2.2, the proposed SDN-based caching

decision policy has the potential to be implemented in a real network for real-time caching,

this thesis compares it with the following practical caching decision policies: LCE, MPC

and RPC. LCE is the default caching decision policy of ICN. In LCE, videos are cached at

each node along the video delivery path as long as the cache size is large enough. For

comparison, MPC is selected as the non-cooperative caching decision policy, whereas RPC

is selected as the cooperative caching decision policy. Both MPC and RPC use a caching

threshold to filter unpopular videos, namely, a video can be cached at a node only if the

number of requests for the video exceeds the pre-configured caching threshold value of the

node. The only difference is that RPC considers the topological position of a node and

assigns a caching threshold value to each node based on its topological position (more

details can be found in Section 3.3.3), which renders RPC more efficient in caching. For

MPC, since all the nodes share the same caching threshold, the only key parameter is the

caching threshold (𝑇𝐻). In contrast, RPC has three key parameters: the threshold for the

root router (𝑇𝐻𝑟), the weight of the root router threshold (𝛼), and the weight of the topology

level (𝛽). Through extensive experiments, the optimal parameter settings in terms of hit

Table 3.2: Optimal Parameter Settings of the Existing Caching Decision Policies

Caching Decision

Policy
Key Parameters Values

RPC

Threshold for the root router (𝑡𝑟) 2

Weight of the root router threshold (𝛼) 1

Weight of the topology level (𝛽) 5

MPC Caching threshold (𝑇𝐻) 20

 90

ratio and the average number of hops for RPC and MPC in the simulation topology are

identified and listed in Table 3.2.

b) Impact of cache size

This part evaluates how cache size influences the performance of the proposed SDN-based

caching decision policy and the compared policies.

Fig. 3.12 demonstrates the impact of the cache size on the hit ratio. Notably, all these

four policies can increase the hit ratio with the increase of the network cache size. We can

see that the proposed SDN-based caching decision policy performs best among these

policies regardless of the change of the network cache size. The poor performance of LCE

is caused by its high caching redundancy, i.e., videos are cached at each node along the

video delivery path. RPC and MPC are all popularity based, therefore they have a close

Fig. 3.12: Network cache size VS hit ratio

 91

performance. Since RPC considers the relative topology location of each node, it achieves

a slightly better performance than MPC.

Fig. 3.13 shows the trend of the average number of hops when the network cache size

ranges from 10% to 100% of the total video size. If no in-network caching is adopted, i.e.,

represented by the red top line, the average number of hops is about 4.1. As expected, all

policies can reduce the number of hops with the increase of the network cache size.

Specifically, the proposed SDN-based caching decision policy outperforms other policies

regardless of the network cache size; it can achieve 17.3% and about 45% reduction in the

average number of hops when the network cache size is 10% and 100%, respectively.

Although the network cache size cannot be 100% in a real network, the proposed algorithm

can still obtain a significant reduction in the average number of hops when the network

cache size is less than 100%. It is also observed that RPC and MPC have similar

Fig. 3.13: Network cache size VS average number of hops

10 20 30 40 50 60 70 80 90 100
Network Cache Size (proportion of the total data)

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

A
v
e

ra
g
n

e
 N

u
m

b
e

r
o

f
H

o
p

s

LCE

MPC

RPC

SDN-based

No Caching

 92

performance in terms of the average number of hops, whereas LCE performs poorly

compared to the other three caching decision policies.

The impacts of cache size on the number of interest packets are illustrated in Fig. 3.14.

Obviously, the proposed SDN-based caching decision policy can significantly reduce the

number of interest packets (from 18,987 to 17,279 when network cache size ranges from

10% to 100%), while other three policies need to generate or broadcast at least 97,378

interest packets. The reason behind this phenomenon is that in the current ICN, routers

need to broadcast interest packets to their neighbors if the requested video is not cached

locally. With the help of SDN, the forwarding policy of current ICN can be easily changed

to let routers send requests to the SDN controller directly if the video is not cached locally.

Since the SDN controller has all the information of the network, it can find the nearest node

which has the requested video, and forward the interest packet to that node directly.

Fig. 3.14: Network cache size VS number of requests

10 20 30 40 50 60 70 80 90 100

Network Cache Size (proportion of the total data)

0

2

4

6

8

10

12

14

16

18

N
u

m
b

e
r

o
f

In
te

re
s
t

P
a

c
k
e

ts

10
4

LCE

MPC

RPC

SDN-based

 93

Therefore, the proposed SDN-based caching decision policy can significantly reduce the

number of interest packets, i.e., the overhead. More specifically, the proposed SDN-based

caching decision policy can reduce up to 954% the number of interest packets (from

162,148 to 18,987) compared to these three ICN caching decision policies.

c) Impact of the Exponent Parameter 𝜶 of the Zipf-Distribution

The probability mass function (PMF) of the Zipf-distribution is described as follows:

 𝑓(x) =
1

𝑥𝛼 ∑ (1 𝑖⁄)
𝛼𝑛

𝑖=1

 𝑥 = 1, 2, … , n, (3.31)

where 𝛼 is the exponent parameter of the Zipf-distribution that reflects how skewed the

popularity distribution is [67], and 𝑥 is the rank of a video.

Fig. 3.15: Exponent parameter α VS hit ratio

 94

As shown in Fig. 3.15, the proposed SDN-based caching decision policy has the best

performance in terms of the hit ratio regardless of the value of α. It is also observed that

the higher the value of α, the higher the hit ratio can be achieved for all these four caching

decision policies. Because a higher α means a higher skewness of the distribution, i.e., a

higher probability of requesting the top rank videos, which means that a higher popularity

of these top rank videos. Hence, caching these top ranked videos can improve the hit ratio.

The results demonstrated in Fig. 3.16 illustrate how the exponent parameter 𝛼 affect the

average number of hops for these four caching decision policies and without caching.

Similarly, the proposed SDN-based caching performs the best among all caching decision

policies. Furthermore, with the increase of 𝛼, all caching decision policies can further

reduce the average number of hops. The reason is the same as the one described above.

Fig. 3.16: Exponent parameter α VS the average number of hops

 95

Through the curves, we can see that the exponent parameter 𝛼 has a significant influence

on the average number of hops for all these caching decision policies. For example, the

proposed SDN-based caching decision can improve the reduction from 24% to 45% (from

4.2 hops to 3.19 hops and 2.31 hops respectively) compared to no caching when 𝛼 changes

from 0.6 to 0.9. Therefore, the proposed SDN-based caching decision policy can reduce

the video delivery delay significantly, especially when the popular videos account for the

majority of the traffic, i.e., a skewed Zipf–distribution.

d) Comparisons in Terms of Execution Time

The execution time per caching decision, denoted as 𝑇�̅�, can be calculated as follows:

 𝑇�̅� =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑐ℎ𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
 (3.32)

The execution time per caching decision for these four approaches is shown in Table

3.3. We can see that all existing practical approaches can make faster caching decisions

compared to the proposed SDN-based caching decision policy. The reason is that in these

three light-weight approaches (RPC, MPC and LCE), nodes make their own caching

Table 3.3: Comparisons in Terms of Execution Time

Caching Decision Policy 𝑻𝒆̅̅ ̅

SDN-based 0.015 s

RPC 0.004 s

MPC 0.003 s

LCE 0.001 s

 96

decision locally with light-weight computation, or even no computation. For example,

there is no caching computation in LCE as nodes just cache everything that goes through

them. The reason that the proposed SDN-based caching decision policy performs the worst

in terms of 𝑇�̅� is because the SDN controller needs to calculate 𝐵𝑛(𝑣) (which is used to

indicate how much delay can be reduced by caching video 𝑣 ∈ 𝑉 at node 𝑛 ∈ 𝑁 locally)

based on the current popularity of videos, which involves more computation compared to

the three light-weight approaches. However, the proposed caching decision will be

triggered only if the rank of any video cost in 𝑇𝑐 changes. Based on Proposition 1, the

video popularity tends to be stable with the increase of time; hence, the caching decision

will not be triggered frequently. Even if it is triggered, it only costs 0.15 s which does not

make a big impact for caching compared to the length of a video which could be hours.

Finally, considering that real networks always use powerful servers, 𝑇�̅� can be significantly

reduced.

d) Comparisons in Terms of Simulation Time

In this part, the complexity of performing each caching decision policy is evaluated by

comparing the number of caching decisions with respect to the simulation time.

According to Fig. 3.17, the proposed SDN-based caching decision policy makes fewer

caching decisions as the simulation time increases. The reason is that the popularity of

videos stabilizes over time. Hence, the caching decision policy is triggered less frequently

with the proposed approach. However, RPC and MPC share a similar constant trend with

respect to the simulation time. Since these two policies are threshold-based, the caching

decision will be made once a video’s popularity exceeds the caching threshold. LCE

 97

exhibits the worst performance across the four policies since it stores every requested video

and the policy is triggered often due to the limited cache size.

3.5 Summary

In this chapter, the caching problem was first formulated as a 0-1 ILP problem. Then, it

was turned from a static ILP problem to a dynamic ILP problem by introducing the notion

of time. However, the formulated ILP problem is NP-hard, which means it is impractical

to find the optimal solution for a dynamic network. Hence, a light-weight router position-

based cooperative caching (RPC) decision policy was proposed for the pure ICN. The

proposed RPC approach works from a local perspective which may lead to a low efficiency

of ICN in-network caching, hence SDN is a promising technique that can be leveraged to

make the caching decision from a global perspective. This thesis leveraged the centralized

control and the global view of SDN to design an SDN-based caching approach which

Fig. 3.17: Impacts of the simulation time on the number of caching decisions

made

100 200 400 600 800 1000 1200 1400 1600 1800

Simulation Time (second)

0

100

200

300

400

500

600

700

800

900

1000

N
u

m
b

e
r

o
f

C
a
c
h

in
g

 D
e

c
is

io
n

s

LCE

MPC

RPC

SDN-based

 98

considers both the video popularity and delivery delay. With the help of the centralized

controller, the video popularity and delivery delay can be easily recorded and calculated.

Based on that information, network nodes are coordinated by the controller to make their

caching decision from a global perspective. Moreover, with the help of the controller,

nodes do not need to broadcast interest packets any more for video transmissions, which

can reduce the overhead significantly.

 99

Chapter 4: Caching Approach for ICN-5G Networks

4.1 Introduction

The dramatic increasing demand for video from mobile users (MU) has imposed huge

pressure on cellular networks. According to Cisco’s VNI report [27], an estimated

sevenfold increase in mobile data traffic will be reached by 2021. Among all forms of data

traffic, the mobile video will account for 78 percent of the total mobile traffic by 2021. The

mobile video has become a fundamental service for the wireless networks.

Millimeter wave (mmWave) is the key technique for 5G networks to overcome the

bandwidth limitations of current wireless networks [32]. As the spectrum of mmWave is

between 30GHz and 300GHz, it can allocate a huge amount of bandwidth to satisfy the

dramatically increasing demands of mobile videos and multimedia services.

However, the limitation of mmWave is the short transmission range. If we take the

propagation degradation into consideration, the transmission distance of mmWave is only

100 meters [32]. Therefore, mmWave BSs have to be deployed in small-cells.

Consequently, high mobility users will suffer more frequent handoffs and shorter

connection durations in 5G networks. Users with high mobility have to reconnect to the

original content provider once a handoff happens [74], which induces heavy overheads and

high retrieval delay. As a result, the QoE for mobile video users will be notably affected,

and choppy playback might be caused. How to satisfy the QoE requirements for mobile

video users with frequent handoffs in 5G networks has become a huge challenge.

This chapter combines ICN and 5G networks to propose the ICN-based caching

approach for mobile videos in ICN-5G networks. Compared to existing IP-based

approaches [42] [63] [84] [108] [114], videos can be cached at every node along the video

 100

delivery path in ICN. If a video is requested by many high mobility users, this video will

be cached at the CR which is directly connected to the BS according to the proposed

approach. In this way, when a mobile user enters a new cell, the mobile user does not need

to reconnect to the original content provider to retrieve the video, he/she can fetch the video

from the nearby CR by the name of the video. Hence, the retrieval delay can be significantly

reduced and the QoE for users can be noticeably improved. However, which video should

be cached at a CR is an important issue to improve the QoE for mobile video users and to

reduce network traffic for 5G networks.

The main contributions of this chapter are as follows:

 This thesis proposes to integrate the features of ICN, such as in-network caching

and name-based routing, into 5G networks to facilitate video delivery for MUs.

 The proposed caching approach takes both the mobility of users and the popularity

of videos into consideration, which results in reduced retrieval delay and cache miss

ratio.

 This thesis assumes the CRs which are directly connected to the BSs have the

capability to cache videos. By caching popular videos for high mobility users at

CRs, high mobility users can fetch the videos from CRs directly when a handoff

occurs. As a consequence, QoE has been notably improved based on the simulation

results.

The reminder of this chapter is organized as follows: Section 4.2 presents the proposed

caching approach and the system model. Section 4.3 shows the experimental settings and

simulation results. Finally, Section 4.4 summarizes this chapter.

 101

4.2 System Model

In this section, the system model and the proposed caching approach for mobile videos in

ICN-5G networks is described. The approach consists of a user mobility calculation model,

a content popularity calculation model, and a caching decision model. Videos are cached

at the chunk level. The architecture of the ICN-based caching approach is illustrated in Fig.

4.1. This thesis first uses a simple scenario to illustrate how the ICN-based caching

approach works; then it details all those aforementioned models.

Fig. 4.1: System model

 102

The main idea of the ICN-based caching approach is to cache videos requested by high

mobility users at CRs in the RAN, and cache videos requested by low mobility user at BSs.

Hence, low mobility users can fetch the popular video from a BS directly. If a handoff

occurs, and the newly connected BS does not have the requested video, the high mobility

users can fetch the video from a CR directly. By this means, there is no need to download

the video from the remote content provider. Hence, the retrieval delay can be reduced. And

the requirements of high QoE can be satisfied for both high mobility and low mobility

users.

The proposed ICN-based caching approach works as follows: A mobile user sends an

interest packet to the BS first. The BS retrieves the video name from the interest packet,

and checks if it has the video. If the requested video is cached locally, the BS will send the

video back to the mobile user directly; otherwise, it will forward the interest packet to the

connected CR. Similarly, the CR checks its local memory first. If it has the requested video,

it will send the video back to the user in reverse route of the interest packet deliver path;

otherwise, it will forward this interest packet to its neighboring CRs. Its neighboring CRs

repeat the same process. If no CR has this video, the interest packet will be forwarded to

the content provider via the Internet.

4.2.1 A Simple Scenario

Fig. 4. 2 shows how the proposed ICN-based caching approach works with the help of a

simple scenario. There are two BSs and both are connected to the same CR. Three users

are requesting three different videos. Further, one user, MU2, is moving while the other

 103

two users are not (e.g., waiting for a bus). For simplicity, this thesis assumes the cache size

of all BSs and CR is one, i.e., only one video can be cached for this simple scenario.

As shown in Fig. 4.2 (a), video A is cached at BS1, video B is cached at CR and video

C is cached at BS2. MU1 issues an interest packet for video A to BS1. BS1 checks if it has

video A once it receives the interest packet. As BS1 has video A, BS1 sends video A back

to MU1 directly. During this period, no traffic for video A is imposed at the core network,

and the retrieval delay is low as the video is fetched from BS1 directly. Similarly, MU3

retrieves video C directly from BS2.

Assuming that MU2 is moving from BS1 to BS2 and the speed of MU2 is fast enough

that he/she cannot finish watching video B before the handoff occurs. At the initial phase,

MU2 sends an interest packet to BS1 for requesting video B. After receiving this interest

packet, BS1 searches its cache memory and finds there is no video B. Then BS1 forwards

 (a)

 (a)

 (b)

 (b)

Fig. 4.2: A simple scenario

 104

this interest packet to CR. As video B is assumed to be cached at CR, MU2 can retrieve

video B from CR. As MU2 keeps moving, he/she leaves the coverage area of BS1 and

enters the coverage area of BS2, as shown in Fig. 4.2 (b). Hence, a handoff occurs for MU2.

After the handoff is finished, MU2 sends another interest packet to BS2 for fetching video

B. BS2 checks its local cache memory and cannot find video B; therefore, BS2 forwards

the interest packet to CR. After the interest packet is received by CR, it checks its cache

memory by video’s name and finds out that video B is cached in its cache memory. Then,

MU2 can retrieve video B from CR by video’s name.

In the traditional IP network, if a handoff occurs, the user’s device has to reconnect to

the content provider, because the user only knows the IP address of content provider and

has to rebuild a connection to the content provider first before recovering the video

delivery. Even if a neighboring CR has the content, the user has no choice to fetch the video

from them due to the principle of the host-centric IP network. However, in the proposed

ICN-based approach, the user does not need to find out where the content is, the only thing

the user needs to do is send an interest packet to nearby CRs, and then the nearest CR which

has the content will send the content back to the user. In this way, the retrieval delay is

reduced, and the QoE for mobile users is improved.

4.2.2 User Mobility Calculation Model

The user mobility calculation model is used to calculate the mobility of a mobile user and

predict whether a handoff will occur during the playback period based on the location

change information of the mobile user. As BSs in 5G networks can provide accurate

location information with a deviation of one meter [30], the displacement of a mobile user

can be precisely calculated by the change in position. The user mobility calculation model

 105

can benefit from the positioning technologies in 5G networks to calculate the speed of the

user accurately.

This thesis assumes the coverage area of the BS is a circle, 𝑃0 is the position when user

enters the coverage area of BS, 𝑃1 is the position of user at time 𝑡1, 𝑃2 is the predicted

Table 4.1: Symbols Used for the Mobility Calculation Model

Symbol Definition

𝑆𝑖 Size of video i

𝑅𝑖 Bit rate of video i

𝛼 Angle between user moving direction and the
BS

r Radius of the BS coverage

𝑑 Distance that a user moves in the coverage area
of the BS

𝑑𝑡1−𝑡0 Distance moved by a mobile user between time
𝑡0 and 𝑡1

𝑑𝑡0−𝑏𝑠 Distance between a mobile user and the BS at
time 𝑡0

𝑑𝑡1−𝑏𝑠 Distance between a mobile user and the BS at
time 𝑡1

Fig. 4.3: An illustration for user mobility calculation

 106

position when user is about to leave the coverage area of BS, as shown in Fig. 4.3. Table

4.1 presents the important symbols and their definition. As the transmission distance of BS

is around 100 meters [32], this thesis assumes users do not change their moving direction

in a cell. Therefore, by calculating the change in position within a period of time, the user’s

speed can be calculated. Taking the duration of the video and the user’s speed into

consideration, a handoff can be predicted by (4.1):

 𝐻 =

𝑆𝑖
𝑅𝑖
×
 𝑑𝑡1−𝑡0
𝑡1−𝑡0

𝑑
 (4.1)

 𝑐𝑜𝑠𝛼 =
𝑑𝑡1−𝑡0
2 +𝑑𝑡0−𝑏𝑠

2 −𝑑𝑡−𝑏𝑠
2

𝑑𝑡1−𝑡0×𝑑𝑡0−𝑏𝑠
 (4.2)

 𝑑 = 2𝑟 ∙ 𝑐𝑜𝑠𝛼 (4.3)

 𝑑𝑡1−𝑡0 = √(𝑥𝑡1 − 𝑥𝑡0)2 + (𝑦𝑡1 − 𝑦𝑡0)2 (4.4)

 𝑑𝑡0−𝑏𝑠 = √(𝑥𝑡0 − 𝑥𝑏𝑠)2 + (𝑦𝑡0 − 𝑦𝑏𝑠)2 (4.5)

 𝑑1𝑡−𝑏𝑠 = √(𝑥𝑡1 − 𝑥𝑏𝑠)2 + (𝑦𝑡1 − 𝑦𝑏𝑠)2 (4.6)

where the first part of the numerator (𝑆𝑖/𝑅𝑖) in equation (1) depicts the time it takes to

watch a particular video and the second part (𝑑𝑡1−𝑡0/(𝑡1 − 𝑡0)) is the mobile user speed.

If 𝐻 ≥ 1, a handoff will occur; otherwise, no handoff will occur during the playback time.

The calculation result is an input of the caching decision model. Based on the distance

between user and the BS, and the change of user position, the user moving direction can

be calculated by equation (4.2). Then the distance (d) that the user will move until the user

leaves the coverage area of the BS can be calculated by equation (4.3). Equation (4.4), (4.5)

and (4.6) are used to calculate 𝑑𝑡1−𝑡0, 𝑑𝑡0−𝑏𝑠 and 𝑑1𝑡−𝑏𝑠 respectively. The position of a

mobile user at time 𝑡0 + 𝑡1is denoted by (𝑥𝑡0+𝑡1, 𝑦𝑡0+𝑡1), where (𝑥𝑡0, 𝑦𝑡0) is the position of

the mobile user at time 𝑡0, and (𝑥𝑏𝑠, 𝑦𝑏𝑠)is the coordinate of the BS.

 107

4.2.3 Content Popularity Calculation Model

In this chapter, each node tracks the number of requests of each video locally by the video’s

name and stores them as a key-value structure (key: video name; value: access counts) into

a popular video table. An example is shown in Table 4.2. The number of requests for each

video indicates the popularity of the video. A popularity threshold is assigned to each node.

Once a video’s access count reaches the popularity threshold, this video is tagged as a

popular video in the popular video table, 1 indicates popular, 0 indicates unpopular. This

information of the popular video table is another input of the caching decision model.

As the popularity of video generally decreases over time, a former popular video may

not be popular at the current time. If a node still regards it as a popular video and stores it

at the local cache memory, the limited cache memory cannot store recent popular videos;

hence, the cache space is wasted. In order to prevent this phenomenon from happening, a

reset value is configured to reinitialize the number of requests in the popular video table.

In other words, if the reset value is reached, all the information will be reinitialized in the

popular video table.

4.2.4 Caching Decision Model

The principle of the caching decision model is described as follows:

Table 4.2: Popular Video Table

Video

name

Number of

requests

Popular or

not

Video A 100 1

Video B 5 0

⋯ ⋯ ⋯

 108

 CRs cache videos which are requested by high mobility users only.

 BSs cache local popular videos for users with low mobility.

 Least Recently Used (LRU) is used in this chapter for the replacement policy.

However, LRU can be replaced by other replacement policies, such as Least

Frequently Used (LFU).

Algorithm 4.1: Caching decision model

Input: 1) The number of requests for a video;

2) The mobility of a user

popularity threshold = a pre-configured value

1: a video request arrives at the node

2: increment the number of requests of the video

3: checks if it has this video

4: if (content cached) then

5: send the video back to user

6: else if (enough free space) then

7: cache the video

8: forward the video

9: else if (the node is a CR) then

10: if (high mobility user) then

12: if (No. of requests ≥ popularity threshold)

13: then while (not enough space) do

14: delete least requested replica

15: end while

16: cache the video

17: else

18: forward the video only

19: else

20: forward the video only

21: else if (the node is a BS) then

22: if (No. of requests ≥ popularity threshold)

23: then while (not enough space) do

24: delete least requested replica

25: end while

26: cache the video

27: else

28: forward the video only

29: end if

Algorithm 4.1: Caching decision model

Input: 1).The number of requests for a video;

2).The mobility of a user

popularity threshold = a pre-configured value

 109

The caching decision model is used to decide which video should be cached, and the

replacement policy is used to decide which video should be replaced if there is not enough

space to cache new video. The models is designed as follows:

1. Each node (BS or CR) first checks its cache storage. If there is enough space to

cache the video, it caches the video directly.

2. If there is not enough space, the information of the user mobility is needed. If

the user moves with a high speed, i.e. a handoff will happen during the session,

the video will be cached at the CR when the number of requests for the video

(stored in the popular video table) reaches the popularity threshold of the CR.

3. Otherwise (i.e. no handoff happens), the video will be cached at the BS if the

number of requests of the video exceeds the BS’s popularity threshold. In this

way, the delay induced by frequent handoffs and the core network traffic can be

reduced. Therefore, the user can have better QoE for watching video in 5G

networks. The whole procedure to make caching decision is described in

Algorithm 4.1.

4.3 Performance Evaluation

This section presents the simulation environment and results. As the proposed caching

approach is ICN-based, this thesis choses IP address-based RAN caching [100] (cache

contents at BSs) for a comparison, and apply LRU as replacement policy for the ICN-based

caching approach and RAN caching. Since the well-known simulators such as ccnSim [26]

and ndnSIM [66] do not support 5G networks, a custom-built simulator (written in C++) is

used to evaluate the performance of the proposed ICN-based caching approach. This thesis

 110

performed the simulation 10 times for each experiment and calculated the average of those

10 runs.

4.3.1 Evaluation Metrics

Average retrieval delay: The average retrieval delay is used to evaluate how fast a user

can fetch the requested video. If the average retrieval delay is high, QoE will be

significantly affected and a lot of packets may be lost and retransmissions will be triggered,

which leads to choppy playback. The average retrieval delay can be calculated by equation

(4.7).

 �̅� =
∑𝑑𝑖
|𝑅𝑒𝑞|

 (4.7)

where the average retrieval delay is denoted as �̅�, 𝑑𝑖 is the retrieval delay of video 𝑖, and

|𝑅𝑒𝑞| is the total number of requests.

Average miss ratio: This thesis evaluates the efficiency of the proposed ICN-based

caching approach by measuring the miss ratio which can be calculated by equation (4.8).

The average miss ratio shows the efficiency of the ICN-based caching approach from the

macroscopic viewpoint.

 �̅� =
∑𝑚𝑖

|𝑅𝑒𝑞|
 (4.8)

 𝑚𝑖 = {
1, 𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑐ℎ𝑒𝑑
0, 𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑖 𝑖𝑠 𝑐𝑎𝑐ℎ𝑒𝑑

 (4.9)

where the average miss ratio is denoted by �̅�, 𝑚𝑖 is a binary value, 𝑚𝑖 = 0 if video 𝑖 is

cached at a BS or a CR locally for a request; otherwise, 𝑚𝑖 = 1.

 111

Average number of choppy playback: The average number of choppy playback is used

to indicate the QoE for mobile users. The number of choppy playbacks is recorded each

time a handoff occurs. Each handoff will lead to a retransmission due to packets lost if the

newly connected BS or CR does not cache the requested video. The average number of

choppy playback can be calculated by equation (4.10)

 𝐶̅ =
∑ 𝑐𝑖
|𝑅𝑒𝑞|

 (4.10)

where 𝐶̅ represents the average number of choppy playback, 𝑐𝑖 is the number of choppy

playback for video 𝑖.

4.3.2 Evaluation Settings

This section presents the evaluation settings for the proposed approach.

4.3.2.1 Topology and Input Data

This thesis implements 20 BSs and 6 CRs in a 500×500 𝑚2 regular grid. Each BS is

connected to a CR. As shown in Fig. 4.4, a CR connects at least two BSs. The max number

of connected BSs for a CR is 5. CRs connect to their neighbor CRs via optical fiber.

There are 1,000 users who keep requesting videos until they walk out of the grid. A

random mobility module is used for user mobility, each user moves with a random speed

ranging from 0 𝑚/𝑠 to 20 𝑚/𝑠 and in a random direction. It indicates that the user is

stationary when the speed is 0 𝑚/𝑠 , while the user may be driving when the speed

is 20 𝑚/𝑠. The total number of video requests is 10,000, and there are 2,598 identical

 112

videos. The popularity of videos follows the Zipf-distribution with 𝛼 = 0.7, which has

been widely used in video streaming systems [19].

4.3.2.2 Parameter Setup

This thesis assumes the wireless link capacities are equally shared among mobile users. As

the bandwidth provided by mmWave technology is significantly high, the latency from a

BS to a mobile user is set to 5 𝑚𝑠 [13]. The latency from a CR to a BS is assigned to

be 10 𝑚𝑠 [96], while the latency from the content provider to a CR is assigned to be 50 𝑚𝑠

[6]. Videos are divided into chunks. For simplicity, this thesis assumes all chunks have the

same size (4,000 bytes), and the size of videos ranges from 30 MB to 3 GB. In addition,

CRs are assumed that can be implemented with larger storage memory than BSs. The

Fig. 4.4: Topology for evaluation

 113

shortest path routing protocol is adopted for the simulation. The parameter setup is

summarized in Table 4.3.

4.3.2.3 Simulation Results

This part evaluates how cache size influences the performance of the ICN-based caching

approach. RAN caching is selected as a comparison.

 Fig. 4.5 shows the trend of the average retrieval delay when the BS cache size ranges

from 1 GB to 30 GB and the CR cache size is set as shown in Table 4.3. Retrieval delay

is a key factor for QoE. We can see both RAN caching and the ICN-based caching approach

can reduce the average retrieval delay with the increase of the BS cache size. However, the

ICN-based caching approach outperforms RAN caching by more than 13 𝑚𝑠 deduction in

average retrieval delay (i.e., the minimal gain is from 44 𝑚𝑠 to 31 𝑚𝑠 with 1 GB BS and

Table 4.3: Parameters Setup

Description Value

BS layout
Regular grid

500 × 500 𝑚2[73]

Radius of BS coverage 100 m

BS – Mobile user latency 5 ms

CR – BS latency 10 ms

CR – Content provider

latency
50 ms

Video chunk size 4000 bytes

Number of BSs 20

Number of CRs 6

Range of video size 30 MB~3 GB

Video popularity

distribution

Zipf

Range of BS cache size
1, 2, 3, …, 10, 15, 20,

25, 30 GB

Range of CR cache size 1, 15, 30, 60, 100 GB

Reset value of popular

video table
30 mins

 114

CR cache size). As videos can only be cached at BSs not at routers in RAN caching,

therefore, the change of router cache size has no influence on the performance of RAN

caching in terms of the average retrieval delay. For the ICN-based caching, the average

retrieval delay can be reduced significantly with the increase of the CR cache size.

However, the benefits from the increase of the BS cache size decrease when the CR

cache size increases. The reason is that a user still needs to reconnect to the remote content

provider once a handoff occurs for RAN caching, while a user can fetch the video from the

CR by name in the proposed ICN-based caching. On the other hand, increasing the BS

cache size may not reduce the retrieval delay caused by handoffs considerably. As shown

in Fig. 4.5, when the CR cache size is set to 100 GB, the average retrieval delay decreases

from 25 𝑚𝑠 to 23 𝑚𝑠 with the increase of the BS cache size from 1GB to 30 GB. When

Fig. 4.5: Impact of cache size on average retrieval delay

 115

the CR cache size is set to 1 GB, the average retrieval delay decreases from 31 𝑚𝑠 to 26

𝑚𝑠 with the increase of BS cache size from 1GB to 30 GB.

Fig. 4.6 illustrates the impact of the cache size on the average number of choppy

playback. The ICN-based caching approach reduces the average number of choppy

playback significantly compared to RAN caching. Specifically, the average number of

choppy playback is below 0.31 for the proposed caching approach for various cache sizes,

while the average number of choppy playback of RAN caching is greater than 1. For the

proposed caching approach, the BS cash size does not have much impact on the average

choppy playback, especially when the CR has adequate cache size. The reason behind this

phenomenon is that the CR plays a vital role in reducing the retrieval delay and packet loss

for frequent handoffs. Hence, no significant advantage for the average number of choppy

Fig. 4.6: Impact of cache size on average number of choppy playback

 116

playback is achieved by increasing the BS cache size, especially when the CR has adequate

cache memory. Therefore, the proposed caching approach can improve the QoE

significantly for mobile users even with a small cache size.

The impact of the cache size on the average miss ratio is shown in Fig. 4.7. Similar to

Fig. 4.5, the average miss ratio decreases when the BS cache size increases. It is worth

noticing that the ICN-based caching approach reduces the average miss ratio significantly

compared to RAN caching. When the CR cache size is set to 1 GB, the average miss ratio

of ICN-based caching ranges from 42% to 52%, whereas the average miss ratio of RAN

caching ranges from 77% to 87% when the BS cache size ranges from 1 GB to 30 GB.

In terms of the effect of the cache size for the ICN-based approach, it can be seen that

the ICN-based caching achieves noticeable benefits from the increase of the CR cache size,

especially when the BS cache size is small. The average miss ratio decreases from 52% to

Fig. 4.7: Impact of cache size on average miss ratio

 117

37% for various CR cache sizes when the BS cache size is 1 GB. Even if the gain decreases

with the increase of BS cache size, but about 10% improvement can still be achieved for

various BS cache sizes.

In conclusion, the proposed ICN-based caching approach outperforms RAN caching in

terms of the average retrieval delay, the average number of choppy playback and the

average miss ratio. The BS cache size has limited impact on the performance of the ICN-

based caching approach when the CR has adequate cache memory. Slight benefits can be

achieved in reducing the average number of choppy playback by increasing the CR cache

size, while noticeable benefits can be achieved in reducing the average retrieval delay and

average miss ratio by increasing the CR cache size.

4.4 Summary

This chapter proposed an ICN-based caching approach for videos in 5G networks. Both

the video popularity and user mobility are considered to reduce the retrieval delay and core

network traffic. Caching videos that are requested by high mobility users can significantly

reduce the retrieval delay which is caused due to the frequent handoffs in 5G networks.

This thesis performed extensive evaluations, and the simulation results show that the

proposed ICN-based caching approach is more efficient in reducing the average retrieval

delay, the average number of choppy playback and average miss ratio significantly

compared to RAN caching which is widely used in 5G networks.

 118

Chapter 5: Caching Approach for ICN-IoT Networks

5.1 Introduction

The continuous development of networking technologies and smart devices has led Internet

of things (IoT) to be growing at an unprecedented pace. It is reported that billions of devices

will be connected to the Internet over the next 5 years, which will lead the current IP-based

Internet to facing tremendous challenges, such as the limited expressiveness of IP

addressing, multicast, complex mobility support and the energy efficiency requirement for

IoT resource-constrained devices.

In order to solve those problems, ICN is considered as the replacement of IP-based

network architecture since ICN supports mobility, name-based routing and in-network

caching. Some pioneer use cases (smart grid, smart home, etc.) for ICN-IoT networks have

been investigated and applied by the ICN Research Group (IGNRG) of the Internet

Research Task Force (IRTF) [76].

Generally, IoT devices like sensor nodes, actuators, etc., are battery-powered and

consume energy when they process and transmit data [65]. To save energy, IoT devices

spend the majority of their lifetime in sleep mode. They are only awake when they need to

process and transmit data. In integrated ICN-IoT networks, IoT devices, e.g., monitoring

sensors, are the content producers and the user applications are the content consumers.

Content consumers send interest packets to content producers to retrieve data. If the data

item is cached at an intermediate node (i.e. is between the users and the IoT devices), the

content consumers can retrieve the data directly from that node instead of the content

producers. Therefore, the content consumers can get the data without activating the IoT

devices, which leads to low energy consumption. Hence, if the IoT data items are cached

 119

properly at the intermediate nodes (such as content routers, BSs, etc.), the IoT network can

gain a great benefit in terms of energy efficiency and users can get the data faster.

A great deal of research has been conducted on the traditional Internet data caching [1]

[17] [62] [90] [103]. Unlike the traditional Internet data items, e.g., video data, IoT data

items often expire within a certain time period after being generated by the content

producer [90]. This thesis defines this time period as data lifetime. The term freshness is

used to express how recent an IoT data item is, after being generated. Caching IoT data is

more challenging than caching traditional Internet data, since the IoT data lifetime and its

freshness need to be considered to make caching decisions. The lifetime of IoT data varies

based on the type of data. For instance, traffic monitoring data has a shorter lifetime

compared to temperature monitoring data. Besides, different applications may have

different freshness requirements for the same type of data. For example, some applications

may require the current temperature data, while other applications can be satisfied with the

temperature data that was generated 5 minutes ago or even earlier.

In this chapter, IoT data lifetime-based cooperative caching decision (LCC) approach

which considers both the IoT data lifetime and the request rate in a certain time period is

proposed. The aim is to reduce the massive access to the IoT devices so that they can stay

in sleep mode for most of the time, while the data would still be available at the

intermediate nodes (content routers, BSs, etc.). Hence, the energy consumption of IoT

devices and the data retrieval delay can be greatly reduced. The intermediate nodes can

cooperate with each other by configuring a caching threshold based on their topology

location information and the request rate.

 120

This thesis evaluated the proposed approach by comparing with existing approaches,

[1], [7] and [90]. Simulation results show that the proposed approach outperforms existing

approaches in terms of the total energy consumption and the average number of hops.

The main contributions of this chapter are summarized as follows:

 Unlike other approaches that use energy efficient hardware or particularly

designed protocols [107] to improve energy efficiency for IoT, this thesis

integrates ICN and IoT to save IoT devices’ energy.

 Through configuring a caching threshold based on each intermediate node’s

topology location information and request rate, the intermediate nodes can

cooperate with one another to perform cooperative caching.

 A sliding time window is introduced to measure the change of the request rate.

This thesis designs and implement an auto-configuration mechanism that allows

each intermediate node to adjust its caching threshold dynamically based on the

current request rate.

 This thesis develops a simulator (written in C++) to evaluate the proposed

caching approach. The simulation results show that the proposed caching

approach outperforms existing approaches, in terms of total energy consumption

and the average number of hops.

The remainder of this chapter is organized as follows: Section 5.2 first explains the basic

concepts used in this chapter, such as “data lifetime”, “freshness” and “intermediate

nodes”. Then, the proposed LCC approach and detail the auto-configuration mechanism of

the caching threshold are presented. Section 5.3 presents the simulation setup and the

simulation results. Finally, Section 5.4 summaries this chapter.

 121

5.2 IoT Data Lifetime-based Cooperative Caching

In this section, the concepts of “data lifetime”, “freshness” and “intermediate nodes” are

explained firstly. Then, this thesis describes the specifications of LCC and the auto-

configuration mechanism of the caching threshold.

5.2.1 Basic Concepts

1) IoT data lifetime

Data lifetime can be defined as the length of time between which a data item is generated

by the content producer and the time it is no longer valid, i.e., it expires.

In ICN, there are two types of packet: interest packet and data packet [1]. There is a

signed information field which contains information about publisher ID, key locator, stale

time, and timestamp, etc. By checking the timestamp, a node can know when the data was

generated by the content producer.

2) IoT data freshness

Freshness is defined as the time difference between the time at which the data was

generated (𝑇𝑔) by the content producer and the current time. It can be defined as:

 𝐹𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 − 𝑇𝑔 (5.1)

The data freshness is 0 when the current time is 𝑇𝑔. When the data freshness equals to

the data’s lifetime, the data item is expired, and it should be discarded.

Different applications may have different freshness requirements for the same data. The

data can only be sent back to the application when the data freshness value is less than the

application’s freshness requirements.

 122

3) Intermediate nodes

In this chapter, the IoT devices, e.g., IoT sensors, are the content producers and the user

applications are the content consumers. All the nodes between the content producers and

the consumers are referred to intermediate nodes, including the gateway node, the content

routers and the BS.

5.2.2 IoT Data Lifetime-based Cooperative Caching Approach

This section describes the proposed IoT data lifetime-based cooperative caching (LCC)

approach.

5.2.2.1 System Model

This thesis considers an ICN-IoT scenario as shown in Fig. 5.1. This thesis selects the IoT

sensor nodes as the IoT devices in this scenario since they can generate IoT data items, i.e.,

they can be regarded as the content producers. The IoT sensor nodes stay in sleep mode for

most of the time until a request comes or an event occurs, e.g., a timer expires for periodic

sensing. Then the IoT sensor nodes are activated to perform the sensing task (e.g., sensing

the local pollution level) and transmit the data items to the content consumers. All the data

items that can be sensed by the IoT sensor nodes are denoted as D = {d1, d2, d3, …, dl, …,

dL}, where |D| is the total number of data items. Because the packet size of IoT data items

is usually small, this thesis assumes all the IoT data items have the same packet size. This

thesis assumes each IoT sensor node can only sense one kind of data for the sake of

simplicity.

 123

User applications send interest packets to retrieve data items. This thesis denotes the

requests for the IoT data items at time t by Req(t) = {req1(t), req2(t), req3(t), …, reqn(t), …,

reqN(t)}. Each request in this set is represented by reqn(t) = < dl, f, t>, where dl ∈ D, f is the

freshness requirement for data dl, t is the time that the request arrives.

A wireless node (e.g., access point) is deployed here to act as a gateway node to provide

Internet access to those IoT sensor nodes. The gateway node has storage to cache the data

items that go through it. The nodes in the ICN core network are the content routers, while

nodes in the ICN edge network could be content routers or BSs. All the nodes in the ICN

network, including the content routers and BSs, have caching capability to store data items

Fig. 5.1: System model

 124

that go through them. A binary array C(i, t) = {𝑐𝑑1(i, t), 𝑐𝑑2(i, t), 𝑐𝑑3(i, t), …, 𝑐𝑑𝑙(i, t), …,

𝑐𝑑𝐿(i, t)} is used to denote intermediate node i’s caching status at time t. If a data item dl is

cached at intermediate node i at time t, 𝑐𝑑𝑙 (i, t) = 1; otherwise, 𝑐𝑑𝑙 (i, t) = 0.

∑ 𝑃 ∙ 𝑐𝑑𝑙(𝑖, 𝑡)
𝐿
1 = 𝑠, where P is the packet size, s is the cache size of intermediate node i.

Furthermore, R(Req(t), ∑ 𝐶(𝑖, 𝑡)
|𝐼|
𝑖=1) = {r1(t), r2(t), r3(t), …, rn(t), …, rN(t)} is used to

represent how many requests in the request set Req(t) that can be obtained from

intermediate node i, where i ∈ I, I is the set of the intermediate nodes, |I| is the total number

of the intermediate nodes. rn(t) ∈ {0,1} indicates if the nth request can be served from the

intermediate nodes at time t.

By performing a caching decision policy A, C(i, t)
𝐴
→C(i, t+1), the new caching status of

intermediate node i at time t+1 can be achieved. The hit ratio is the basic metric to evaluate

the efficiency of the caching decision policy, which is defined as the percentage of requests

can be satisfied by the cache system. Therefore, the hit ratio can be denoted as follows:

 𝐻(𝐴) =∑
1

|𝑅𝑒𝑞(𝑡)|
∙ 𝑅 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)

|𝐼|

𝑖=1
)

𝑇

𝑡=1
 (5.2)

where T is the total time, |𝑅𝑒𝑞(𝑡)| is the total number of requests at time t. Theoretically,

an optimal caching decision policy can be found if all the prior information is known [54].

However, it is not implementable as the future information cannot be known in advance.

Hence, the aim is to find a practical caching decision policy to achieve better caching

efficiency than existing policies.

 125

5.2.2.2 Caching Decision Policy

A caching approach includes two parts: caching decision policy and caching replacement

policy. The proposed LCC approach uses the Least Recently Used (LRU) first as the

replacement policy. The principle of the caching decision is as follows:

 Each intermediate node has a caching threshold. The data can be cached at a

node if one of the following conditions is satisfied: 1) The data lifetime is longer

than the node’s caching threshold; 2) the node has enough space to store the data.

 All intermediate nodes can be classified into three types: edge node, middle-

level node, and root node. This classification is based on the topology

information which could be obtained by calculating the number of hops from the

content consumers (or content producers) to the node.

 The edge nodes are directly connected to the content consumers, e.g., content

routers, BSs, while the root nodes are directly connected to the content

producers, such as the gateway node. The rest of the nodes are the middle-level

nodes.

 Different types of nodes have different caching thresholds, and they can adjust

their caching threshold dynamically based on the current request rate by

applying the proposed auto-configuration mechanism. The auto-configuration

mechanism is discussed in Section III.C.

 The edge nodes have the smallest caching threshold so that they could cache

more data to reduce the retrieval delay. The root nodes have the highest caching

threshold, meaning that only data with a long lifetime can be cached. The

 126

caching threshold of middle-level nodes is between that for the edge nodes and

the root nodes.

This approach exploits the caching capability of the intermediate nodes to avoid

frequently activating IoT devices to reduce the energy consumption. The retrieval delay

can be reduced by leveraging the in-network caching of ICN. The intermediate nodes can

perform the caching decision policy as described in Algorithm 5.1.

5.2.2.3 Auto-configuration Mechanism

Since the proposed LCC is threshold-based, the configuration of the caching threshold can

make a great impact on its performance. Unlike traditional Internet data, IoT data items are

usually transient and small. The cached IoT data items can expire very quickly even before

Algorithm 5.1 IoT Data Lifetime-based Cooperative Caching

 1: a data item arrives at intermediate node i

 2: the node checks whether it has this content

 3: if (the data item is in cache) then

 4: if (its freshness < cached data’s freshness) then

 5: cache (refresh) the item

 6: forward the item to the next hop’s node

 7: else

 8: forward the item to the next hop’s node

 9: end if

10: else if (has enough space) then

11: cache the item

12: forward the item to the next hop’s node

13: else if (data lifetime ≥ caching threshold) then

14: while (not enough space) do

15: perform LRU replacement policy

16: end while

17: cache the item

18: forward the item to the next hop’s node

19: else

20: forward the item to the next hop’s node

21: end if

 127

the next request comes. Therefore, the request rate should be considered when configuring

the caching threshold of the intermediate nodes.

As discussed earlier, since there are three different types of nodes (root, middle-level,

and edge), the threshold of node i (𝑇𝐻𝑖) can be denoted as follows:

 𝑇𝐻𝑖 = 𝛼 ∙ 𝑓𝑟(𝑟𝑖𝑡) + 𝛽 ∙ 𝑓𝑚(𝑟𝑖𝑡) + 𝛾 ∙ 𝑓𝑒(𝑟𝑖𝑟) (5.3)

where 𝛼 + 𝛽 + 𝛾 = 1, 𝛼, 𝛽, 𝛾 ∈{0,1}. In other words, the type of node i can only be one

of the three types at a given time. 𝑟𝑖𝑡 is the request rate of node i at time t, 𝑓𝑟() is the

threshold decision function of the root nodes, 𝑓𝑚() is the threshold decision function of

the middle-level nodes, 𝑓𝑒() is the threshold decision function of the edge nodes.

When the request rate 𝑟𝑖𝑡 increases, 𝑇𝐻𝑖 should be de creased so that more data items can

be cached at intermediate node i to reduce the retrieval delay. On the other side, if 𝑟𝑖𝑡

decreases, 𝑇𝐻𝑖 should be increased to avoid caching short lifetime data at intermediate

node i, because data with short lifetime may expire before it can be served for the upcoming

request when 𝑟𝑖𝑡 is small. Therefore, the auto-configuration mechanism can be described

as follows:

If 𝑟𝑖𝑡+∆𝑡 > 𝑟𝑖𝑡 (i.e., request rate is increasing), then:

{

 𝑓𝑒(𝑟𝑖𝑡) = 𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛

 𝑓𝑚(𝑟𝑖𝑡) =
1

𝜎
∙ (𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛 + 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥), 1 < 𝜃 < 𝜎

 𝑓𝑟(𝑟𝑖𝑡) = (1 −
1

𝜎𝜃
) ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥, 𝜎 ≤

𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥
𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛

 (5.4)

Else if 𝑟𝑖𝑡+∆𝑡 ≤ 𝑟𝑖𝑡 (i.e., request rate is decreasing), then:

 128

{

 𝑓𝑒(𝑟𝑖𝑡) = 𝜃 ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛, 𝜃 > 1

 𝑓𝑚(𝑟𝑖𝑡) =
1

𝜃
∙ (𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛 + 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥), 1 < 𝜃 < 𝜎 (5.5)

𝑓𝑟(𝑟𝑖𝑡) = (1 +
1

𝜎𝜃
) ∙ 𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥 , 𝜎 ≤

𝑎𝑔𝑒(𝑖)𝑚𝑎𝑥
𝑎𝑔𝑒(𝑖)𝑚𝑖𝑛

where 𝑎𝑔𝑒(𝑖) is the set of data lifetime for intermediate node i in a sliding time window

(from time 𝑡 to time 𝑡 + ∆𝑡). 𝜃 and 𝜎 are configurable weights which are used to decide

the increment (or decrement) amount of the caching threshold.

With (5.4) and (5.5), the proposed LCC can dynamically adjust the intermediate nodes’

caching threshold based on the recent request rate.

5.3 Performance Evaluation

This section first introduces the evaluation metrics, then presents the simulation setup and

results.

5.3.1 Evaluation Metrics

Total energy consumption: The total energy consumption is the total amount of energy

consumed by all IoT devices during the simulation. This thesis uses the total energy

consumption to evaluate the efficiency of the caching decision approach in reducing energy

consumption. A better caching decision approach can save IoT devices’ more energy by

avoiding activating them too frequently.

The energy consumed by IoT device j (denoted as 𝑒𝑗) for transmitting one bit to the

gateway node can be calculated by the following equation [34]:

 𝑒𝑗 = 𝑒𝑡 + 𝑏 ∙ 𝐷𝑗
𝑎 (5.6)

 129

where 𝐽 is the set of IoT devices (j ∈ 𝐽), 𝑒𝑡 is the energy consumed by a transmitter for

transmitting one bit, 𝑏 is the energy cost of the transmitter amplifier, 𝐷𝑗 is the Euclidean

distance between IoT device j and the gateway node, and 𝑎 stands for path loss factor.

This thesis uses 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔 to denote the energy consumed by IoT devices for sensing one

bit. Since IoT device also consumes energy when transferring from the sleep mode to the

active mode [64], denoted by 𝑒𝑎𝑤𝑎𝑘𝑒, the total energy consumption Etotal can be calculated

as:

 𝐸𝑡𝑜𝑡𝑎𝑙 =∑ 𝑛𝑗 ∙ [𝑃 ∙ (𝑒𝑗 + 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔)
|𝐽|

𝑗=1
+ 𝑒𝑎𝑤𝑎𝑘𝑒] (5.7)

where 𝑃 is the packet size, |𝐽| is the total number of IoT devices, 𝑛𝑗 represents for how

many times IoT device j is activated, which is affected by the hit ratio of caching decision

policy 𝐴, it can be calculated as:

 𝑛𝑗 =∑ [|𝑅𝑒𝑞(𝑡)| − 𝑅 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)
|𝐼|

𝑖=1
)]

𝑇

𝑡=1
 (5.8)

where |𝐼| is the total number of the intermediate nodes, T is simulation time, 𝐶(𝑖, 𝑡) is used

to denote node i’s caching status at time t, |𝑅𝑒𝑞(𝑡)| is the total number of requests at time

t.

Average number of hops: The data retrieval delay is measured by the average number of

hops which is calculated by (5.9).

 𝐻𝑜𝑝̅̅ ̅̅ ̅̅ = ∑
1

|𝑅𝑒𝑞(𝑡)|
∙ 𝐻𝑜𝑝 (𝑅𝑒𝑞(𝑡),∑ 𝐶(𝑖, 𝑡)

|𝐼|

𝑖=1
)

𝑇

𝑡=1
 (5.9)

 where Hop(Req(t), ∑ 𝐶(𝑖, 𝑡)
|𝐼|
𝑖=1) = {hop1(t), hop2(t), hop 3(t), …, hopn(t), …, hopN(t)}

represents how many hops are used for satisfying each request at time t. If reqn(t) can be

 130

satisfied from the intermediate node i, hopn(t) equals to the number of hops from

intermediate node i to the user; otherwise, hopn(t) equals to the number of hops from the

content producer to the user.

5.3.2 Simulation Setup

This thesis chooses LCE [1], Prob caching [7] and caching transient data [90] approaches

as comparisons. LCE is the default caching approach in ICN where each data item is cached

at every node along the data delivery path. Evidently, the content redundancy of LCE is

extremely high. For the sake of reducing the content redundancy, Prob caching was

proposed by caching a content with a certain probability. [90] is a more recent work, the

authors present another probability-based caching approach where they exploit in-network

caching, the key feature of ICN, to cache transient data for IoT. The caching transient data

approach takes both the data freshness and the multi-hop communication cost into

consideration, which is more efficient than Prob caching. LRU is applied as the

Table 5.1: Parameter Settings

Description Value

Simulation Time (T) 3,000 s

Number of intermediate nodes (I) 10

Number of IoT sensor nodes (J) 30

Number of IoT data types (D) 30

Transmission energy consumption (𝑒𝑡) 50 nJ/bit [34]

Sensing energy consumption (𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔) 150 nJ/bit [34]

Transmit amplifier (𝑏) 100 pJ/bit/m2 [34]

Path loss factor (𝑎) 2 [34]

Awake energy consumption (𝑒𝑎𝑤𝑎𝑘𝑒) 7.34∙104 nJ [64]

Packet size (P) 500 bytes [34]

 131

replacement policy for LCE, Prob caching and LCC, while LFF (Least Fresh First) is used

as the replacement policy for caching transient data approach based on [90].

The scenario illustrated in Fig. 5.1 is used for the simulation. There are 30 kinds of IoT

data items, and their lifetime is uniformly distributed between 1 second and 1 minute. User

applications request those data items with a random freshness requirement (less than the

data’s lifetime) from the edge nodes randomly. The request generation follows a stationary

Poisson process. For simplicity, this thesis assumes there are 30 IoT sensor nodes (|𝐽| =

30) to sense those data items. A shortest path routing protocol is applied in this scenario.

A simulator (written in C++) is developed and be use to evaluate the proposed LCC

approach. The parameter settings are summarized in Table 5.1.

5.3.3 Simulation Results

This thesis performed 30 different runs for each caching approach and calculated the

average over these 30 runs to plot results.

5.3.3.1 Impact of Cache Size

There are 6 edge nodes as shown in Fig. 5.1. Hence, the request rate is set to 𝜆 = 6/𝑠, so

that there is one request per second at each edge node on average. Fig. 5.2 illustrates the

impact of cache size in terms of total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 . This thesis uses the

proportion of the total data items that can be cached at a node to represent the cache size.

We can see that LCC outperforms other caching approaches in the experiments. As

expected, all these caching approaches reduce 𝐸𝑡𝑜𝑡𝑎𝑙 with an increasing of the cache size,

and they can achieve a great reduction of 𝐸𝑡𝑜𝑡𝑎𝑙 when the cache size ranges from 0% to

30%. LCC can reduce about 46% energy consumption compared to no caching used. Also,

 132

even though LCE has a high content redundancy, it has significantly less energy

consumption compared to both Prob caching and caching transient data approaches. When

the intermediate nodes’ cache size keeps increasing until they can cache all the data, i.e.,

cache size = 100%, LCC and LCE have the same performance with a reduction of around

48% of the total energy consumption compared to no caching used. The caching transient

data approach outperforms Prob caching when the cache size is less than 90%. The reason

behind this phenomenon is that the caching probability is too small for a data item with a

short lifetime in the caching transient data approach even if the node has enough space to

cache all the data. We can see that LCC can achieve a significant reduction in energy

consumption with a small cache size, e.g., 45% reduction in total energy consumption when

the cache size is 30%. Therefore, LCC is more efficient than other approaches in terms of

total energy consumption, especially when the cache size is small, e.g., 30%.

Fig. 5.2: Total energy consumption VS cache size

 133

Fig. 5.3 demonstrates how the cache size influences the performance of the average

number of hops. Similar to Fig. 5.2, all these caching approaches achieve a great reduction

in the average number of hops when the cache size ranges from 0% to 30%. What’s more,

LCC outperforms other caching approaches, and it can reduce about 28% in the average

number of hops compared to no caching used. Because the more efficient the caching

approach is, the more requests can be served from the intermediate nodes which are closer

to the users. Notably, the performance of the caching transient data approach is better than

the Prob caching approach regardless the change of cache size. This is due to the fact that

the caching transient data approach considers the trade-off between the data freshness and

the multi-hop communication cost.

Fig. 5.3: Average number of hops VS cache size

 134

5.3.3.2 Impact of Request Rate

Based on the simulation results of the impact of the cache, as described in the previous sub-

section, this thesis sets the cache size to 30%. In addition, the request rate is varied (𝜆 =

1/s, 5/s, 10/s, 15/s, 20/s, 25/s, 30/s) to explore the impact of total energy consumption and

the average number of hops.

Fig. 5.4 shows the effect of the request rate 𝜆 on the total energy consumption.

Obviously, the total energy consumption keeps decreasing when the request rate increases.

In fact, a higher 𝜆 indicates that the data items could be requested multiple times before

they expire. Hence, the caching approach can reduce more energy consumption with higher

request rates. Fig. 5.4 demonstrates that the performance in total energy consumption of

the proposed LCC approach is the best for all request rates. When 𝜆 = 30/𝑠, LCC provides

reduction of about 70% and 40% in terms of total energy consumption compared to no

caching used and LCE, respectively.

Fig. 5.4: Average number of hops VS request rate

 135

Fig. 5.5 describes the trend for the average number of hops with different 𝜆 . As

expected, all these caching approaches have a poor performance when 𝜆 = 1/𝑠, the reason

of this phenomenon is that data may expire before the next request arrives when 𝜆 is small.

When the request rate is increased, all the caching approaches achieve a notable reduction

in the average number of hops. The proposed LCC approach outperforms other caching

approaches for all different request rates; it can reduce around 47% in terms of the average

number of hops compared to no caching used, and about 20% compared to LCE when 𝜆 =

30/𝑠.

5.4 Summary

This chapter proposes an IoT data lifetime-based cooperative caching (LCC) approach

for ICN-IoT networks. Both the IoT data lifetime and the request rate are taken into

consideration to reduce the IoT devices’ energy consumption and the data retrieval delay.

Fig. 5.5: Total energy consumption VS request rate

 136

An auto-configuration mechanism was proposed to adjust the caching threshold

dynamically so that the LCC approach can perform well under varying request rates. The

evaluation results show that the proposed LCC approach is significantly more efficient

compared to existing caching approaches in reducing the total energy consumption of IoT

devices and the data retrieval delay.

 137

Chapter 6: Proactive Caching for Autonomous Vehicle Users

6.1 Introduction

Video streaming over vehicular networks will play an increasing role in the near future. It

will become a new way of entertainment for users in vehicular networks. Hence, how to

distribute videos efficiently for vehicular networks will become a huge challenge.

AVs are equipped with smart sensors and intellectual analytic tools and are expected to

drive themselves safely with little or no human input. Recently, the rapid development of

AVs has boosted its testing and deployment within a much shorter time than previously

expected. Companies like Google, Tesla, Uber, Baidu, etc., have brought self-driving

vehicles closer to reality than ever. With the help of AVs, drivers do not need to focus on

the road all the time. Instead, they can relax for a while and enjoy the scene of the trip,

especially when the full self-driving vehicles (which is the highest level of AVs [112])

become a reality.

Recent advances in wireless networking technologies, such as 5G cellar networks, have

reshaped the ways of entertainment for users in vehicular networks to browse the web,

listen to the radio, play online games and watch videos. In the near future, AVs will become

new entertainment places for mobile users. However, due to the short transmission range

of RSUs and BSs in 5G networks [77], users will incur frequent handoffs and shorter

connection durations. Therefore, users may have to reconnect to the original video content

provider for some applications once a handoff occurs, which induces heavy overheads and

high video retrieval delay. Compared to pedestrians, this situation will be worst for AV

users due to their higher velocity. Furthermore, the high demand for entertainment services

(such as video streaming services) also creates a huge pressure for the vehicular networks.

 138

Hence, how to improve users’ QoE and reduce the vehicular networks backhaul load are

becoming crucial challenges.

To cope with these challenges, caching videos at the edge nodes (e.g., BSs, RSUs) has

been proposed. In this way, users (drivers and/or passengers) can retrieve videos from the

edge nodes, which can reduce the video retrieval delay and the backhaul load of 5G

networks. However, the existing IP-based Internet paradigm is unsuitable for vehicular

networks, since it was designed for host-to-host communications, not for mobile content

delivery. More specifically, it cannot support in-network caching and mobility without

additional techniques, e.g., DNS for supporting in-network caching lookup, mobile IP for

supporting mobility. Information-Centric Networking (ICN) [1] was proposed to cope with

the issues of the current Internet. Unlike traditional IP-based networks, ICN supports name-

based routing, in-network caching and mobility by nature, which makes ICN more suitable

for vehicular networks to support video streaming services for AV users [57]. With the

help of the in-network caching feature of ICN, proactive caching can be implemented

directly in ICN-based vehicular networks. Therefore, 5G-ICN is a promising paradigm for

providing video streaming services for AV users.

Generally, caching can be categorized into reactive caching and proactive caching [61].

In reactive caching, videos can only be cached at a node when they are transmitted through

that particular node. In other words, if a video has never been requested via a specific node,

then there is no cached copy of this video at this node. Unlike reactive caching, proactive

caching can fetch videos in advance from the content provider or cloud servers before

users’ requests arrive. This means that although a video has never been requested from a

RSU, the RSU can still proactively cache the particular video and send it back to the AV

 139

users when requested. Due to the limited storage space available in RSUs, they are only

able to cache a limited number of videos. Further, the high diversity of users’ preferences

makes it extremely difficult for the next user to request the exact same videos as the last

few users. Hence, proactive caching is more suitable for AV users compared to reactive

caching.

Existing research efforts on proactive caching are at the video-level [12] [36] [116],

which is not suitable for AV users. In fact, the high velocity of AVs and the short

transmission range of 5G BSs/RSUs lead to short connection durations which means that

AV users can only retrieve a small portion of a video from a BS/RSU. As a result, the

storage of BSs/RSUs is wasted for caching the rest of the same video. Hence, to improve

the efficiency of proactive caching for mobile users, some recent works (such as [118])

propose caching videos at the chunk-level. This chapter also follows this idea and proposes

a chunk-level caching approach for AVs users.

For proactive caching, two sub-problems need to be solved: the “What” problem deals

with what to cache, and the “Where” problem addresses where to cache. Hence, future

demands (the “what” problem) and user mobility (the “where” problem) are two major

factors that need to be considered in proactive caching for AV users in vehicular networks.

For future demands prediction, the most recent research trend is to use machine learning

techniques [12] [36] [116].

On the other hand, matrix factorization (MF), an advanced machine learning technique

[43], is another popular approach to predict users’ future demands. As users’ preferences

are the primary reason that makes videos have different levels of popularity, future user

demands can be predicted by predicting the ratings of videos that have not been watched.

 140

Since MF-based approaches consider users preferences, they can achieve a notable

improvement in terms of the user satisfaction, average video retrieval delay and hit ratio

compared to traditional proactive caching approaches [12] [37] [95]. Recently, some MF-

based proactive caching approaches [12] [37] [95] are proposed from the users’ preferences

perspective. The authors of [12] propose a singular value decomposition (SVD) based

proactive approach that outperforms the reactive caching approach. But SVD may generate

negative ratings as predictions for low rated videos which is considered impractical for real

life networks [37]. To overcome this shortcoming, non-negative matrix factorization

(NMF) based proactive caching schemes are proposed. The recent work in [37] predicts

the users’ future demands by using NMF and making caching decision based on the

predicted user demands. However, they model the proactive caching as a mixed-integer

linear programming (MILP) problem which is a typical an NP-hard problem [29]. Hence,

their proposed approach is impractical due to the high computational complexity.

Before the rapid development of networking technologies, e.g., 5G, the user mobility

information, such as moving direction, velocity, destination, route, etc., was really hard to

obtain in real time in traditional vehicular networks. Therefore, Markov-based predictors

[84] were used in the past to predict the user mobility. However, nowadays, all the

aforementioned information can be easily retrieved from the self-driving system of AVs.

As a result, the mobility information can be calculated based on the information. Therefore,

a more accurate proactive caching approach can be achieved.

Although some excellent research efforts have been reported on proactive caching, most

of the existing works only consider either the future demand or the user mobility, i.e., only

one problem (either “what” or “where”) is answered. This chapter considers both the future

 141

demand and the user mobility to propose a novel hierarchical proactive caching approach.

Compared to the statistic model and the neural network model, NMF has less number of

parameters. Furthermore, NMF also considers users’ preferences, which makes NMF more

suitable than other techniques for caching videos for AV users. Therefore, this chapter uses

the NMF technique to predict the user future demands. The distinct features of this research

are as follows:

 Unlike the existing proactive caching approaches [12] [37] [36] [95] [110] [116]

that use traditional IP networks as the basic infrastructure for vehicular

networks, the chapter proposes to use the ICN paradigm, as it supports in-

network caching and mobility by nature.

 This chapter proposes a hierarchical approach which caches videos at both edge

nodes (BSs and RSUs) and core network nodes (routers).

 As AV users have a very short connection duration with edge nodes, they may

only retrieve a few chunks of a video. As a result, the proposed hierarchical

approach works at the chunk-level to improve the caching efficiency. On the

other hand, AV users will keep a long connection duration with the core

networks for watching the entire video. Hence, the proposed hierarchical

approach works at the video-level for nodes in the core networks.

 Traditional MF-based approaches (NMF, SVD) can predict future demands by

predicting the user future ratings on videos. However, they may generate

inaccurate predictions for unpopular but highly rated videos. To resolve this

issue, not only the predicted ratings are considered, but also the previous

popularity of videos are used to predict the users’ future demands.

 142

 A user mobility prediction module for vehicular networks is proposed to

calculate the user future position and to decide which chunks should be cached

at the future BSs/RSUs that the user will be connected to.

The remainder of this chapter is organized as follows: Section 6.2 describes the system

model. In Section 6.3, the details of the NMF algorithm are presented. Section 6.4

illustrates the details of our proposed proactive caching approach. Simulation setups and

numerical results are shown in Section 6.5. Finally, Section 6.6 concludes this chapter and

outlines the future research directions.

Table 6.1: Notations

Symbol Definition

𝑉 Set of videos

𝑈 Set of AVs users

𝐼 Set of nodes

𝑀 Total number of videos

𝑁 Total number of AVs users

𝑣𝑚 Video 𝑚

𝑢𝑛 AVs user 𝑛

𝑠𝑣𝑚 Size of video 𝑣𝑚

𝐾(𝑣𝑚) Number of chunks that a video 𝑣𝑚 can be divided

𝜉 Size of a video chunk

𝑅𝑒𝑞(𝑖, 𝑡) Set of requests for all videos from node 𝑖 at time 𝑡

𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)
Total number of requests for the kth chunk of

video 𝑣𝑚 of node 𝑖 at time 𝑡

𝜆 Arrival rate

𝐶(𝑖, 𝑡) Caching status of node 𝑖 at time 𝑡

𝑐𝑣𝑚𝑘 (𝑖, 𝑡) If video chunk 𝑣𝑚
𝑘 is cached at node 𝑖 at time 𝑡

𝑐𝑠𝑖 Cache size of node 𝑖

𝐴 Caching decision

𝑅 Rating matrix

𝑟(𝑢𝑛, 𝑣𝑚) Rating of user 𝑢𝑛 on video 𝑣𝑚

 143

6.2 System Model

This section presents the system model for the proposed proactive caching approach,

including the network architecture, the caching model and the rating model. The symbols

(and their definition) that will be used in this section are summarized in Table 6.1.

6.2.1 Network Architecture

This chapter considers an ICN-based vehicular network for AVs users. More specifically,

5G technologies, including mmWave, massive MIMO, beamforming, etc., are used for the

wireless communications at the physical layer, while ICN is used as the basic network

architecture at network and transport layer.

AV users (both drivers and passengers) can send requests to retrieve videos from the

video provider. This chapter denotes all AV users as 𝑈 = {𝑢1, 𝑢2, . . . 𝑢𝑁} where 𝑁 is the

total number of AVs users. The set of nodes, including BSs, RSUs, and routers, is denoted

as 𝐼 , where any node in this network can be represented as 𝑖 ∈ I . We use 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑀} to indicate the set of videos that can be retrieved from the video provider,

where M is the total number of videos. 𝑠𝑣𝑚 represents the size of video 𝑣𝑚. Any video 𝑣𝑚 ∈

𝑉 can be divided into multiple chunks, e.g., 𝑣𝑚 = {𝑣𝑚
1 , 𝑣𝑚

2 , … , 𝑣𝑚
𝑘 , … , 𝑣𝑚

𝐾(𝑣𝑚) } . For

simplicity, all videos chunks are assumed to have the same size which is denoted as 𝜉.

Consequently, the number of chunks that a video 𝑣𝑚 can be divided into is 𝐾(𝑣𝑚) =
𝑠𝑣𝑚

𝜉
.

As mentioned before, AV users in the ICN-based vehicular networks can send interest

packets to retrieve videos. The requests for videos at time 𝑡 are denoted as 𝑅𝑒𝑞(𝑖, 𝑡) =

{𝑟𝑒𝑞𝑣11(𝑖, 𝑡), 𝑟𝑒𝑞𝑣12(𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣1
𝐾(𝑣1)(𝑖, 𝑡), 𝑟𝑒𝑞𝑣21(𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑟𝑒𝑞𝑣𝑀

𝐾(𝑣𝑀)(𝑖, 𝑡)}

where 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡) represents the total number of requests for the kth chunk of video 𝑣𝑚 of

 144

node 𝑖 at time 𝑡 . Since Poisson distribution is widely used to represent users’ request

pattern, the arrival of video requests is assumed to follow a Poisson distribution with arrival

rate 𝜆.

6.2.2 Caching Model

All nodes (BSs, RSUs, and routers) in this ICN-based vehicular network have the capability

to cache videos. The caching status of node 𝑖 at time 𝑡 can be represented by a binary array

𝐶(𝑖, 𝑡) = {𝑐𝑣11(𝑖, 𝑡), 𝑐𝑣12(𝑖, 𝑡), … , 𝑐𝑣1𝑘
(𝑖, 𝑡), … , 𝑐𝑣21(𝑖, 𝑡), … , 𝑐𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑐𝑣𝑀

𝐾(𝑣𝑀)(𝑖, 𝑡)} ,

where 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) represents if video chunk 𝑣𝑚
𝑘 is cached at node 𝑖 at time 𝑡 . More

specifically, 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) = 1 means that video chunk 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) is cached at node 𝑖 at time 𝑡,

while 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) = 0 indicates that 𝑣𝑚
𝑘 is not cached at node 𝑖 at time 𝑡. Since each node in

the network can only cache a limited number of video chunks, the total size of all cached

videos should be smaller than the node’s storage capacity, hence we can have

∑ ∑ [𝜉 ⋅ 𝑐𝑣𝑚𝑘 (𝑖, 𝑡)] ≤ 𝑐𝑠𝑖𝑘∈𝐾(𝑣𝑚)
𝑀
𝑚=1 , where 𝜉 is the unit size of a video chunk, 𝑐𝑠𝑖 is the

cache size of node 𝑖.

A centralized server is deployed to make caching decisions for all nodes. With a caching

decision 𝐴, the caching status of node 𝑖 at time 𝑡 can be changed to the new caching status

at time 𝑡 + ∆𝑡, i.e., 𝐶(𝑖, 𝑡)
𝐴
→ 𝐶(𝑖, 𝑡 + ∆𝑡).

6.2.3 Rating Model

All AV users will rate the videos that they have watched to express their degree of

preference. The ratings of AV users in 𝑈 on videos in 𝑉 can be presented as a matrix which

is denoted as 𝑅 . Each user-video pair in 𝑅 is denoted as 𝑟(𝑢𝑛, 𝑣𝑚) which presents the

 145

rating of user 𝑢𝑛 on video 𝑣𝑚. The rating matrix 𝑅 is stored in the centralized server and it

is used to predict users’ future ratings on all videos by using the NMF technique.

6.3 Problem Formulation

This section presents how the caching decision problem is formulated. Then, the NMF

technique, which will be used to predict the users’ future ratings on all videos, and the

application of NMF to the target problem are illustrated.

6.3.1 Caching Decision Problem Formulation

𝐻(𝑖, 𝑡) is used to represent the number of requests that can be served from node 𝑖 at time

𝑡, i.e., it indicates the number of cache hits. 𝐻(𝑖, 𝑡) can be calculated as:

𝐻(𝑖, 𝑡) = |𝑅𝑒𝑞(𝑖, 𝑡) ⋅ 𝐶(𝑖, 𝑡)|

 = ∑ ∑ 𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)

𝑘∈𝐾(𝑣𝑚)

⋅ 𝑐𝑣𝑚𝑘 (𝑖, 𝑡) (6.1)

𝑀

𝑚=1

Obviously, 𝐻(𝑖, 𝑡) can be used to represent the efficiency of caching. Since a caching

decision 𝐴 can update the caching status of a node, namely, 𝐶(𝑖, 𝑡) , the efficiency of

caching is highly dependent on the caching decision. In order to achieve the maximum

efficiency of caching, a proper caching decision policy which can make effective caching

decisions needs to be found. To find a proper caching decision policy, two sub-problems

need to be solved: the “What” and the “Where” problems.

 146

6.3.1.1 The “What” Problem

Since the cache size of a node is limited, only a limited number of videos can be cached at

the node at a time. However, caching different videos will lead to different caching status,

(𝐶(𝑖, 𝑡)) which may have an impact on the efficiency of caching, (𝐻(𝑖, 𝑡)). Therefore, it is

essential to find out what videos should be cached to solve the first sub-problem. More

specifically, the goal of the “What” problem is to find a binary

array {𝑐𝑣11(𝑖, 𝑡), 𝑐𝑣12(𝑖, 𝑡), … , 𝑐𝑣𝑚𝑘 (𝑖, 𝑡), … , 𝑐𝑣𝑀
𝐾(𝑣𝑀)(𝑖, 𝑡)} that can achieve the maximum

𝐻(𝑖, 𝑡) under the condition of 𝑐𝑠𝑖.

6.3.1.2 The “Where” Problem

Once we know what video chunks should be cached, the next problem consists to find

where these video chunks should be cached. 𝐷𝑖𝑗(𝑣𝑚
𝑘) is used to denote the delivery cost for

video chunk 𝑣𝑚
𝑘 from node 𝑖 to node 𝑗, and it can be calculated as follows:

 𝐷𝑖𝑗(𝑣𝑚
𝑘) =

𝑑𝑖𝑗

𝑐𝑣𝑚𝑘 (𝑗, 𝑡)
 (6.2)

where 𝑑𝑖𝑗 is the end to end delay from node 𝑖 to node 𝑗. If 𝑐𝑣𝑚𝑘 (𝑗, 𝑡) = 1, it means that

video chunk 𝑣𝑚
𝑘 is cached at node 𝑖, and therefore 𝐷𝑖𝑗(𝑣𝑚

𝑘) = 𝑑𝑖𝑗; otherwise, 𝐷𝑖𝑗(𝑣𝑚
𝑘) =

∞ . Moreover, 𝑑𝑖𝑗 can be calculated as follows:

 𝑑𝑖𝑗 = ∑ (
𝜉

𝐵𝑊ℎ
+

𝐷𝑖𝑠𝑡ℎ
3 × 108

+ 𝑄ℎ) (6.3)

ℎ∈𝐻

where 𝐻 is the set of hops that a video needs to be delivered where ℎ is the ℎth hop in 𝐻.

𝐵𝑊ℎ is the available bandwidth of the link for the ℎth hop, 𝐷𝑖𝑠𝑡ℎ is the physical link length

for the ℎth hop, 𝑄ℎ is the queueing delay for the ℎth hop, and 3 × 108 (in meters) is the

approximate speed of light in a vacuum, which can be considered as the speed of electronic

 147

signals that travel in the physical cable (or electromagnetic waves that travel through the

air). Clearly,
𝜉

𝐵𝑊ℎ
 is the transmission delay and

𝐷𝑖𝑠𝑡ℎ

3×108
 is the propagation delay for

transmitting video chunk 𝑣𝑚
𝑘 at the ℎth hop.

Therefore, the goal of the “Where” problem is to find the proper node 𝑖 for the binary

array 𝐶(𝑖, 𝑡) to achieve the minimum delivery cost for transmitting video 𝑣𝑚 to the user.

6.3.2 Non-negative Matrix Factorization Technique

NMF, as stated earlier, is one of the MF techniques [43] classified as an advanced machine

learning technique. NMF has been widely used in recommender systems to predict users’

ratings on never watched videos. Compared to other MF techniques such as SVD, NMF

does not generate negative predictions, which is considered more suitable for video ratings

in real life.

The idea of NMF is that there are 𝑊 latent features that have impacts on the rating

conducted by a user on a video. NMF tries to explain the ratings by characterizing both

users and videos [43]. For example, features of a video could be actions, adventure, science

fiction, etc. Similarly, features of a user could measure how much the user likes a movie

on the corresponding movie features. By factorizing the original 𝑅 (a 𝑁 ×𝑀 matrix) into

user feature matrix 𝑃 and video feature matrix 𝑄 where 𝑃 is a 𝑁 ×𝑊 matrix which

measures the extent of the association between users and user features, and 𝑄 is a 𝑀 ×𝑊

matrix which denotes the extent of the relations between videos and video features. All

elements in 𝑃 and 𝑄 are non-negative, namely, ∀𝑝𝑛𝑤 ∈ 𝑃, 𝑝𝑛𝑤 ≥ 0, ∀𝑞𝑚𝑤 ∈ 𝑄, 𝑞𝑚𝑤 ≥ 0.

By calculating the dot product of 𝑃 and 𝑄, the estimated rating matrix �̃�, which is the

approximation of the original matrix 𝑅, can be found and all missing ratings are filled with

 148

the estimated ratings denoted as 𝑟(𝑢𝑛, 𝑣𝑚)̃ . According to the descriptions of [43],

𝑟(𝑢𝑛, 𝑣𝑚) can be calculated as follows:

 𝑅 ≈ �̃� = 𝑃𝑄𝑇 (6.4)

or

 [

𝑟11 𝑟12 ⋅⋅⋅ 𝑟1𝑀
𝑟11 𝑟22 ⋅⋅⋅ 𝑟2𝑀
⋮ ⋮ ⋱ ⋮
𝑟𝑁1 𝑟𝑁2 ⋅⋅⋅ 𝑟𝑁𝑀

] = [

𝑝11 𝑝12 ⋅⋅⋅ 𝑝1𝑊
𝑝21 𝑝22 ⋅⋅⋅ 𝑝1𝑊
⋮ ⋮ ⋱ ⋮

𝑝𝑁1 𝑝𝑁2 ⋅⋅⋅ 𝑝𝑁𝑊

] × [

𝑞11 𝑞21 ⋅⋅⋅ 𝑞𝑀1
𝑞12 𝑞22 ⋅⋅⋅ 𝑞𝑀2
⋮ ⋮ ⋱ ⋮

𝑞1𝑊 𝑞2𝑊 ⋅⋅⋅ 𝑞𝑀𝑊

] (6.5)

To predict how an AV user would rate a video, the dot product of user 𝑢𝑛 and video 𝑣𝑚

vector will result in a single number as:

 𝑟(𝑢𝑛, 𝑣𝑚) ≈ 𝑟(𝑢𝑛, 𝑣𝑚)̃ = 𝑝𝑛𝑞𝑚
𝑇 = ∑ 𝑝𝑛𝑤𝑞𝑤𝑚

𝑊

𝑤=1

 (6.6)

where 𝑝𝑛𝑤 ∈ 𝑃, 𝑞𝑤𝑚 ∈ 𝑄𝑇, 𝑝𝑛 is a 𝑛th row vector, 𝑞𝑚
𝑇 is a 𝑚th column vector.

The goal of the model is to generalize those previous ratings in a way that can predict

future (i.e., unknown) ratings. Hence, the model should avoid overfitting the observed data

by regularizing the learned parameters. Consequently, a regularization parameter, 𝜆 > 0 is

involved to control the weight of the regularization term. Thus, to learn the latent features

(𝑃 and 𝑄), the most common approach is to minimize the regularized squared error on the

set of know ratings [43]:

 𝑚𝑖𝑛 [∑ (𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚
𝑇)2 + 𝜆(‖𝑝𝑛‖

2 + ‖𝑞𝑚‖
2)

𝑚∈𝑀,𝑛∈𝑁

] (6.7)

 149

where 𝑝𝑛 > 0, 𝑞𝑚 > 0, and ‖⋅‖2 represents the Euclidean norm of the vector.

Fig. 6.1 presents an example to show how the NMF technique works. The left table

shows the original ratings (out of 5) of users on videos and the right table illustrates the

predicted ratings of users on videos by performing the NMF technique. From the left table,

we can see that user 3 has no rating on video 2 and user 1 has no rating on video 3. By

performing the NMF technique based on Equation (6.4), the predicted rating of user 3 on

video 2 is 2.89 and the predicted rating of user 1 on video 3 is 1.21. Based on these two

predicted ratings, we can see that user 1 may not like video 3, while user 3 may prefer

video 2 over video 1.

6.3.3 Alternating Least Squares Algorithm

Stochastic gradient descent (SGD) [43] and alternating least squares (ALS) [43] are two

common algorithms to minimize Equation (6.7). Compared to stochastic gradient descent

algorithm, ALS can be executed in parallel, which makes ALS much faster and more

suitable for distributed systems such as cloud servers.

Taking the derivative of Equation (6.7) with respect to 𝑝𝑛 (holding 𝑞𝑚 constant),

Equation (6.8) can be obtained as follows:

Fig. 6.1: An example for NMF technique

 150

𝑑

𝑑(𝑝𝑛)
[∑ (𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚

𝑇)2 + 𝜆(‖𝑝𝑛‖
2 + ‖𝑞𝑚‖

2)

𝑚∈𝑀

]

= ∑ 2(𝑟(𝑢𝑛, 𝑣𝑚) − 𝑝𝑛𝑞𝑚
𝑇)(−𝑞𝑚

𝑇) + 2𝜆𝑝𝑛)

𝑚∈𝑀

 = 2 ∑ [(𝑞𝑚
𝑇 𝑞𝑚

𝑇 + 𝜆)𝑝𝑛 − 𝑟(𝑢𝑛, 𝑣𝑚)𝑞𝑚
𝑇]

𝑚∈𝑀

 (6.8)

Let Equation (6.8) equal 0. Based on Equation (6.6), we have:

 ∑ (𝑞𝑚
𝑇 𝑞𝑚

𝑇 + 𝜆)𝑝𝑛 = ∑ 𝑟(𝑢𝑛, 𝑣𝑚)𝑞𝑚
𝑇 (6.9)

𝑚∈𝑀𝑚∈𝑀

 ⟹ 𝑝𝑛 = 𝑟(𝑢𝑛)𝑄(𝑄𝑄
𝑇 + 𝜆𝐸)−1 (6.10)

where 𝐸 is the unit matrix.

Similarly, taking the derivative of Equation (6.7) with respect to 𝑞𝑚 (holding 𝑝𝑛

constant) yields Equation (6.11) as follows:

 𝑞𝑚 = 𝑟(𝑣𝑚)𝑃(𝑃𝑃
𝑇 + 𝜆𝐸)−1 (6.11)

To learn the suitable user feature matrix (𝑃) and video feature matrix (𝑄), ALS first

assigns random values to one matrix, e.g., 𝑄. Then, since only one variable is unknown,

the optimization problem for Equation (6.10) becomes quadratic which can be solved

optimally. Similarly, Equation (6.11) can be solved optimally by using the previously

solved 𝑃. Thus, the ALS technique keeps switching between these two steps until Equation

(6.7) has converged.

6.4 Proposed Proactive Caching Approach

In this section, the proposed proactive caching approach is presented. The approach

consists of three components: user future ratings prediction module, user mobility

 151

prediction module and caching decision module. All these modules are implemented in the

same centralized server.

6.4.1 User Future Ratings Prediction Module

The user future ratings prediction module (UFRPM) predicts the user future ratings by

using the NMF technique. The historical user watching information can be retrieved from

the content provider and stored at the centralized server. Since NMF requires high

performance computing capability, the UFRPM is implemented at the centralized server as

well. As both the historical user watching information and the UFRPM are located at the

centralized server, the UFRPM can use this data directly to predict user future ratings

without extra data transmission cost. Since new videos may be released and user may watch

videos that they haven’t watched before, the historical user watching information should

be updated periodically, and the UFRPM should be triggered periodically as well. The

periodical update time is denoted as 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 which may vary for different data set, because

different content providers may have different updating cycle or users in different places

share different watching behavior.

6.4.2 User Mobility Prediction Module

The user mobility prediction module (UMPM) predicts the future position of AV users

based on the velocity and position information of the AVs. The reason to predict the

position is to find out in advance the video chunks that could be proactively cached before

the AV reaches the next RSU. For AVs, the destination is set before the trip, and the route

is planned accordingly. During the trip, the current position of the AVs and the velocity

information can be easily obtained from the AVs’ GPS module and relevant sensors. Based

on the destination, route, current position and velocity information, the UMPM can easily

 152

predict the next position of the AVs. Therefore, video chunks can be proactively cached at

the node which can serve the predicted position.

Compared to the existing methods to predict user mobility (such as Markov-based

predictors [84]), the proposed UMPM can predict a more accurate future position of an

autonomous vehicle since all mobility information can be obtained from the self-driving

system of the vehicle.

The current velocity vector of an autonomous vehicle is denoted as 𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡𝑏 represents

the time that an AV user needs to finish watching the video chunks buffered at the AV

before fetching new chunks from the next RSU, and 𝑡𝑐 is the current time. Therefore, the

total distance (denoted as 𝐷) that an AV user can travel without fetching new video chunks

can be calculated as follows:

 𝐷 = ∫ 𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑡 (6.12)
𝑡𝑏

𝑡𝑐

Let 𝑓(𝑥, 𝑦) represent the planned route for the vehicle, (𝑥𝑐, 𝑦𝑐) is the current position

of the vehicle, and (𝑥𝑝, 𝑦𝑝) is the predicted position of the vehicle. To calculate the

predicted position (𝑥𝑝, 𝑦𝑝) from the current location (𝑥𝑐, 𝑦𝑐), we have:

 𝐷 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑠 (6.13)
𝑥𝑝,𝑦𝑝

𝑥𝑐,𝑦𝑐

where 𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑦)2 is the distance along the route.

Since 𝐷 can be calculated by Equation (6.12), the predicted position (𝑥𝑝, 𝑦𝑝) can be

calculated as follows:

 𝐹(𝑥𝑝, 𝑦𝑝) = 𝐹(𝑥𝑐, 𝑦𝑐) + 𝐷 (6.14)

 153

where 𝐹(𝑥, 𝑦) is the integral of 𝑓(𝑥, 𝑦). Hence, the predicted position, (𝑥𝑝, 𝑦𝑝) can be

easily calculated based on 𝐹(𝑥𝑝, 𝑦𝑝).

6.4.3 Caching Decision Module

The caching decision module (CDM) makes the final hierarchical caching decisions for

core network nodes (e.g., routers) and edge nodes (e.g., RSUs) based on the predicted user

future ratings, node cache size, the videos’ previous popularity and the AVs mobility

information. More specifically, the CDM makes caching decisions for core network nodes

first based on the predicted ratings, core network cache size and the videos’ previous

popularity. Then, the CDM selects video chunks from videos that are already cached at the

core network and proactively caches them at the edge nodes based on the edge nodes’ cache

size and the AVs mobility information. If a requested video is not previously cached either

at the edge nodes or the core network nodes, the next several chunks of this video will be

fetched directly from the video server and proactively cached at the edge nodes based on

the outputs of UMPM. Moreover, nodes in the core network cache videos at the entire

video level, while the edge nodes, e.g., RSUs, cache videos at the chunk level.

6.4.3.1 Caching for Core Network Nodes

Since all video chunks need to go through the core network, caching videos at the entire

video level is more efficient compared to caching videos at the chunk level. Therefore, the

CDM considers the videos’ ratings and popularity to make caching decisions for core

network nodes.

In addition, the predicted user future ratings are used to predict if a video will be liked

by users, these predicted ratings have a strong impact on the CDM to make the final caching

 154

decisions. Hence, one thing we cannot ignore is that the NMF technique may generate

inaccurate predictions for high rated but unpopular videos, e.g., cult films which have a

strong attraction on their fans. Unfortunately, this issue has not been addressed in the

existing NMF-based proactive caching approaches [12]. To describe this issue, this

research assumes that a video 𝑣𝑚 is only requested by 𝑒 users, where 𝑒 ≪ 𝑁 (i.e., video

𝑣𝑚 is not popular). Further, this research assumes that each of the 𝑒 users gives a high rating

for video 𝑣𝑚. When performing the NMF technique to learn the video feature matrix 𝑄,

𝑣𝑚 will get high values for its features in 𝑄, namely 𝑞𝑚𝑤 (𝑤 ∈ 𝑊, 𝑊 is the number of

features) have high values, due to its high rating in the historical data set. Therefore, the

predicted ratings for each user on video 𝑣𝑚 would be higher than real ratings as the product

of 𝑞𝑚
𝑇 𝑝𝑛 is the estimated rating for user 𝑢𝑛 on video 𝑣𝑚. Thus, the predicted user future

ratings for video 𝑣𝑚 will be overestimated, which will lead to biased caching decisions.

To solve this issue, we take the previous video popularity into consideration to make

the final caching decision. As each node has a limited caching storage to cache videos, the

cache size of the node is another important factor that needs to be considered. Thus, 𝑏𝑣𝑚 ∈

𝐵 is denoted as the benefit of caching video 𝑣𝑚, where 𝐵 is the total benefit that can be

achieved for the entire network by performing proactive caching with the node cache

condition. Therefore, the aim of the CDM for node 𝑖 is to achieve the maximum 𝐵:

𝑂𝑏𝑗: max𝐵 = ∑ 𝑏𝑚 (6.15)

𝑚∈𝑀

 𝑠. 𝑡. ∑ [𝐶(𝑖, 𝑡) ⋅ 𝑠𝑣𝑚] ≤ 𝑐𝑠𝑖 (6.16)

𝑚∈𝑀

where 𝑠𝑣𝑚 is the size of video 𝑣𝑚, and 𝑐𝑠𝑖 is the cache size of node 𝑖. Equation (6.16) states

that node 𝑖 can only cache a limited number of videos at time 𝑡.

 155

The maximum 𝐵 can be found by calculating 𝑏𝑚 as follows:

 𝑏𝑚 = [𝑃𝑟𝑒𝑑(𝑣𝑚) ⋅
𝑃𝑜𝑝(𝑣𝑚)

𝑛𝑠𝑣𝑚
] (6.17)

where 𝑃𝑟𝑒𝑑(𝑣𝑚) is the normalization of the predicted ratings for video 𝑣𝑚, 𝑃𝑜𝑝(𝑣𝑚) is

the normalization of the historical popularity of video 𝑣𝑚 and 𝑛𝑠𝑣𝑚is the normalized size

of video 𝑣𝑚.

𝑃𝑟𝑒𝑑(𝑣𝑚) is calculated as follows:

 𝑃𝑟𝑒𝑑(𝑣𝑚) =
𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑀𝑎𝑥𝑅𝑎𝑡𝑒
 (6.18)

where 𝑅𝑎𝑡𝑒(𝑣𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average predicted rating of video 𝑣𝑚 , and 𝑀𝑎𝑥𝑅𝑎𝑡𝑒 is the

maximum rating in video set 𝑉.

𝑃𝑜𝑝(𝑣𝑚) is calculated as follows:

 𝑃𝑜𝑝(𝑣𝑚) =∑∑
𝑚𝑎𝑥 {𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)}𝑘=1

𝐾(𝑣𝑚)

𝑀𝑎𝑥𝑅𝑒𝑞
 (6.19)

𝑖∈𝐼𝑡∈𝑇

where 𝑚𝑎𝑥 {𝑟𝑒𝑞𝑣𝑚𝑘 (𝑖, 𝑡)}𝑘=1

𝐾(𝑣𝑚)

 is maximum number of requests for the most requested

chunk in video 𝑣𝑚, it can be regarded as the maximum number of requests for video 𝑣𝑚 at

time 𝑡. 𝑀𝑎𝑥𝑅𝑒𝑞 is the maximum number of requests in the video set 𝑉 .

Equation (6.20) is used to normalize video size:

 𝑛𝑠𝑣𝑚 =
𝑠𝑣𝑚

𝑀𝑎𝑥𝑆𝑖𝑧𝑒
 (6.20)

where 𝑠𝑣𝑚 is the real size of video 𝑣𝑚, 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 is the maximum size of video in 𝑉.

The CDM works as follows to make caching decisions for nodes in the core network:

By calculating 𝑏𝑚 with Equation (6.17), the benefit for caching each video can be obtained.

Then, the CDM ranks all videos based on the calculated 𝑏𝑚, and proactively caches videos

 156

from the top ranked video until the cache size of node 𝑖 is full. For example, there are two

videos (A and B) that are considered for caching, 𝑏𝐴 is 20, 𝑏𝐵 is 10, and one RSU which

can only cache one video. To perform the proposed proactive caching approach, the CDM

first ranks videos A and B based on 𝑏𝐴 and 𝑏𝐵, and finds out video A is the 1st ranked video,

hence, the CDM decides to cache video A at the RSU. However, the RSU can only cache

one video, therefore CDM will terminate the process without selecting video B.

6.4.3.2 Caching for Edge Nodes

To reduce the retrieval delay and the backhaul traffic, videos should be proactively cached

at the edge nodes. Different from caching videos at the video level for core network nodes,

edge nodes cache videos at the chunk level due to the fact that AV users are moving fast,

and the short range of RSUs only allows AV users to fetch a small number of chunks from

the edge nodes. Therefore, caching entire videos at edge nodes will waste their cache

storage, i.e., the efficiency of caching will be degraded.

Also, the arrival time 𝑡𝑎(𝑢𝑛, 𝑖) and departure time 𝑡𝑑(𝑢𝑛, 𝑖) of an AV user 𝑢𝑛 at an edge

node 𝑖 can be calculated, since the UMPM can predict AV users’ future position based on

the planned route, velocity, and current position information. Let 𝜏 represent the duration

that a video chunk can be played, the number of video chunks (denoted as 𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚))

that will be played during the period 𝑡𝑑(𝑢𝑛, 𝑖) and 𝑡𝑎(𝑢𝑛, 𝑖) can be calculated as follows:

 𝑛𝑐(𝑢𝑛, 𝑖, 𝑣𝑚) =
𝜏

[𝑡𝑑(𝑢𝑛, 𝑖) − 𝑡𝑎(𝑢𝑛, 𝑖)] ⋅ 𝐵𝑅(𝑣𝑚)
 (6.21)

where 𝐵𝑅(𝑣𝑚) is the bitrate of video 𝑣𝑚.

 157

If the last chunk that the AV user watches before arriving at node 𝑖 is denoted as 𝑘𝑙,

then the video chunks that need to be cached for AV user 𝑢𝑛 at node 𝑖 during time 𝑡𝑑(𝑢𝑛, 𝑖)

and 𝑡𝑎(𝑢𝑛, 𝑖) are from 𝑘𝑙+1 to 𝑘𝑙+𝑛𝑐(𝑢𝑛,𝑖,𝑣𝑚), where 𝑘𝑙+𝑛𝑐(𝑢𝑛,𝑖,𝑣𝑚) ≤ 𝐾(𝑣𝑚),.

6.5 Performance Evaluation

In this section, the evaluation metrics are illustrated first. The two metrics used are the hit

ratio and the average number of hops. Following that, the simulation settings and results

are presented. The proposed proactive caching approach is evaluated in two scenarios: a

highway scenario and a grid street scenario.

6.5.1 Evaluation Metrics

Hit ratio is a common metric for evaluating the efficiency of a caching decision policy.

Although the definition of hit ratio is mentioned in Chapter 3, the calculation of hit ratio

used in this chapter is different due to the different nature of the problem. The hit ratio is

calculated as:

 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =∑∑
𝐻(𝑖, 𝑡)

|𝑅𝑒𝑞(𝑖, 𝑡)|
𝑖∈𝐼

𝑇

𝑡=1

 (6.22)

where |𝑅𝑒𝑞(𝑖, 𝑡)| is the total number of requests of node 𝑖 at time 𝑡 and 𝐻(𝑖, 𝑡)

(mentioned in Section 6.3) is the number of requests that can be served from node 𝑖 at

time 𝑡.

Average number of hops: The average number of hops (denoted as 𝐻𝑜𝑝𝑠̅̅ ̅̅ ̅̅ ̅) can be used

to measure the QoE of AVs users, it can be calculated as follows:

 𝐻𝑜𝑝𝑠̅̅ ̅̅ ̅̅ ̅ = ∑∑
𝐻𝑜𝑝𝑠(𝑅𝑒𝑞(𝑖, 𝑡), 𝐶(𝑖, 𝑡))

|𝑅𝑒𝑞(𝑖, 𝑡)|
𝑖∈𝐼

𝑇

𝑡=1

 (6.23)

 158

where 𝐻𝑜𝑝𝑠(𝑅𝑒𝑞(𝑖, 𝑡), 𝐶(𝑖, 𝑡)) is the total number of hops of node 𝑖 at time 𝑡 under

caching status 𝐶(𝑖, 𝑡).

6.5.2 General Settings

In this chapter, the proposed proactive caching approach is compared with an SVD-based

approach and LCE. LCE is the default caching decision policy in ICN where each content

is cached at every node along the content delivery path. In [12], the user future ratings are

predicted with SVD (one of the matrix factorization techniques), and the predicted ratings

are regarded as the user future demands. The only difference between SVD and NMF is

that NMF does not generate negative values in the feature matrices, hence, these two

techniques should have the same performance. Then a caching decision is made based on

the predicted user future ratings.

Since the proposed proactive caching approach considers a hierarchy of cache storage

(cache storage at the edge and core network) and has two key modules: UFRPM and

UMPM, this chapter evaluates these two modules separately and together. More

specifically, if UFRPM is turned off, the core network nodes only adopt the SVD-based

approach and LCE. On the other hand, if UMPM is turned off, the edge nodes only adopt

LCE due to the fact that LCE can support the video check level, but the SVD-based

approach works at the entire video level. Therefore, we can have 6 different combinations

for core network nodes and edge nodes respectively:

 UFRPM + UMPM which is the proposed approach

 UFRPM + LCE

 SVD-based + UMPM

 159

 SVD-based + LCE (because the SVD-based approach only works at the video level,

LCE is used for the edge nodes so that they can work at chunk level)

 LCE + UMPM

 LCE + LCE (the default approach in ICN)

The request data used for the evaluation comes from the latest public MovieLens dataset

[33] in which 610 users request 9,742 videos 100,836 times. This chapter sorts all request

entries by time stamp and uses the first 80% of the request entries as the training set for the

UFRPM. The remaining 20% is used to evaluate the various approaches based on [12]. The

parallel computing toolbox of MATLAB [60] is used to perform the ALS algorithm and to

evaluate the proposed proactive caching approach. The video sizes range from 500 MB to

5 GB, and the size of each chunk is fixed at 64 KB.

6.5.3 Performance Evaluations

In this subsection, the simulation results of a highway scenario and a grid street scenario

are presented to illustrate different situations. But these two scenarios could be combined

for a planned route that covers both.

6.5.3.1 Highway Scenario

In real life, traveling on a highway is a very common scenario for AVs, especially for a

long-distance trip. For AV users, entertainment services are more attractive for them during

the trip. Therefore, it is essential to evaluate the proposed proactive caching scheme for the

highway scenario. The important features of the highway scenario are:

 All AVs are moving in the same direction, and cannot change their moving

direction.

 160

 The velocity of AVs is much faster (between 80 to 100 km/hr) than the grid street

scenario.

6.5.3.1.1 Simulation Setting

This chapter assumes that the arrival of requests follows a stationary Poisson process, and

sets the arrival rate as 30/min to simulate the traffic for highway scenario. As shown in Fig.

6.2, all vehicles are moving in the same direction. AVs are connected to RSUs directly to

fetch videos. RSUs are then connected to BSs which are then connected (using optical

cables) to the core network. Videos are sent from the content provider via the Internet to

the core network. The velocity of all vehicles ranges from 80 to 100 km/hour. The total

length of the simulated highway is 5 km. The default RSU cache size is set to 300 video

chunks, while the default core network cache size is set as 20% of the total videos.

 161

6.5.3.1.2 Performance Results of Highway Scenario

Fig. 6.3 demonstrates how RSU cache size influences the performance of the hit ratio when

the core network cache size is set at 20%. The number of chunks that can be cached at the

RSU is used to represent the cache size of RSU. Notably, with the increase of RSU cache

size, approaches that use the UMPM can significantly improve the hit ratio, because bigger

RSU cache size means that edge nodes can store more chunks, which can increase the

chance of hit. We can see that the blue line (i.e. UFRPM + UMPM) has the best

performance among the 6 combinations. Comparing the blue line, the yellow dash line and

Fig. 6.2: Highway scenario

 162

the black line, we can see that the proposed proactive caching approach can achieve higher

hit ratio compared to the SVD-based approach and the default approach in ICN. The

increasing rate of the hit ratio slows down when the RSU cache size is greater than 1,700

chunks. The reason behind this phenomenon is that most AV users’ requests can be

satisfied under the given arrival rate, namely 30/min. No matter how the RSU cache size

increases, the hit ratio cannot be improved if the requested videos are not cached at the core

network, which means that the requested videos have to be fetched from the content

provider. Similarly, comparing the red dash line, the purple dash line and the black line,

Fig. 6.3: Impact of RSU cache size on hit ratio

 163

we can see that applying the UFRPM can achieve the best performance in terms of hit ratio

compared to using the SVD-based approach and LCE for core network nodes.

Fig. 6.4 shows the impact of core network cache size on the hit ratio. The proportion of

the total video’s size that can be cached at the core network is represented as the core

network cache size. Notably, with the increase of core network cache size, all approaches

can increase the hit ratio. More specifically, UFRPM + UMPM has the best performance

in terms of hit ratio among all combinations. Similar to Fig. 6.3, applying UFRPM

outperforms the approach that uses the SVD-based approach and LCE for core network

nodes whether the UMPM is applied or not for edge nodes. Another important point is that

a higher hit ratio can be obtained for the same approach that is applied to core network

Fig. 6.4: Impact of core network cache size on hit ratio

 164

nodes if the UMPM is turned on, i.e., the blue line (UFRPM + UMPM) is better than the

red dash line (UFRPM + LCE).

To evaluate the impact of arrival rate on hit ratio, the cache size of RSUs and core

network nodes should be fixed first. Consider that both RSUs and core network nodes have

limited storage, the cache size of RSUs is set to 300 (the number of video chunks that can

be stored at a RSU), the cache size of core network is set to 20% (proportion of the total

videos). As shown in Fig. 6.5, the hit ratio decreases with the increase of the arrival rate

for approaches where UMPM is turned on. The reason is that higher arrival rate means

more requests from the AV users and therefore, the proportion of unsatisfied requests will

increase due to the limited cache size of edge nodes. The arrival rate has significantly less

impact for approaches that apply LCE as the caching decision policy for edge nodes,

Fig. 6.5: Impact of arrival rate on hit ratio

 165

because the arrival rate does not affect the performance of LCE, as LCE always caches

everything that goes through the node, while the UMPM will degrade to first-in first-out

(FIFO) if the cache size of edge nodes is full and the number of AV requests keeps

increasing. For example, the only difference between the green dash line and the black line

is if the UMPM is turned on. With the increase of the arrival rate, the improved hit ratio

that is generated by the UMPM is decreasing. When the arrival rate reaches 60/min, the

green dash line and the black line achieve the same hit ratio, which means the UMPM has

the same performance in terms of the improved hit ratio as LCE. Although the performance

in terms of hit ratio decreases with the increase of the arrival rate, the proposed proactive

caching approach for both core network nodes and edge nodes is always the best among

all these 6 combinations.

Fig. 6.6: Impact of RSU cache size on the average number of hops

 166

 Fig. 6.6 illustrates the impact of RSU cache size in terms of the average number of

hops. Obviously, UFRPM + UMPM is the best among all these 6 combinations in terms of

the average number of hops. For all combinations that disables the UMPM, the

combination that uses UFRPM achieves the smallest average number of hops. However,

the reduced average number of hops is slightly affected by the RSU cache size. If UMPM

is enabled, the average number of hops can be significantly reduced, such as the

comparison of the blue line and the red dash line.

 Fig. 6.7 presents how the core network cache size influences the average number of

hops. Similar to Fig. 6.3, the proportion of the total videos’ size that can be cached at the

Fig. 6.7: Impact of core network cache size on the average number of hops

 167

core network nodes is used as the core network cache size. We can see that all these 6

combinations can reduce the average number of hops with the increase of core network

cache size. The proposed approach (UFRPM + UMPM) shows the best performance,

especially when the core network cache size is small, e.g., 10%–30%. As the core network

nodes in real life can only cache a small proportion of the total videos, the proposed

proactive caching approach is more efficient compared to other approaches.

Considering that both RSUs and core network nodes have limited storage, the cache size

of RSUs is set to 300 (the number of video chunks that can be cached) and the cache size

of core network is set to 20% (proportion of the total videos). Next, the impact of the arrival

rate on the average number of hops is evaluated. Fig. 6.8 shows that the increase of the

Fig. 6.8: Impact of arrival rate on the average number of hops

 168

arrival rate has a negative impact on the average number of hops for combinations which

use UMPM, and has a slight positive impact for combinations which do not use UMPM.

The reason behind this phenomenon is that higher arrival rates may increase the chance for

requesting the same video chunk at a given time period, which can increase the efficiency

of LCE. Evidently, the proposed proactive caching approach, namely UFRPM + UMPM,

can achieve the best performance in terms of the average number of hops for all arrival rate

settings, although the increase of the arrival rate has a negative impact.

6.5.3.2 Grid Street Scenario

Grid street scenario is another common scenario of AV users in real life. Compared to the

highway scenario, the features of the grid street scenario are:

 The AVs in the grid street are moving in different directions (they have to follow

streets).

 This chapter assumes that all AVs would not move back and forth on the same road,

i.e., AVs would not change their current moving direction to the opposite one and

repeat their previous routine.

 AVs could change their moving direction at each crossroad.

 The speed of the AVs is lower than that in the highway scenario (typically around

20-60 km/hr).

6.5.3.2.1 Simulation Setting

Similar to the highway scenario, the arrival of requests is assumed to follow a stationary

Poisson process. The grid street scenario is shown in Fig. 6.9. The arrival rate is set as

30/min as well, and the velocity of all vehicles ranges from 20 to 60 km/hr. The grid street

 169

is set as 2 km × 2 km. The default RSU cache size is set to 300 video chunks, while the

default core network cache size is set to 20% of the total videos.

6.5.3.2.2 Performance Results of Grid Street Scenario

Fig. 6.10 shows the impact of RSU cache size on the hit ratio. The first observation is that

it shares a similar trend with the results from the highway scenario (Fig. 6.3). However,

combinations with UMPM enabled can achieve higher hit ratio with smaller RSU cache

size compared to the highway scenario. For example, the proposed proactive caching can

achieve about 84% hit ratio when RSU cache size is 900 for the grid street scenario, while

the proposed approach can only obtain 72% hit ratio under the same conditions for the

Fig. 6.9: Grid street scenario

 170

highway scenario. The reason is that the various moving directions of AVs in the grid street

scenario increases the chance of overlapping for a particular video. Obviously, the

proposed proactive caching approach outperforms the other combinations regardless of the

RSU cache size.

Fig. 6.11 demonstrates how the hit ratio changes with the increase of the core network

cache size. Apparently, all combinations can improve the hit ratio if the core network cache

size increases. Results in Fig. 6.11 share a very similar trend to that in Fig. 6.4. Comparing

UFRPM + UMPM (blue line) with UFRPM + LCE (red dash line), we can see the UMPM

can improve the hit ratio up to 14% from 41% to 55%. Comparing UFRPM + UMPM (blue

line) with SVD + UMPM (yellow dash line), we can see that UFRPM (which considers the

Fig. 6.10: Impact of RSU cache size on hit ratio

 171

historical popularity of videos) outperforms the SVD-based approach by approximately

5% from 50% to 55%.

 As shown in Fig. 6.12, when the arrival rate is 10/min, all combinations with UMPM

can achieve the highest hit ratio. After that, the hit ratio that can be achieved with the

different approaches decreases with the increase of the arrival rate. The increase of the

arrival rate does not have too much impact on the combinations which use LCE as the

caching decision policy for edge nodes. The reason is the same as described for Fig. 6.5.

When the RSU cache size is greater than 1,300, all the 6 combinations cannot generate

significant improvement in the reduction of the average number of hops, which means that

the core network size becomes the bottleneck.

Fig. 6.11: Impact of core network cache size on hit ratio

 172

The impact of RSU cache on the average number of hops is shown in Fig. 6.13. The

increase of RSU cache size can reduce the average number of hops for all 6 combinations.

By comparing the blue line and red dash line, we can see that the UMPM is much more

efficient than LCE in terms of reducing the average number of hops. Comparing the blue

line with the purple dash line and the black line, we can see that the proposed approach

(UFRPM + UMPM) outperforms the existing approaches. When the RSU cache size is

greater than 1,300 video chunks, increasing the RSU cache size is inefficient in reducing

the average number of hops. The reason is that the RSU cache size is large enough for

caching video chunks. However, if the requested videos are not cached at the core network,

Fig. 6.12: Impact of arrival rate on hit ratio

 173

RSUs have to retrieve those video chunks from the content provider instead of from the

core network nodes, which will cause an increase of the average number of hops.

 Fig. 6.14 illustrates the impact of core network size on the average number of hops.

Similar to Fig. 6.7, all combinations can reduce the average number of hops with the

increase of core network cache size. Compared to the highway scenario, the proposed

approach and the SVD-based approach in the grid street scenario are more efficient in terms

of reducing the average number of hops. More precisely, the proposed approach can

achieve 3.6 hops in Fig. 6.14 when core network cache size is 10%, while it can only

achieve 4 hops in Fig. 6.7. The reason behind this outcome is that AVs in the highway

scenario are moving much faster than AVs in the grid street scenario. RSUs in the highway

scenario will replace the cached videos much more frequently than RSUs in the grid street

Fig. 6.13: Impact of RSU cache size on the average number of hops

 174

scenario. Consequently, the time of video chunks that stay at the RSUs in the highway

scenario is much shorter than in the grid street scenario, which lowers the chance of the

cached video to be requested by another AV user. Comparing the proposed approach

(UFRPM + UMPM) with the SVD-based approach (SVD + LCE) and the default approach

in ICN (LCE + LCE), we can see that the proposed approach is always the best regardless

of the core network cache size.

Fig. 6.15 demonstrates how the arrival rate influences the average number of hops. We

can see that the proposed approach outperforms the other 5 combinations regardless of the

arrival rate. Notably, combinations with UMPM are getting inefficient in reducing the

average number of hops when the arrival rate increases, while combinations with LCE

Fig. 6.14: Impact of core network cache size on the average number of hops

 175

generate less impact with the increase of arrival rate. Because edge nodes are more

sensitive to the changes of the arrival rate due to the fact that video chunks are cached at

the edge nodes based on the mobility information of AV users, while videos are cached at

the core network nodes based on the predicted ratings and historical popularity of videos.

When the arrival rate increases, more requests will arrive at the edge nodes. However, the

limited storage of RSUs increases the chance that a request cannot be satisfied at the RSUs.

Hence, those unsatisfied requests have to be forwarded to the core network nodes, or even

the content provider, which increases the average number of hops.

Fig. 6.15: Impact of arrival rate on the average number of hops

 176

6.6 Summary

This chapter proposed a novel hierarchical proactive caching approach for ICN-based AV

networks. By adopting the NMF technique to predict the user future ratings, users’ future

demands can be predicted by considering the historical popularity of videos and users’

preferences, namely, the predicted ratings. Based on the predicted demands, the proposed

proactive caching approach can cache videos at the video level at the core network nodes.

Videos can be proactively cached at the edge nodes at the chunk level using the proposed

UMPM before the AV users arrive, which can improve QoE in general.

The proposed proactive caching approach was evaluated in two scenarios: a highway

scenario and a grid street scenario. The evaluation results from both scenarios show that

the proposed approach is significantly more efficient compared to the existing approaches

in terms of hit ratio and the average number of hops.

 177

Chapter 7: Conclusion and Future Research

This chapter first summarizes the contributions that have been done for the thesis. Then, it

provides several potential research directions.

7.1 Conclusion

In this thesis, the concept of ICN in-network caching has been used in conjunction with

different types of networks to make a step forward towards next-generation networks. More

specifically, the thesis has made contributions in the following five areas.

1) RPC for pure ICN networks: The proposed RPC approach tries to cache videos

hierarchically, i.e., edge, core. More specifically, RPC tries to cache popular videos

at the edge of the network, which is closer to the users. Consequently, the average

video retrieval delay and the workload of on the video providers can be significantly

reduced. Compared to ABC, RPC can reduce the publisher load ratio by 23%, and

reduce the average number of hops by 26.7% when the cache size is 15 GB.

2) SDN-based caching approach for pure ICN networks: By leveraging the global

view that is provided by the SDN controller, the SDN-based caching approach can

make effective caching decisions. Extensive simulation results showed that the

proposed SDN-based approach can achieve similar performance outcomes

compared to that of the optimal solution in terms of the cache hit ratio (less than

2% difference) and the average number of hops (less than 4% difference) for

content retrieval, while substantially reducing the computational complexity.

Moreover, the simulation results also show that the SDN-based approach also

 178

outperforms RPC in terms of hit ratio and the average number of hops. Hence, it is

suitable for caching in dynamic networks.

3) ICN-based caching approach for ICN-5G networks: To overcome the frequent

handoffs and shorter connection durations in 5G networks, an ICN-based caching

approach was proposed in this thesis. The proposed approach makes caching

decision based on the mobility of users and the popularity of requested videos.

Popular videos which are requested by high mobility users will be cached at the CR

which is connected to multiple BSs, while popular videos which are requested by

low mobility users will be cached at the BS. Therefore, high mobility users can

fetch the requested videos from a CR instead of the video provider, while low

mobility users can fetch the requested videos from the BS directly. In this way, the

QoE for mobile users in terms of average retrieval delay can be improved

significantly (up to 23 ms compared to CDIC), and the network traffic (up to 57%)

can be reduced as well.

4) LCC approach for ICN-IoT networks: To reduce the energy consumption of IoT

devices, an IoT data lifetime-based cooperative caching (LCC) approach was

proposed in Chapter 5. LCC caches IoT data at intermediate nodes (e.g., BS) based

on the freshness of the IoT data and the data request rate. Hence, users can fetch

the requested data from the intermediate nodes without waking up IoT devices.

Consequently, IoT devices can spend more time in sleep mode to save energy, while

user requests can still be served. Simulation results show that LCC can reduce the

 179

energy consumption by up to 48.9% and the average number of hops by 31%

compared to no caching.

5) Proactive caching approach for AV users: By using the NMF technique to predict

user future ratings of videos and considering the historical popularity of videos, the

proposed proactive caching approach can predict the future demands, which

improves the caching effectiveness. Since routes are pre-planned, current location

and velocity of the AVs can be easily obtained from the self-driving system of AVs.

Therefore, the future position of AVs can be easily predicted. Based on these two

predictions, the proposed proactive caching approach can proactively cache the

video that AV users may like at the next RSU. Simulation results showed that the

proposed proactive caching approach is more efficient than the existing approaches

in terms of the hit ratio (up to 40% compared to the SVD-based approach in both

the highway scenario and the grid street scenario) and the average number of hops

(up to 62.5% compared to the SVD-based approach in the highway scenario, and

up to 62% in the grid street scenario).

In summary, by using the in-network caching feature of ICN, the performance of ICN-

based in-network caching can be improved for various potential next-generation network

architectures.

7.2 Future Works

ICN is still an emerging research area. A number of interesting research problems and

directions warrant future investigation. The following describes four such areas.

1. For the reactive caching approaches, caching videos at the chunk level is not

considered in this dissertation. Further, chunks of the same video may have

 180

different popularities. However, a video may have hundreds or thousands of

chunks, which means that tracking and storing the popularity of each chunk in the

traditional fashion is challenging and complex. Hence, how to track and store the

popularity of each chunk in an efficient way is a new research problem.

2. For caching in ICN-IoT networks, one potential direction is to extend the proposed

LCC approach for more complicated IoT scenarios, including machine-to-machine

(M2M) communications, in which mobile devices can transmit IoT data with each

other. Thus, the energy consumption of mobile devices needs to be considered as

well.

3. For proactive caching approach, the NMF technique based on ratings is used to

predict the users’ future ratings on videos. However, users in real life may not rate

a video, which will cause inaccurate NMF prediction ratings. A potential solution

to this problem is that some other information, such as the completion rate of

watching a video, can be used to generate ratings. Therefore, how to solve this

problem in another research problem.

4. For proactive caching for AV users, this dissertation only considers the vehicle-to-

infrastructure (V2I) communications. On the other hand, videos can be cached at

AVs as well. As a result, vehicle-to-vehicle (V2V) communications should also be

considered for caching. Consequently, how to make an efficient caching decision

at AVs is a future research direction.

5. Since caching needs power, storage, memory and computation cost, it would be

interesting to evaluate the caching performance with respect to the cost. Hence,

 181

finding out the relationships between the cost and the benefit would be another

potential research direction.

 182

References

[1] I. Abdullahi, S. Arif, S. Hassan, “Survey on caching approaches in information

centric networking”, Journal of Network and Computer Applications. 2015, 56:48-

59.

[2] H. Ahlehagh and S. Dey, “Video caching in radio access network: Impact on delay

and capacity”, Wireless Communications and Networking Conference (WCNC).

IEEE, 2012, pp. 2276-2281

[3] M.R. Akdeniz, Y. Liu, M.K. Samimi, S. Sun, S. Rangan, T.S. Rappapoprt and E.

Erkip, “Millimeter wave channel modeling and cellular capacity evaluation”, IEEE

Journal on Selected Areas in Communications. 2014, 32(6): 1164-1179.

[4] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera, R.L. Aguiar

and A.V. Vasilakos. “Information-Centric Networking for the Internet of Things:

Challenges and Opportunities”, IEEE Network, 2016, 30(2): 92-100.

[5] G. Anastasi, M. Conti, M. Di Francesco, A. Passarella, “Energy conservation in

wireless sensor networks: a survey”, Ad Hoc Networking. 2009, 7(3):537–568.

[6] Andreev, Sergey, Olga Galinina, Alexander Pyattaev, Jiri Hosek, Pavel Masek,

Halim Yanikomeroglu, and Yevgeni Koucheryavy. "Exploring synergy between

communications, caching, and computing in 5G-grade deployments." IEEE

Communications Magazine. 2016, 54(8): 60-69.

[7] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design and

implications”, Proceedings of the 2010 ACM Re-Architecting the Internet

Workshop, 2010, p. 5.

 183

[8] E. Baccelli, C. Mehlis, O. Hahm, T.C. Schmidt, M. Wählisch, “Information Centric

Networking in the IoT: Experiments with NDN in the Wild”, Proceedings of the

1st ACM International Conference on Information-centric Networking (ICN).

ACM, 2014, pp.77-86.

[9] Y. Bai, M.R. Ito, “Proactive resource allocation schemes”, Proceedings of the 2005

IEEE International Conference on Communications. IEEE, 2005, pp. 53-58.

[10] Y. Bao, X. Wang, S. Zhou, Z. Niu, “An energy-efficient client precaching scheme

with wireless multicast for video-on-demand services”, Proceedings of the IEEE

18th Asia-Pacific Conference on Communications (APCC). IEEE, 2012, pp. 566-

571.

[11] M.F. Bari, S.R. Chowdhury, R. Ahmed, R. Boutaba, B. Mathieu, “A survey of

naming and routing in information-centric networks”, IEEE Communications

Magazine. 2012, 50(12):44-53.

[12] E. Bastug, M. Bennis, “Living on the edge: The role of proactive caching in 5G

wireless networks”, IEEE Communications Magazine, 2014, 8(52):82-89.

[13] E. Baştuğ, M. Kounttheis, M. Bennis and M. Debbah, “On the delay of

geographical caching methods in two-tiered heterogeneous networks”, Proceedings

of the 2016 IEEE 17th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC). IEEE, 2016, pp. 1-5.

[14] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-Based Caching

Strategy for Content Centric Networks,” Proceedings of the 2013 IEEE

International Conference on Communications (ICC), 2013, pp. 3619-3623.

 184

[15] M. Bilal, S. G. Kang, “A cache management approach for efficient content eviction

and replication in cache networks”, IEEE Access. 2017, 5: 1692-1701.

[16] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cellular

networks”, Proceedings of the IEEE 2015 International Conference on

Communications. (ICC). IEEE, 2015, pp. 3358-3363.

[17] G. Carofiglio, L. Mekinda and L. Muscariello, “Lac: Introducing latency-aware

caching in information-centric networks," Proceedings of the 2015 IEEE 40th

Conference on Local Computer Networks (LCN), IEEE, 2015, pp. 422-425.

[18] “CCNx project”, http://blogs.parc.com/ccnx/

[19] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I Tube, You Tube,

Everybody Tubes: Analyzing the World’s Largest User Generated Content Video

System”, Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement (IMC). ACM, 2007, pp. 1-14.

[20] Z. Chang, Y. Gu, Z. Han, X. Chen and T. Ristaniemi, “Context-aware data caching

for 5G heterogeneous small cells networks”, IEEE International Conference on

Communications (ICC). IEEE, 2016, pp. 1-6.

[21] L.E. Chatzieleftheriou, M. Karaliopoulos and I. Koutsopoulos, “Caching-aware

recommendations: Nudging user preferences towards better caching performance”,

Proceedings of the 2017 IEEE International Conference on Computer

Communications, 2017, pp.1-9.

[22] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu and Y. Liu, “Joint Resource Allocation

for Software-Defined Networking, Caching, and Computing”, IEEE/ACM

Transactions on Networking. 2018, 26(1): 274-287.

http://blogs.parc.com/ccnx/

 185

[23] Y. Chen, M. Ding, J. Li, Z. Lin, G. Mao and L. Hanzo, “Probabilistic small-cell

caching: Performance analysis and optimization”, IEEE Transactions on Vehicular

Technology. 2016, 66(5): 4341-4354.

[24] B. Chen, C. Yang, Z. Xiong. “Optimal caching and scheduling for cache-enabled

D2D communications”, IEEE Communications Letters. 2017, 21(5):1155-1158.

[25] K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, and S. Pack, “Wave: Popularity-based

and collaborative in- network caching for content-oriented networks”, Proceedings

of the 2012 IEEE International Conference on Computer Communications

NOMEN Workshop, 2012, pp. 316-321.

[26] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnsim: An highly scalable ccn

simulator”, Proceedings of the 2013 IEEE International Conference on

Communications (ICC). IEEE, 2013, pp. 2309-2314.

[27] Cisco Visual Networking Index: Forecast and Methodology, 2016–2021,

September 15, 2017. Accessed on April 14, 2018. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813971

[28] Y. Cui, J. Song, M. Li, Q. Ren, Y. Zhang, X. Cai. “SDN-based big data caching in

ISP networks”, IEEE Transactions on Big Data. 2017, 4(3):356-367.

[29] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonides, J. Kurose, D. Towsley

and R. Sitaraman. “On the complexity of optimal request routing and content

caching in heterogeneous cache networks”, IEEE/ACM Transactions on

Networking. 2017, 25(3): 1635-1648.

 186

[30] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson and H.

Wymeersch. “Location-aware communications for 5G networks: How location

information can improve scalability, latency, and robustness of 5G”, IEEE Signal

Processing Magazine. 2014, 31(6): 102-112.

[31] FP7 PURSUIT Project, 2011. [Online]. Available: http://www.fp7-pursuit.eu.

[32] X. Ge, S. Tu, G. Mao, C.X. Wang and T. Han, “5G ultra-dense cellular networks”,

IEEE Wireless Communications, 2016, 23(1): 72-79.

[33] Grouplens, “MovieLens Latest Datasets”, [Online]. Available:

https://grouplens.org/datasets/movielens/

[34] G. Han, L. Liu, J. Jiang, L. Shu and G. Hancke, “Analysis of Energy-Efficient

Connected Target Coverage Algorithms for Industrial Wireless Sensor Networks”,

IEEE Transactions on Industrial Informatics, 2017, 13(1): 135-143.

[35] O. Hahm, E. Baccelli, T.C. Schmidt, M. Wählisch, C. Adjih, and L. Massoulié,

“Low-power Internet of Things with NDN & Cooperative Caching”, Proceedings

of the 4th ACM Conference on Information-Centric Networking (ICN). ACM,

2017, pp.99-108.

[36] N.B. Hassine, R. Milocco, P. Minet, “ARMA based popularity prediction for

caching in content delivery networks”, Wireless Days. IEEE, 2017, pp. 113-120.

[37] D.T. Hoang, D. Niyato, D.N. Nguyen, E. Dutkiewicz, P. Wang, Z. Han, “A

Dynamic Edge Caching Framework for Mobile 5G Networks”, IEEE Wireless

Communications, 2018 Aug 22(99):1-9.

http://www.fp7-pursuit.eu/
https://grouplens.org/datasets/movielens/

 187

[38] Z. Hu, Z. Zheng, T. Wang, L. Song and X. Li, “Caching as a Service: Small-Cell

Caching Mechanism Design for Service Providers”, IEEE Transactions on

Wireless Communications. 2016, 15(10): 6992-7004.

[39] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N.H. Briggs and R.L.

Braynard, “Networking Named Content”, Proceedings of the 5th International

Conference on Emerging Networking Experiments and Technologies. ACM, 2009,

pp.1-12.

[40] W. Jianping, C. Yong, L. Xing, and C. Metz, “4over6 for the china education and

research network,” IEEE Internet Computing, 2006, 10(3): 80-85.

[41] R. Jmal, L. C. Ftheati. “An OpenFlow architecture for managing content-centric-

network (OFAM-CCN) based on popularity caching strategy”, Computer

Standards & Interfaces. 2017, 51:22-29.

[42] D. Kim and Y.B. Ko, “On-demand anchor-based mobility support method for

named data networking”, Proceedings of the 2017 19th International Conference

on Advanced Communication Technology (ICACT), IEEE, 2017, pp. 19-23.

[43] Y. Koren, R. Bell, C. Volinsky, “Matrix factorization techniques for recommender

systems”, Computer. 2009, 42(8): 30-37.

[44] Y. Koren, R. Bell, C. Volinsky, “Matrix factorization techniques for recommender

systems”, Computer, 2009, 42(8): 30-37.

[45] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky and

S. Uhlig, “Software-defined networking: A comprehensive survey”, Proceedings

of IEEE. 2015, 103(1):14-76.

 188

[46] D.K. Krishnappa, M. Zink, C. Griwodz and P. Halvorsen, “Cache-centric video

recommendation: an approach to improve the efficiency of youtube caches”, ACM

Transactions on Multimedia Computing, Communications, and Applications

(TOMM), 11(4): 48:1-48:20.

[47] N. Laoutaris, H. Che and I. Stavrakakis, “The LCD interconnection of LRU caches

and its analysis”, Performance Evaluation. 2006, 63(7): 609-634.

[48] N. Laoutaris, S. Syntila and I. Stavrakakis, “Meta algorithms for hierarchical web

caches”, Proceedings of 2004 International Conference on Performance,

Computing and Communications, 2004, pp. 445-452.

[49] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, Nature, 2015, 521(7553): 436-

444.

[50] Z. Li, J. Lin, M.I. Akodjenou, G. Xie, M.A. Kaafar, Y. Jin and G. Peng, “Watching

videos from everywhere: a study of the PPTV mobile VoD system”, Proceedings

of the ACM 2012 Internet Measurement Conference, 2012, pp. 185-198.

[51] Z. Li, G. Simon, “Cooperative caching in a content centric network for video stream

delivery,” Journal of Network and Systems Management. 2015, 23(3): 445-473.

[52] C. Li, L. Toni, J. Zou, H. Xiong and P. Frossard. “QoE-Driven Mobile Edge

Caching Placement for Adaptive Video Streaming”, IEEE Transactions on

Multimedia. 2017, 20(4): 965-984.

[53] X. Li, X. Wang, K. Li, Z. Han and V. C. Leung. “Collaborative multi-tier caching

in heterogeneous networks: Modeling, analysis, and design”, IEEE Transactions

on Wireless Communications. 2017, 16(10):6926-6939.

 189

[54] S. Li, J. Xu, M. Van Der Schaar and W. Li, “Popularity-Driven Content Caching”,

Proceedings of the 35th Annual IEEE International Conference on Computer

Communications (INFOCOM). IEEE, 2016, pp. 1-9.

[55] H. Li, C. Yang, X. Huang, N. Ansari and Z. Wang, “Cooperative RAN Caching

based on Local Altruistic Game for Single and Joint Transmissions”, IEEE

Communications Letters. 2016, 21(4): 853-856.

[56] C. Liang, Y. He, F. R. Yu and N. Zhao. “Enhancing QoE-Aware Wireless Edge

Caching With Software-Defined Wireless Networks”, IEEE Transactions on

Wireless Communications. 2017, 16(10): 6912-6925.

[57] C. Liang, F.R. Yu, X. Zhang. “Information-centric network function virtualization

over 5G mobile wireless networks”, IEEE network. 2015, 29(3):68-74.

[58] Z. Liu, Y. Ji, X. Jiang, Y. Tanaka, “User-behavior Driven Video Caching in

Content Centric Network”, Proceedings of the 2016 conference on 3rd ACM

Conference on Information-Centric Networking, 2016, pp. 197-198.

[59] W.X. Liu, J. Zhang, Z.W. Liang, L.X. Peng and J. Cai, “Content popularity

prediction and caching for ICN: A deep learning approach with SDN”, IEEE

access. 2018;6:5075-5089.

[60] “MATLAB”, https://www.mathworks.com

[61] C. Mbarushimana, A. Shahrabi. “Comparative study of reactive and proactive

routing protocols performance in mobile ad hoc networks”, In 21st International

Conference on Advanced Information Networking and Applications Workshops

(AINAW'07). IEEE. 2007, vol. 2, pp. 679-684.

https://www.mathworks.com/

 190

[62] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in information-

centric networks”, Proceedings of the 2012 IEEE International Conference on

Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2012, pp.

268-273.

[63] S. Misra, R. Ttheani, F. Natividad, T. Mick, N.E. Majd and H. Huang, “AccConF:

An Access Control Framework for Leveraging In-network Cached Data in the ICN-

Enabled Wireless Edge”, IEEE Transactions on Dependable and Secure

Computing, 2017, 16(1):5-17.

[64] M.J. Miller, N.H. Vaidya, “A MAC Protocol to Reduce Sensor Network Energy

Consumption Using a Wakeup Radio”, IEEE Transactions on mobile Computing,

2005, 4(3): 228-242.

[65] S. Muralidharan, A. Roy, N. Saxena, “MDP-IoT: MDP Based Interest Forwarding

for Heterogeneous Traffic in IoT-NDN Environment”, Future Generation

Computer Systems. 79 (2018): 892-908.

[66] “ndnSIM”, http://ndnsim.net/2.3/index.html

[67] M. E. Newman. “Power laws, Pareto distributions and Zipf's law”, Contemporary

physics. 2005, 46(5): 323-51.

[68] Y. Nishiyama, M. Ishino, Y. Koizumi, T. Hasegawa, K. Sugiyama, and A. Tagami,

“Thesis on routing-based mobility architecture for ICN-based cellular networks”,

Proceedings of the 2016 IEEE International Conference on Computer

Communications Workshop, April, 2016, pp. 467-472.

 191

[69] D. Niyato, D.I. Kim, P. Wang, L. Song, “A Novel Caching Mechanism for Internet

of Things (IoT) Sensing Service with Energy Harvesting”, Proceedings of the IEEE

2016 International Conference on Communications (ICC). IEEE, 2016, pp.1-6.

[70] A. Noor, G. Farhadi, A. Ito, M. Gerla, “Popularity-based partial caching for

Information Centric Networks”, IEEE Ad Hoc Networking Workshop (Med-Hoc-

Net), 2016, pp. 1-8.

[71] B.C. Ooi, K.L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. GAO, Z. Luo, A.K.

Tung, Y. Wang and Z. Xie, “SINGA: A distributed deep learning platform”,

Proceedings of the 23rd ACM international conference on Multimedia. ACM,

2015:685-688.

[72] H.A. Pedersen, and S. Dey, “Enhancing mobile video capacity and quality using

rate adaptation, RAN caching and processing”, IEEE/ACM Transactions on

Networking (TON). 2016, 24(2): 996-1010.

[73] J. Prados-Garzon, O. Adamuz-Hinojosa, P. Ameigeiras, J.J. Ramos-Munoz, P.

Andres-Maldonado and J.M. Lopez-Soler, “Handover implementation in a 5G

SDN-based mobile network architecture”, Proceedings of the 2016 IEEE 27th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC). IEEE, 2016, pp. 1-6.

[74] J. Qiao, Y. He, and X.S. Shen, “Proactive caching for mobile video streaming in

millimeter wave 5G networks”, IEEE Transactions on Wireless Communications,

2016, 15(10): 7187-7198.

[75] J. Quevedo, D. Corujo, and R. Aguiar, “Consumer Driven Information Freshness

Approach for Content Centric Networking”, Proceedings of the 2014 IEEE

 192

International Conference on Computer Communications Workshop (INFOCOM

WKSHPS). IEEE, 2014, pp. 482-487.

[76] R. Ravindran, A. Chakraborti, S.O. Amin., A. Azgin and G. Wang, “ICN-5G:

delivering ICN services over 5G using network slicing”, IEEE Communications

Magazine, 55(5), pp.101-107.

[77] A.B. Reis, S. Sargento, F. Neves, O.K. Tonguz. “Deploying roadside units in sparse

vehicular networks: What really works and what does not”, IEEE transactions on

vehicular technology. 2013, 63(6):2794-2806.

[78] D. Rossi and G. Rossini. “Caching performance of content centric networks under

multi-path routing (and more)”, Technical Report, Telecom ParisTech, 2011, pp.

1-6.

[79] H. Salah and T. Strufe, “CoMon: An Architecture for Coordinated Caching and

Cache-Aware Routing in CCN”, Proceedings of the 2015 IEEE Consumer

Communications and Networking Conference, 2015, pp. 663-670.

[80] A. Seetharam, “On Caching and Routing in Information-Centric Networks”, IEEE

Communications Magazine. 2018, 56(3): 204-209.

[81] Z.G. Sheng, S. Yang, Y.F. Yu, A.V. Vasilakos, J.A. McCann, and K.K. Leung,

“2013. A Survey on the IETF Protocol Suite for the Internet of Things: Standards,

Challenges, and Opportunities”, IEEE Wireless Communications, 2013, 20(6): 91–

98.

[82] J.B. Schafer, D. Frankowski, J. Herlocker, S. Sen, “Collaborative filtering

recommender systems”, The adaptive web 2007, 291-324. Springer, Berlin,

Heidelberg.

 193

[83] P. Sermpezis, T. Giannakas, T. Spyropoulos and L. Vigneri, “Soft Cache Hits:

Improving Performance through Recommendation and Delivery of Related

Content”, IEEE Journal on Selected Areas in Communications, Special Issue on

Caching for Communication Systems and Networks, 2018, 36(6):1300-1313.

[84] P. Si, H. Yue, Y. Zhang and Y. Fang, “Spectrum management for proactive video

caching in information-centric cognitive radio networks”, IEEE Journal on

Selected Areas in Communications. 2016, 34(8): 2247-2259.

[85] Y. Sun, S.K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M.A. Kaafar and S. Uhig, “Trace-

driven analysis of ICN caching algorithms on video-on-demand workloads”,

Proceedings of the 2014 ACM International Conference on Emerging Networking

Experiments and Technologies (CoNEXT). ACM, 2014, pp. 363-376.

[86] SS. Tanzil, W. Hoiles, V. Krishnamurthy, “Adaptive approach for caching

YouTube content in a cellular network: Machine learning approach”, IEEE Access.

2017(5): 5870-81.

[87] B. Tan and L. Massoulie, “Optimal content placement for peer-to-peer video-on-

demand systems”, IEEE/ACM Transactions on Networking. 2013, 21(2): 566–579.

[88] T.X. Tran, A. Hajisami, P. Pandey and D. Pompili, “Collaborative Mobile Edge

Computing in 5G Networks: New Paradigms, Scenarios, and Challenges”, IEEE

Communications Magazine. 2017 Apr 14;55(4):54-61.

[89] N.S. Vo, T.Q. Duong and M. Guizani, “QoE-Oriented Resource Efficiency for 5G

Two-Tier Cellular Networks: A FemtoCaching Framework”, Global

Communications Conference (GLOBECOM). IEEE, 2016, pp. 1-6.

 194

[90] S. Vural, N. Wang, P. Navaratnam, R. Tafazolli, “Caching Transient Data in

Internet Content Routers”, IEEE/ACM Transactions on Networking. 2017,

25(2):1048-61.

[91] IBM, “ILOG CPLEX optimization studio”, [Online]. Available:

https://www.ibm.com/products/ilog-cplex-optimizatio-studio

[92] “video channel of Sina”, http://video.sina.com.cn

[93] J. Wang, “A survey of web caching approaches for the internet”, ACM SIGCOMM

Computer Communication Review, 1999, 29(5): 36-46.

[94] S. Wang, J. Bi, J. Wu and A. V. Vasilakos. “CPHP: In-networking caching for

information-centric networking with partitioning and hash-routing”, IEEE/ACM

Transactions on Networking. 2016, 24(5): 2742-2755.

[95] Y. Wang, Y. Chen, H. Dai, Y. Huang, L. Yang, “A learning-based approach for

proactive caching in wireless communication networks”, Proceedings of the IEEE

9th International Conference on Wireless Communications and Signal Processing

(WCSP). IEEE. 2017, pp. 1-6.

[96] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the air:

exploiting content caching and delivery techniques for 5G systems”, IEEE

Communications Magazine 2014, 52(2): 131-139.

[97] Y. Wang, M. Ding, Z. Chen and L. Luo, “Caching Placement with

Recommendation Systems for Cache-Enabled Mobile Social Networks”, IEEE

Communications Letters, 21(10): 2266-2269.

https://www.ibm.com/products/ilog-cplex-optimizatio-studio
http://video.sina.com.cn/

 195

[98] Y. Wang, M. Ding, Z. Chen and L. Luo, “Caching Placement with

Recommendation Systems for Cache-Enabled Mobile Social Networks”, IEEE

Communications Letters, 21(10): 2266-2269.

[99] Y. Wang, Z. Li, G. Tyson, S. Uhlig and G. Xie. “Design and evaluation of the

optimal cache allocation for content-centric networking”, IEEE Transactions on

Computers. 2016, 65(1):95-107.

[100] Z. Wang, H. Li, Z. Xu, “Real-world traffic analysis and joint caching and

scheduling for in-RAN caching networks”, Science China Information Sciences.

2017, 60(6): 062302.

[101] Z. Wang, H. Li and C. Yang, “Feasibility analysis and self-organizing algorithm

for RAN cooperative caching”, Wireless Communications and Networking

Conference (WCNC). IEEE, 2016, pp. 1-6.

[102] R. Wang, X. Peng, J. Zhang and K. B. Letaief, “Mobility-Aware Caching for

Content-Centric Wireless Networks: Modeling and Methodology”, IEEE

Communications Magazine, 2016, 54(8): 77-83.

[103] L. Wang, G. Tyson, J. Kangasharju, J. Crowcroft. “Milking the cache cow with

fairness in mind”, IEEE/ACM Transactions on Networking. 2017, 25(5): 2686-

2700.

[104] T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm, E. Baccelli,

A. Wolisz, “Industrial Wireless IP-Based Cyber-Physical Systems”, Proceedings

of the IEEE, 2016, 104(5): 1025–1038.

[105] S. Wilk, D. Schreiber, D. Stohr and W. Effelsberg, “On the effectiveness of video

prefetching relying on recommender systems for mobile devices”, Proceedings of

 196

the 13th IEEE 2016 Consumer Communications & Networking Conference

(CCNC), 2016, pp. 429-434.

[106] J. Xie, R. Xie, T. Huang, Y. Liu, J. Liu and F.R. Yu, “Caching Resource sharing in

radio access networks: a game theoretic approach”, Journal of Zhejiang University-

SCIENCE. 2016: 11-08.

[107] Y. Xu, S. Ma, Y. Li, F. Chen, S. Ci, “P-CLS: a popularity-driven caching location

and searching approach in content centric networking”, Proceedings of the IEEE

34th International Performance Computing and Communications Conference

(IPCCC), 2015, pp. 1-8.

[108] C. Xu, P. Zhang, S. Jia, M. Wang and G.M. Muntean, “Video Streaming in

Content-Centric Mobile Networks: Challenges and Solutions”, IEEE Wireless

Communications. 2017, 24(5): 157-165.

[109] H. Yan, D. Gao, W. Su, CH. Foh, H. Zhang and AV. Vasilakos, “Caching Strategy

Based on Hierarchical Cluster for Named Data Networking”, IEEE Access.

2017(5): 8433-8443.

[110] J. Yin, L. Li, H. Zhang, X. Li, A. Gao, Z. Han, “A prediction-based coordination

caching scheme for content centric networking”, Proceedings of the IEEE 27th

Wireless and Optical Communication Conference (WOCC). IEEE, 2018, pp. 1-5.

[111] L. Yu, X. Sun, Z. Huang, “Robust spatial-temporal deep model for multimedia

event detection”, Neurocomputing, 2016, 213: 48-53.

[112] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, X.S. Shen. “Toward efficient content

delivery for automated driving services: An edge computing solution”, IEEE

Network. 2018, 32(1):80-86.

 197

[113] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos and

B. Zhang, “Named data networking”, ACM SIGCOMM Computer

Communication Review, 2014, 44(3): 66-73.

[114] X. Zhang, Y. Cao, “A Cooperation-Driven ICN-based Caching Approach for

Mobile Content chunk Delivery at RAN”, IEEE International Wireless

Communications and Mobile Computing Conference, 2017, pp. 1437-1442.

[115] G. Zhang, Y. Li and T. Lin, “Caching in information centric networking: A survey”,

Computer Networks. 2013, 57(16): 3128-3141.

[116] X. Zhang, Q. Zhu, “Hierarchical Caching for Statistical QoS Guaranteed

Multimedia Transmissions over 5G Edge Computing Mobile Wireless Networks”,

IEEE Wireless Communications, 2018, 25(3):12-20.

[117] H. Zhao, Q. Zheng, W. Zhang, B. Du, and H. Li. “A segment-based storage and

transcoding trade-off strategy for multi-version VoD systems in the cloud”, IEEE

Transactions on Multimedia. 2017, 19(1):149-159.

[118] H. Zhu, Y. Cao, Q. Hu, W. Wang, T. Jiang, Q. Zhang. “Multi-Bitrate Video

Caching for D2D-Enabled Cellular Networks”, IEEE MultiMedia. 2018, 26(1):10-

20.

[119] Z. Zhao, W. Chen, X. Wu, P.C. Chen and J. Liu, “LSTM network: a deep learning

approach for short-term traffic forecast”, IET Intelligent Transport Systems, 2017,

11(2): 68-75.

[120] N. Zhao, X. Liu, F.R. Yu, M. Li and V.C. Leung, “Communications, caching, and

computing oriented small cell networks with interference alignment”, IEEE

Communications Magazine. 2016, 54(9): 29-35.

	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Information-centric Networking
	1.1.2 ICN In-network Caching
	1.1.2.1 Reactive Caching Approaches
	1.1.2.2 Proactive Caching Approaches

	1.1.3 ICN-based Networks
	1.1.3.1 ICN-5G Networks
	1.1.3.2 ICN-IoT Networks
	1.1.3.3 Software-defined Networking

	1.1.4 Matrix Factorization Techniques

	1.2 Motivations
	1.3 Contributions of this Research
	1.4 Thesis Organization

	Chapter 2: Literature Review
	2.1 ICN in-network Caching
	2.2 In-network Caching in ICN-5G networks
	2.3 In-network Caching in ICN-IoT networks
	2.4 Machine Learning for Proactive Caching

	Chapter 3: Caching Approach for Pure ICN Networks
	3.1 Introduction
	3.2 System Model and Problem Formulation
	3.2.1 System Model
	3.2.2 Problem Formulation
	3.2.2.1 Static Scenario
	3.2.2.2 Real-time Scenario

	3.3 Router Position-based Cooperative Caching
	3.3.1 Principle of RPC
	3.3.2 How RPC Works
	3.3.3 Caching threshold decision policy
	3.3.3.1 Topology level decision
	3.3.3.2 Caching Threshold Calculation

	3.3.4 Performance Evaluation
	3.3.4.1 Topology and Data
	3.3.4.2 Simulation Parameters Setting
	3.3.4.3 Simulation Results
	3.3.4.4 Parameter Configuration of Caching Threshold Decision Model

	3.4 SDN-based Caching Approach
	3.4.1 How SDN Can Improve the Caching Efficiency for ICN
	3.4.2 How the proposed SDN-based caching decision policy works
	3.4.3 Responsibilities of the SDN Controller
	3.4.4 Computational Complexity
	3.4.5 Performance Evaluation
	3.4.5.1 Evaluation Metrics
	3.4.5.2 Comparisons of the Optimal Solution and the Proposed SDN-Based Caching Decision Policy
	3.4.5.2.1 Simulation Setting
	3.4.5.2.2 Simulation Results

	3.4.5.3 Comparisons of the Proposed SDN-Based Caching Decision Policy and the Existing Caching Decision Policies
	3.4.5.3.1 Simulation Setting
	3.4.5.3.2 Simulation Results
	a) Description of the existing caching decision policies
	b) Impact of cache size
	c) Impact of the Exponent Parameter 𝜶 of the Zipf-Distribution
	d) Comparisons in Terms of Execution Time
	d) Comparisons in Terms of Simulation Time

	3.5 Summary

	Chapter 4: Caching Approach for ICN-5G Networks
	4.1 Introduction
	4.2 System Model
	4.2.1 A Simple Scenario
	4.2.2 User Mobility Calculation Model
	4.2.3 Content Popularity Calculation Model
	4.2.4 Caching Decision Model

	4.3 Performance Evaluation
	4.3.1 Evaluation Metrics
	4.3.2 Evaluation Settings
	4.3.2.1 Topology and Input Data
	4.3.2.2 Parameter Setup
	4.3.2.3 Simulation Results

	4.4 Summary

	Chapter 5: Caching Approach for ICN-IoT Networks
	5.1 Introduction
	5.2 IoT Data Lifetime-based Cooperative Caching
	5.2.1 Basic Concepts
	5.2.2 IoT Data Lifetime-based Cooperative Caching Approach
	5.2.2.1 System Model
	5.2.2.2 Caching Decision Policy
	5.2.2.3 Auto-configuration Mechanism

	5.3 Performance Evaluation
	5.3.1 Evaluation Metrics
	5.3.2 Simulation Setup
	5.3.3 Simulation Results
	5.3.3.1 Impact of Cache Size
	5.3.3.2 Impact of Request Rate

	5.4 Summary

	Chapter 6: Proactive Caching for Autonomous Vehicle Users
	6.1 Introduction
	6.2 System Model
	6.2.1 Network Architecture
	6.2.2 Caching Model
	6.2.3 Rating Model

	6.3 Problem Formulation
	6.3.1 Caching Decision Problem Formulation
	6.3.1.1 The “What” Problem
	6.3.1.2 The “Where” Problem

	6.3.2 Non-negative Matrix Factorization Technique
	6.3.3 Alternating Least Squares Algorithm

	6.4 Proposed Proactive Caching Approach
	6.4.1 User Future Ratings Prediction Module
	6.4.2 User Mobility Prediction Module
	6.4.3 Caching Decision Module
	6.4.3.1 Caching for Core Network Nodes
	6.4.3.2 Caching for Edge Nodes

	6.5 Performance Evaluation
	6.5.1 Evaluation Metrics
	6.5.2 General Settings
	6.5.3 Performance Evaluations
	6.5.3.1 Highway Scenario
	6.5.3.1.1 Simulation Setting
	6.5.3.1.2 Performance Results of Highway Scenario

	6.5.3.2 Grid Street Scenario
	6.5.3.2.1 Simulation Setting
	6.5.3.2.2 Performance Results of Grid Street Scenario

	6.6 Summary

	Chapter 7: Conclusion and Future Research
	7.1 Conclusion
	7.2 Future Works

	References

