
An Adaptive System
for Allocating Virtual Machines in

Clouds using Autoregression
by

Jasmeet Singh

A thesis submitted to the
Faculty of Graduate and Postdoctoral Affairs

in
partial fulfillment of the requirements for the degree of

Masters of Applied Science in Electrical and Computer Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario
Canada

c© 2018, Jasmeet Singh

Abstract

This thesis proposes an adaptive system to allocate virtual machines in a cloud envi-

ronment to reduce clients’ waiting time while reducing the idle resources for the service

provider. Further, the thesis demonstrates the viability of the proposed system via a

prototype built using the Citrix XenServer and a machine learning algorithm which

makes the system capable of working with minimum human interactions. The pro-

posed architecture is designed in collaboration with and based on the requirements of

DLS Technology so that they can migrate their flagship product (vKey) to a cloud envi-

ronment keeping security and performance as a priority. The incoming requests from

clients are handled by a pool manager which takes smart decisions thus making the user

experience seamless. A performance analysis of the prototype is carried out to prove the

effectiveness of the proposed strategies.

ii

Acknowledgments

I, Jasmeet Singh, take this opportunity to express my deep sense of gratitude to all the

people who have developed me in the successful completion of this thesis. As no task is

a single man’s feat, various factors, situations, and person integrate to provide the back-

ground to accomplish a task. Several persons with whom I have interacted significantly

helped me to the successful completion of this thesis.

I own a deep sense of gratitude to Professor Marc St-Hilaire and Professor Shikharesh

Majumdar. I can’t convey my thanks in words for there tremendous support, help, and

motivation throughout the process.

I would like to owe the same gratitude to Eric She, Jordan Kurosky and Sibyl Weng from

DLS Technology, Ottawa for believing in me with their confidential work and providing

enormous help. I would also like to convey my thanks to Hindal Mirza from Ontario

Centers of Excellence (OCE) for providing the funding for the project.

I would like to thank my parents for helping me and providing me with support and

encouragement throughout my academic achievements even within miles of distance

between us.

My special thanks go to my friend Amarjit Singh Dhillon who during the last two years

was always around me for a study or personal talks and has shared my ups and downs.

My thanks extend to my friends Manpreet Dhillon, Srikant Kumar and Jay Bhuchhada

for their continuous support.

iii

Table of Contents
Abstract ii

Acknowledgments iii

List of Figures x

List of Tables xi

List of Algorithms xii

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation for the Thesis . 1

1.2 Research Objectives . 3

1.3 Proposed Solution . 4

1.4 Contributions of the Thesis . 5

1.5 Thesis Outline . 5

2 Background and Related Work 7

2.1 What is Virtualization . 7

2.1.1 Types of Virtualization . 9

2.1.2 OS Level Virtualization . 9

2.1.3 Paravirtualization . 10

2.1.4 Full Virtualization . 13

2.2 Overview of Cloud Computing . 13

2.3 Components of Citrix XenServer . 16

2.3.1 Citrix Xen . 17

iv

2.3.2 Xen Virtualization . 17

2.3.3 Citrix XenServer - A Cloud-optimized Server 19

2.3.4 Xen API . 20

2.4 Machine Learning . 23

2.4.1 Supervised Learning . 24

2.4.2 Unsupervised Learning . 25

2.4.3 Reinforcement Learning . 25

2.5 Autoregression . 25

2.6 Current System Architecture . 27

2.7 Methodologies to Allocate Virtual Machines in the Cloud 29

3 System Design and Implementation 36

3.1 Baseline System . 37

3.1.1 Initial Connection Setup of the Baseline System 39

3.1.2 Allocation Logic . 43

3.1.3 Service Time Manager . 52

3.1.4 VM Destroyer . 57

3.2 Reactive System . 61

3.2.1 Initial Connection Setup for the Reactive System 63

3.2.2 Pool Logic . 65

3.2.3 Reactive VM Creator . 71

3.3 Proactive System . 75

3.3.1 Initial Connection Setup of the Proactive System 77

3.3.2 Pool Logic . 78

4 Performance Analysis 84

v

4.1 Request Generator . 84

4.1.1 Workload and System Parameters 87

4.2 Performance Metrics . 88

4.2.1 Experimental Setup . 91

4.3 Experiments for the Baseline System . 92

4.3.1 Effect of Arrival Rate on the Mean Waiting Time 92

4.3.2 Effect of Hold Time on the Mean Waiting Time 93

4.3.3 Effect of Probability of Selecting the type of VM on the Mean Wait-
ing Time . 94

4.4 Experiments for the Reactive System . 95

4.4.1 Effect of Arrival Rate on the Mean Waiting Time 96

4.4.2 Effect of Hold Time on the Mean Waiting Time 97

4.4.3 Effect of Probability of Selecting the Type of VM on the Mean Wait-
ing Time . 98

4.4.4 Effect of Pool Size on the Mean Waiting Time 98

4.4.5 Effect of Arrival Rate on the Mean Idle Time 99

4.5 Experiments for the Proactive System . 100

4.5.1 Effect of Arrival Rate on the Mean Waiting Time 100

4.5.2 Effect of Hold Time on the Mean Waiting Time 102

4.5.3 Effect of Probability of Selecting the Type of VM on the Mean Wait-
ing Time . 103

4.5.4 Effect of Arrival Time on the Mean Idle Time 104

4.6 Comparison of the Systems . 105

4.6.1 Effect of Arrival Rate on the Mean Waiting Time 106

4.6.2 Effect of Hold Time on the Mean Waiting Time 108

vi

4.6.3 Effect of Probability of Selecting the Type of VM on the Mean Wait-
ing Time . 109

4.6.4 Effect of Arrival Rate on the Mean Idle Time 111

5 Conclusions & Future Work 112

5.1 Summary & Contributions . 112

5.1.1 Digest of the Contributions . 114

5.2 Future Work . 115

Appendices 117

A Accuracy of Measurement:
Confidence Intervals 118

B Accuracy of Measurement:
Predicted Values 121

References 124

vii

List of Figures

2.1 Overview of the virtualization architecture 8

2.2 OS level virtualization architecture . 10

2.3 Hypervisor virtualization . 11

2.4 Types of hypervisor . 12

2.5 Architecture of paravirtualization . 12

2.6 Architecture of full virtualization . 13

2.7 Types of cloud computing [8] . 17

2.8 Architecture showing Xen virtualization 19

2.9 XenServer [13] . 21

2.10 Xen API [14] . 22

2.11 Types of machine learning . 24

2.12 Current vKey architecture . 29

3.1 Architecture of the baseline system . 37

3.2 Flowchart for the baseline system . 40

3.3 Initial connection setup for the baseline system 42

3.4 Overview of the service time manager . 53

3.5 Architecture of the reactive system . 62

3.6 Flowchart for the reactive system . 64

3.7 Initial connection setup for the reactive system 66

3.8 Architecture showing working of VM creator 73

viii

3.9 Architecture showing different components of proactive system 77

3.10 Connections between different modules of proactive system 79

3.11 Flowchart for the proactive system . 83

4.1 Time stamps for the baseline system . 89

4.2 Time stamps for the reactive and proactive systems 89

4.3 Effect of λ on WT . 93

4.4 Effect of HT on WT . 94

4.5 Effect of px on WT . 95

4.6 Effect of λ on WT . 96

4.7 Effect of HT on WT . 97

4.8 Effect of pA on WT . 99

4.9 Effect of PS on WT . 100

4.10 Effect of λ on IT . 101

4.11 Effect of λ on WT . 102

4.12 Effect of HT on WT . 103

4.13 Effect of px on WT . 104

4.14 Effect of λ on IT . 105

4.15 Effect of λ on WT . 107

4.16 Effect of HT on WT . 108

4.17 Effect of px on WT . 110

4.18 Effect of λ on IT . 111

A.1 Confidence intervals for the baseline system 119

A.2 Confidence intervals for the reactive system 119

ix

A.3 Confidence intervals for the proactive system 120

B.1 Actual values vs predicted values for λ = 50 clients/minute 122

B.2 Actual values vs predicted values for λ = 100 clients/minute 122

B.3 Actual values vs predicted values for λ = 500 clients/minute 123

x

List of Tables

4.1 Data tuple sent by the request generator . 85

4.2 Workload and system parameters . 88

xi

List of Algorithms

3.1 BaselineAllocatorLogic . 44

3.2 CreateAndAllocateVM . 45

3.3 CreateSingleVM . 47

3.4 CheckVMConstraints . 49

3.5 CheckAnotherHost . 51

3.6 ServiceTimeManager . 53

3.7 RequestHandler . 54

3.8 Timer . 56

3.9 VMDestroyer . 59

3.10 Shutdown&DestroySingleVM . 60

3.11 ReactivePoolLogic . 68

3.12 CreateAllInitialVMS . 70

3.13 ClientAllocator . 71

3.14 AllocateAndStartVM . 72

3.15 ReactiveVMCreator . 73

3.16 CreationRequestHandler . 74

3.17 VMCreatorWorker . 75

3.18 Predictor . 82

4.1 RequestGenerator . 86

xii

List of Abbreviations
API Application Program Interface

ARIMA Autoregressive Integrated Moving Average

AWS Amazon Web Services

BIOS Basic Input-Output System

BS Baseline System

CPU Central Processing Unit

DB Database

DMZ De-Militarized Zone

EC Elastic Compute

FIFO First In First Out

GB GigaByte

I/O Input/Output

IaaS Infrastructure as a Service

IRAP Industrial Research Assistance Program

IT Information Technology

JSON JavaScript Object Notation

KNN K Nearest Neighbors

KVM Kernel-Based Virtual Machine

MB MegaByte

NSERC Natural Sciences and Engineering Research Council of Canada

OCE Ontario Centers of Excellence

xiii

OCR Optical Character Recognition

OS Operating System

PaaS Platform as a Service

PAS Proactive System

QEMU Quick Emulator

RAM Random Access Memory

RPC Remote Procedure Call

RS Reactive System

SaaS Software as a Service

SLA Service Level Agreement

SR Storage Repository

STM Service Time Manager

USB Universal Serial Bus

VDI Virtual Disk Image

vDM vKey Device Manager

VIF Virtual Network Interface

VMM Virtual Machine Monitor

VM Virtual Machine

XAPI Xen Application Program Interface

XML Extensible Markup Language

xiv

Chapter 1

Introduction

1.1 Motivation for the Thesis

This thesis was carried out as part of a research collaboration among DLS Technology,

Carleton University and the Ontario Centers of Excellence (OCE). DLS is an IT com-

pany located in Ottawa, Canada which has developed a software called vKey. vKey

is a secure platform used by various organizations such as the government of Canada

to “access their organization’s network, applications and data from any host computer

without changing how they work, and without compromising corporate network se-

curity” [1]. vKey is first loaded onto any bootable media device such as USB stick,

hard disk and microSD, then it is plugged into a personal computer and the system

is rebooted. vKey acts like a deployed virtual laptop which provides a trusted secure

remote access by bypassing the host operating system and key loggers.

Currently, vKey is only accessible from a physical resource that needs to be physically

plugged into a computer system and requires a reboot each time it is used. With the

goal of improving the usability of the product, the company decided to migrate vKey

to a cloud environment. By doing so, the company is increasing the ease of using the

product, the user experience, and the ability to provide a high-quality service while

1

Chapter 1. Introduction 2

concealing the user data. Along with meeting the Service Level Agreement (SLA) stan-

dards, the security of the data on the Virtual Machine (VM) is also given high priority.

While moving vKey to a cloud environment, the company was facing critical issues

such as providing secure remote access to users via vKey, optimizing the use of cloud

servers, decreasing the wait time for clients and reducing the amount of idle resources.

Several commercial solutions and virtualization technologies such as Bochs, Microsoft

Hyper-V, etc. are available to achieve some of these goals, but each one comes with its

own downsides such as specialized hardware, cost, and performance issues.

Resource allocation has been a subject of discussion for many years in several com-

puting areas such as data center management, operating systems, and grid computing.

Many researchers have described resource allocation as a mechanism which ensures

that the needs of the application are properly taken care by the provider who is pro-

viding the infrastructure. A resource allocation system should take into consideration

the present status of each resource, the number and the size of incoming requests and

should use smart algorithms to better allocate physical and virtual resources to the ap-

plications. A good resource allocation system will potentially be able to accommodate

more users and will also minimize the operational cost.

Allocating a virtual machine to a client is a two-step process. In the first step, the request

for virtual machine provisioning is accepted and is placed on the server. The second

step is to allocate resources to a virtual machine depending on the client demands. The

complexity of the allocation depends on the number of virtual machines that needs to be

allocated and the number of available servers. The virtual machine allocation algorithm

ensures an efficient and cost-effective allocation of resources.

Chapter 1. Introduction 3

Most of the work that has been done in this thesis focuses on reducing the waiting time

for customers and the amount of idle resources. Moreover, we also have to consider

whether all the requested virtual machines are getting allocated and whether the service

provider is able to serve more requests in a particular time-frame. To achieve the above

mentioned goals and based on the above evolution of vKey and current technologies,

DLS Technology was looking for a research collaboration to come up with and develop a

prototype to efficiently and cost-effectively allocate virtual machines to users using the

cloud environment. As a solution, we propose a new technique based on prediction,

which learns and configure the system to accommodate the incoming clients within a

specific time-frame.

1.2 Research Objectives

Based on the problem statement described above, the main goal of this thesis is to de-

velop an adaptive system to allocate virtual machines in the cloud to provide secure

access to end users using vKey. The key objectives of this research are presented below:

• Propose a new model to allocate virtual machines to users. The model should be

able to:

– reduce the client’s waiting time. The system should maintain a pool of pre-

created virtual machines such that the waiting time in the queue is minimized

before using the service.

– use a prediction algorithm to understand the clients’ behavior and proac-

tively reconfigure the system to accommodate the incoming client requests

Chapter 1. Introduction 4

to reduce the waiting time for the clients and reduce the amount of idle re-

sources in the pool.

– destroy the memory and the virtual disk at the end of each user session to

avoid compromising the corporate network security.

– provide the clients a fresh copy of the virtual machine (with vKey installed

on it) each time upon request.

• Develop, implement and test a prototype achieving the above mentioned sub-

objectives so that it can be successfully delivered to DLS Technology.

1.3 Proposed Solution

The goal of the thesis is to design an adaptive system which manages the allocation of

virtual machines and learns the user behavior over time. This satisfies the research and

the enterprise needs of the high-quality user experience with, lower cost and higher

resource efficiency. The simplest way of allocating a virtual machine is to create and

start a VM upon the client request. This solution is probably not the best practice as

it requires a finite amount of time to create and start a new VM and results in a long

waiting time for the users. Therefore, to overcome the issues of the previous approach,

we designed a new model, referred to as “pool manager” to meet the client demands.

The pool manager uses a machine learning algorithm to predict the number of virtual

machines required to handle the client requests in a specific time period. Then, it pre-

creates the VMs with vKey and allocates them to users upon request. Once, the user

ends its session, the VM is destroyed (including the disk image and the memory allo-

Chapter 1. Introduction 5

cated to it). This security measure ensures that when a new request comes in, a brand

new VM is assigned to it.

1.4 Contributions of the Thesis

• The main contribution of the thesis is a new model (referred to as pool manager)

which can proactively create and allocate VM to users.

• A prediction algorithm is used to learn the behavior of the users coming into the

system, based on which the number of virtual machines required in the next spe-

cific time period is calculated. Based on this forecasted values, the system is re-

configured to accommodate the incoming clients.

• A destroyer algorithm is designed such that once the user ends a session, the vir-

tual machine is deleted from the pool along with its disk image and memory. This

concept is implemented as it was a request from the company so that users infor-

mation is lost completely once a session is terminated.

• A proof of concept prototype based on the Citrix XenServer to showcase the work-

ing and the effectiveness of the proposed system. Also, performance analysis leads

to a number of insights among the three systems and workload parameters.

1.5 Thesis Outline

The rest of the thesis is divided into five chapters as described below.

Chapter 2: discusses the background, the related work and theoretically explains con-

cepts related to virtualization. This thesis mainly focuses on Citrix products such as

Chapter 1. Introduction 6

XenServer, Xen center, and the Xen API.

Chapter 3: discusses the methodologies proposed with the aim to satisfy the company

and research requirements. The first prototype is a simple client-server architecture: the

client comes in with a request, then the system creates a new VM and allocates it to the

user. In the second prototype, a new pool logic algorithm has been introduced. It pre-

creates a number of VMs and stores them in a pool, then allocates a VM when a user

request arrives. The third prototype is an adaptive system which learns and predicts

the behavior of incoming arrivals over time and adjusts the number of VMs in the pool

accordingly. This, in turn, decreases the amount of idle resources.

Chapter 4: discusses the performance analysis of the three proposed systems includ-

ing different performance metrics, experimentation results, and the comparison of the

implemented systems.

Chapter 5: concludes the thesis and discusses the possible directions for future work.

Chapter 2

Background and Related Work
This chapter begins by outlining the concept and types of virtualization. Then, it pro-

vides an overview of cloud computing. Further, it explains the different components of

Citrix XenServer and how they are related to a cloud environment. The chapter then

focuses on machine learning and the autoregression model. Finally, the chapter is con-

cluded by outlining the existing work on various techniques to allocate virtual machines

in the cloud.

2.1 What is Virtualization

As DLS Technology is in the process of moving vKey to the cloud environment, it is

important to clearly understand the concepts of virtualization.

Virtualization, in the context of this thesis, concerns running multiple operating sys-

tems on a single machine but sharing all the hardware resources. In other words, vir-

tualization could be defined as the separation of logical operations from the physical

environment [2]. To understand better, let us take an example of virtual memory. Vir-

tual memory is an extension to the system memory that is derived from the hard drive

instead of Random Access Memory (RAM). It means that if the system runs out of mem-

ory during an operation, the virtual extension can come to the rescue and can be used to

7

Chapter 2. Background and Related Work 8

keep the system running [3]. This might be put into effect while designing the system to

overcome a scenario where several clients join the system at the same time which might

make the hardware run out of memory.

There are numerous types of virtualization techniques, but to keep within the scope of

this thesis, we will be studying only about server virtualization. Figure 2.1 portrays the

overview of the architecture of a virtualized environment. The architecture is divided

into three levels. The lowest level is the hardware level that contains the physical server

(Central Processing Unit (CPU), memory, storage, network files) and the host Operat-

ing System (OS). The second level, which sits on top of the host OS, is the virtualization

layer. The virtualization level consists of the virtual machines and the hypervisor which

will be described momentarily. The top level in the architecture is the user level where

all the applications and jobs that user wants to run on the guest OS, without the knowl-

edge of the host OS.

User Level

Virtualization Level

Hardware Level

Applications and Jobs

Virtual Machine

Physical Machine

Hypervisor

Figure 2.1: Overview of the virtualization architecture

A virtual machine is a computer image file that behaves like a personal computer sys-

Chapter 2. Background and Related Work 9

tem with all the requirements that a user demands. Multiple OSs can run simultane-

ously on the same physical server side-by-side using a software called hypervisor. The

hypervisor decouples the virtual machine from the host and dynamically allocates the

resources to individual virtual machines based on the requirements. Furthermore, each

virtual machine provides its own virtual hardware (resources) that includes CPU, hard

drive, memory and network interface. In the next step, the virtual hardware is mapped

onto the physical hardware which in return reduces the number of physical servers re-

quired to accommodate a large number of users and therefore reducing the operational

cost for the servers. Along with cost savings related to buying new host machines, virtu-

alization provides great security at the hardware level with the concept called isolation.

It is also possible to save the state of an entire virtual machine to a file and migrate it

across the server pool.

2.1.1 Types of Virtualization

There are many virtualization technologies available today and that could be used ap-

propriately depending on the needs of the organization. Server virtualization is broadly

divided into three groups: OS level virtualization, paravirtualization and full virtual-

ization. They are described below.

2.1.2 OS Level Virtualization

This is the common type of virtualization technique that is accepted broadly in the mar-

ket. In this model of virtualization, every single virtual machine runs as an isolated

instance of the operating system within the virtualization software. The software that

is used for virtualizing runs on the main hardware and is generally referred to as a host

Chapter 2. Background and Related Work 10

OS and creates a virtualized guest OS to provide the execution environment for the ap-

plications. Thus, it means the hardware is not virtualized specifically, but only provides

the needed services to the guest OS. The products that use OS level virtualization are

Oracle virtual box, parallel workstations, and VMware. Figure 2.2 gives an overview

architecture for the OS level virtualization.

Virtualization Software

Virtual Machine

Host Operating System

Hardware

Figure 2.2: OS level virtualization architecture

2.1.3 Paravirtualization

Before learning about paravirtualization, we need to understand about hypervisor-

based virtualization, as both para and full virtualization based architectures, have foun-

dations on this. A hypervisor is a software that manages a virtual platform and operates

between the physical layer and the host operating system. This software is also known

as a Virtual Machine Monitor (VMM). It provides the features and services that are re-

quired for unobstructed operation and execution of virtual machines. The hypervisor

identifies traps and responds to protected CPU instructions that are made by each vir-

Chapter 2. Background and Related Work 11

tual machine [4]. Figure 2.3 showcases the hypervisor-based virtualization. Along with

handling queuing and dispatching of the hardware requests, there is an administrative

operating system (host OS) with the motive to administer the virtual machines.

Virtualization Software

VM Admin Console Virtual Machine

Hardware
Figure 2.3: Hypervisor virtualization

Hypervisors can be further divided into three types [5]:

• Type 1 - Hypervisors of type 1 deals with the virtualization of the hardware and

the hypervisor VMM is placed on top of the physical hardware and runs directly

on it (there is no host OS).

• Type 2 - in this type, the hypervisor is placed on the top of the host OS and is also

called process virtualization.

• Hybrid - it handles the hardware virtualization by emulating the entire hardware,

where the virtual systems then lay above the host OS and hypervisor.

Now, that we have the basic idea of what exactly hypervisor virtualization is, let us un-

derstand paravirtualization. The paravirtualization approach was designed by a com-

pany named Xen and later was adapted by many other companies and made available

as open source. Para comes from the Greek word which means “alongside” or “beside”

in paravirtualization. As shown in Figure 2.5, Hagen Von [6] in his book explains the

Chapter 2. Background and Related Work 12

Type 1 VMM

Hardware

VMM

Guest GuestGuest

VMM

Hybrid VMM

Host OS
Host OS

Type 2 VMM

HardwareHardware

VMM

Figure 2.4: Types of hypervisor

hypervisor as a very small and compact in size, thus allowing it to run directly on the

hardware without any significant overhead. Paravirtualization does not have a clear

division between guest and host OS, rather it uses a trusted guest host referred to as

Domain0.

Hypervisor (XEN)

 VM
Administrator
 Console

Paravirtualized
 VM

Unmodified
 VM

Hardware

Figure 2.5: Architecture of paravirtualization

Domain0 is a customized Linux kernel that manages the virtual machine manager,

builds the additional virtual machines and controls them. It eliminates most of the

trapping and emulation overhead which are related to software implementation. This

is the reason why XenServer uses paravirtualization and therefore another reason we

decided to use XenServer over any other technology.

Chapter 2. Background and Related Work 13

2.1.4 Full Virtualization

Full virtualization has a very similar approach to paravirtualization. Full virtualization

uses a type 1 hypervisor, which is an unmodified host OS that lies on the top of the

hypervisor. In this, the guest OS remains the same as the host OS with the capability to

accept any changes in the physical hardware.

In the full virtualization model, the hypervisor traps the machine operations that the

OS use to read or modify the status of the system or to perform input-output opera-

tions. Once the hypervisor has trapped the information, it emulates the operations in

the software and returns a status code which is the same as what a real hardware would

deliver. As it traps the system information, it uses a significant amount of memory and

processor which degrades the operational speed. Figure 2.6 gives an overview of the

full virtualization model.

Hypervisor
(Full Virtualization)

 VM Administrator Console Guest OS

DeviceEmulators

Traps

Hardware

Figure 2.6: Architecture of full virtualization

2.2 Overview of Cloud Computing

From all the existing definitions used for the term cloud computing, the one which

consolidates all the aspects of cloud computing is given by Gartner which defines cloud

Chapter 2. Background and Related Work 14

computing as “an elastic computational model where its IT related compatibilities are

delivered as a service to multiple external customers” [7].

Cloud computing is useful when services like storage, computation and data manage-

ment do not require the knowledge of the end user or the physical location and the

configuration of the system that might be using it. In other words, it is free from all the

dependencies of traditional computers. The consumerization of IT and the emergence of

cloud services like Amazon Web Services (AWS), Elastic Compute (EC), Rackspace, and

Google have increased the capacity of services being delivered and consumed. Thus,

cloud computing has satisfied these needs by adding capabilities on demand without

investing in new infrastructure and licensing and this results in the reduced cost of op-

eration.

How does cloud computing work? Cloud computing providers deliver the application

to the user utilizing a very old technology called the Internet, which is accessible from a

web browser, with all the information and data stored on remote servers in data centers.

Cloud computing consists of services which are made available through data centers

which are the point of contact for the users for their computing requirements.

In a diverse prospective, we need to respond faster and be able to accommodate changes

in the software industry based on the customer demands and growth. With this growing

demand for cloud computing, virtualization plays an important role. It is also said that

cloud computing is a technological evolution of virtualization platforms.

Cloud computing inherits some characteristics from the traditional computing models.

Firstly, autonomic computing designates distributed computational systems capable of

Chapter 2. Background and Related Work 15

adapting to the unpredictable changes and, at the same time, hiding the complexity

from the users. Second, the client-server model states that application differentiates

between service providers from service requestors. Third, the method in which massive

virtual computers, a cluster of networks, or loosely coupled computers act as a single

entity to perform very large tasks. Now, that we have an understanding of what cloud

computing is, let us go deeper and study its architecture. Most of the clouds today are

built on top of modern centers that provide Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service (SaaS) and these services are provided

as utilities. All these services are different layers of the cloud pyramid and are built

upon one another, creating a larger whole. It is a possibility that all the layers might be

dependent on each other, but not necessarily require the interdependency, as a matter

of fact, each layer stands by itself.

The foundation of any cloud computing environment begins with data centers, which

provides the hardware to the cloud on which it will run. Built on the top of the data

center layer is the IaaS layer. This layer is responsible for virtualizing the computing

power, storage, and connectivity to the data centers. The cloud infrastructure providers

give users a complete control over the virtualized resources and make them believe as

if they are the only ones using the resources. Next, on top of the IaaS layer sits the PaaS

layer. The PaaS layer is often known as the cloudware which provides the development

platform for application designing, development, testing, deployment to monitoring

and hosting on the cloud. The top layer of the cloud pyramid is SaaS. This is the layer

where the end user works on the services that are provided to him upon request, which

is usually done in a browser. SaaS saves the user from the cost of additional licenses

Chapter 2. Background and Related Work 16

or troubles of software deployment and maintenance. The software is shared by many

users and is automatically updated from the cloud.

So far, we have discussed basic concepts and the architecture of cloud computing. How

clouds can be implemented in different ways to better suit user requirements is dis-

cussed next. There are three ways in which clouds can be deployed and are defined

below in some detail and Figure 2.7 gives a pictorial view of the cloud. First, is the type

which we all are aware of and is widely used in today’s IT world, is termed as a public

cloud. Public cloud describes the cloud computing in a traditional way, where resources

are allocated dynamically to the general public over the Internet with the help of web

applications or web services. Providers of these services are located off-site and use pay

per go for computations. The second category is private cloud, it is an infrastructure

operated and managed by a single organization exclusively and can be managed inter-

nally or via third party vendors. A private cloud provides better security at the expense

of the cost of buying, building, and managing the cloud. Finally, the third category of

the cloud is the least known and is called a hybrid cloud. It is composed of two or more

clouds that could be public or private, that are kept distinctive but are united together

which offers the combined benefits of public and private models.

2.3 Components of Citrix XenServer

This section explains the various technical pieces of the Citrix XenServer that will be

used in this thesis.

Chapter 2. Background and Related Work 17

Figure 2.7: Types of cloud computing [8]

2.3.1 Citrix Xen

The Xen came into the picture in 2003 [9] and was a research project at the University of

Cambridge. The Xen hypervisor has a very different architecture from conventional hy-

pervisors like Kernel-Based Virtual Machine (KVM)[10] and Quick Emulator (QEMU)

[11]. KVM is a kernel module that uses the host’s OS (Linux) as a hypervisor, whereas

Xen is itself a hypervisor.

The Xen hypervisor is an open source standard system widely used for virtualization

in the industry. It is powerful, efficient, secure and these features make it a perfect fit

for virtualization of currently used CPU architectures. The Xen hypervisor currently

supports the following operating systems: Linux, Solaris, Windows.

2.3.2 Xen Virtualization

Xen uses the technology called paravirtualization as already discussed in this thesis in

Section 2.1.3. From the previous section, Xen uses a hypervisor which sits on the top of

Chapter 2. Background and Related Work 18

the hardware and is executed directly from there. The primary task of the hypervisor is

to partition the memory and schedule them for the guest users. The execution of all the

computations of the guests are handled by the hypervisor, but it does not handle the

input-output operations or peripheral devices and has no knowledge of the physical

drives.

Domain0, or Dom0 in short, is a special virtual machine which is responsible for han-

dling all the Input/Output (I/O), disk storage and all the operating system resources.

Dom0 is basically a modified Linux kernel that is required for Xen to execute any guests

operations. Traditionally, in a KVM architecture, only the hardware virtualization was

added to provide support to the kernel. In contrast, Xen runs directly on the hardware

and acts as a mediator that handles things like input-output, storage, etc.

DomainU, or DomU, is the guest that runs on the Xen hypervisor and is a regular vir-

tual machine. In Figure 2.8, an important thing to notice is that DomU is placed in

parallel with Dom0 to make usage of processor fair among the virtual machines, as host

is treated equally by the guests. The current credit scheduler1 assigns equal weights to

both Dom0 and DomU, thus giving them equal priority. When the Xen was invented, it

was using paravirtualization to support a guest operating system as mentioned in Sec-

tion 2.1.1. However, with the advancements of IT, Xen can now be fully virtualized but

this might cause some degradation in performance [6]. The difference in paravirtualiza-

tion is that the guests used special drivers which gave them a sense of being virtualized.

With full virtualization, guests can operate unmodified and are not aware of being vir-

tualized. Unmodified guests mean using the operating systems that are not modified

1https://www.wiki.xen.org/wiki/credit-scheduler

Chapter 2. Background and Related Work 19

for usage with the virtual machine. To achieve full virtualization, Xen uses a device

model which provides an emulated machine to the guests which is a simple version of

QEMU. This emulated machine is responsible for handling the I/O operations, storage.

Scheduler

Device Model

PV Backend

Drivers

 DomU
HVM-guest

Hypervisor

 DomU
PV-guest

Dom0 Linux or BSD

Hardware

MMU

Figure 2.8: Architecture showing Xen virtualization

2.3.3 Citrix XenServer - A Cloud-optimized Server

Citrix XenServer is an open source platform for cloud, server, and desktop virtualization

infrastructure [12]. It enables users to deploy Windows and Linux machines rapidly,

and manage them efficiently. Citrix XenServer can also manage the storage and network

devices of the virtual machines from a single console.

Citrix XenServer uses VMM in a full virtualization technique, to provide an image of the

entire system that includes virtual Basic Input-Output System (BIOS), virtual memory,

and virtual devices to a virtual machine that a guest will be using. The VMM is also

responsible for creating and maintaining the data structure for the virtual components.

Every time a virtual machine accesses these components, the VMM updates the data

Chapter 2. Background and Related Work 20

structure [8].

Figure 2.9 defines the XenServer architecture and how the access is maintained between

the physical host and Dom0. The hypervisor is the first element of the server that is

loaded from the local storage, which then establishes an interface with the compute in

order to provide services to virtual machines. The first virtual machine on the system

is called dom0, and then the guest virtual machines are created called domU, both have

been discussed in Section 2.3.2. Dom0 provides the guest VMs access to host hardware

via Linux device drivers. The drivers then provide an interface with XenServer process,

resulting in a virtual device interface using a split-driver model. Further, QEMU is

responsible for emulating the hardware components, providing network and the disk

access. Finally, Xen Application Program Interface (XAPI), a toolstack, binds everything

together.

To summarize, Citrix XenServer is an enterprise-ready server virtualization system and

together with a cloud computing platform, it provides a range of guest operating sys-

tems with the network and management tools within a single, tested and open source

installable image. With these features, it consolidates server workloads, power saving,

cooling, management and the ability to adapt to the changing IT environment [6].

2.3.4 Xen API

The Application Program Interface (API) for the XenServer uses a set of remote pro-

cedure calls and has a format based on XML-RPC. These API calls remotely configure

and control the virtualized guests running in a XenServer pool. The references to the

API use classes and objects. The class is a hierarchical namespace and an object is an

Chapter 2. Background and Related Work 21

Figure 2.9: XenServer [13]

instance of a class with the fields set to specific values. The relation between the various

classes that we have used in the implementation of our system is pictorially represented

in Figure 2.10. In that figure (obtained from [14]), a rectangle represents an object class

and an ellipse represents an instance of a specific class.

A brief discussion of a few basic classes of a Xen API that are used in the system are

presented next.

• Session: It is used to establish a session between the user and server.

Chapter 2. Background and Related Work 22

Figure 2.10: Xen API [14]

• VM: It identifies a guest virtual machine.

• Host: Represents a physical host i.e. the Citrix XenServer.

• VIF: It is used to create the virtual network interface of the guest virtual machine.

• SR: It represents a storage repository.

Along with these classes, there are various operations or functions associated and we

have used them for successful completion of the various tasks. The basic functions used

in the thesis are:

• Copy: to create a virtual machine.

Chapter 2. Background and Related Work 23

• Destroy: to delete a virtual machine including its storage repository, disk image

and memory associated with it.

• Reboot: to reboot the virtual machine.

• Start: to start a virtual machine upon allocation to the user.

• Shutdown: to halt a virtual machine before being destroyed.

2.4 Machine Learning

Machine learning is a kind of artificial intelligence. It is a learning process of computers

without any programming interaction with the computers where they learn by exter-

nal stimuli, also called as ‘Unsupervised Learning’. The term ‘Machine Learning’ was

coined by an American pioneer Arthur Samuel, who studied computer gaming and arti-

ficial intelligence. The study of machine learning involves understanding and building

algorithms which are capable of learning and extracting information from the data pro-

vided. These can also predict using the data and can overcome the traditional program

instruction methodology. Machine learning can be used in various real-life scenarios

where providing written programmable instructions is not a feasible option or not pos-

sible otherwise. Some examples enlisted are intrusions in a network, Optical Character

Recognition (OCR), computer vision, etc.

With a progressive use of technology among the people, massive amounts of data are

available for access which is termed as ‘Big Data’. The government and companies

have access to big data, but due to a lack of resources, they are incapable of making a

Chapter 2. Background and Related Work 24

beneficial use out of it. Machine learning, a method of artificial intelligence, is becoming

popular for utilization to extract and use data from big data.

The process of machine learning involves generalizing from its experience and by read-

ing data, to enhance the machine’s capability to react accurately to any new experience

through the use of training on the data over time. There are three main types of machine

learning [15] which are described below and shown in the Figure 2.11.

Machine
Learning

Supervised Unsupervised Reinforcement

Figure 2.11: Types of machine learning

2.4.1 Supervised Learning

There is a target or an outcome variable which is predicted using some pre-existing

independent variables. With the use of these independent variables, a mapping is done

from the inputs to the required outputs. This methodology continues until the machine

reaches a level where it does this mapping on its own quite accurately from the training

data. Some instances of supervised learning are decision tree, K Nearest Neighbors

(KNN), regression, etc.

Chapter 2. Background and Related Work 25

2.4.2 Unsupervised Learning

There is no specific target or outcome variable in this kind of learning. This is used

to cluster the population into distinctive groups (also called data set) and then use a

suitable model to train on the data in order to forecast an outcome. For example K-

means algorithm, etc.

2.4.3 Reinforcement Learning

This machine learning methodology is used to make the machine capable of making

some decisions on its own. The machine in this method is exposed to external stimuli

or environment where it trains itself independently in different situations through a

trial and error method. The machine keeps on saving and learning from the previous

experience and tries to react in the best way possible using this experience. An example

of this type of learning is a Markov decision process.

2.5 Autoregression

Autoregressive models are a fundamental class of time series models. Time series is a

sequential set of data points measured typically over successive times [16]. Time series

are of two types: univariate where only one variable is considered in the records and

multivariate when more than one variables are considered in the records. Autoregres-

sion is a widely used linear time series model [17] and is defined as a model that predicts

the future value of the next time step based on the values from previous time steps as

the input to the regression Equation (2.1), where c is a constant, et is the white noise

and yt are the lagged values (also called past series values). The autoregression process

Chapter 2. Background and Related Work 26

is an example of a stochastic process, that has degrees of uncertainty and randomness

built-in. The randomness means we might be able to predict the future values pretty

easily with the past data but will never achieve an accuracy of 100 percent.

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + et (2.1)

Autoregressive models take the advantage of the fact that time series data is sequential

in nature and it is very important to preserve the sequence of the data to make better

predictions. The model uses the weighted sum of the past values to forecast the future

values. In Equation (2.1), the coefficients φ1, φ2, . . . , φp define the importance of the

lagged values. Lets take an example by rewriting the equation with some arbitrary

numbers to make things more clear:

yt = c + 0.2yt−1 + 0.8yt−2 + · · ·+ 0.4yt−p + et (2.2)

Equation (2.2) conveys that our prediction yt is heavily dependent on the second most

recent value yt−2 and least dependent on the most recent value yt−1.

The correlation between the two coefficients of the lagged values is defined as auto-

correlation. Autocorrelation is the method by which a linear relationship between an

observation at time t and the observations at the previous times are measured. The

stronger the correlation is in between the output and the previous time series coeffi-

cient, the better forecast values will be obtained.

One major question that arises is why can’t we use linear regression for forecasting

over a time series. Linear regression is a process used to make an estimation of the real

Chapter 2. Background and Related Work 27

values such as the number of customers, total sales, cost of houses, etc. A relationship is

developed between a dependent variable represented by Y and an independent variable

denoted by X which can be fit in the best line. This best fit line is called as a regression

line which can be represented by the following linear equation:

Y = a ∗ X + e (2.3)

where Y is a vector of observed values, X is a vector of the predictor variables, a is a

vector of regression coefficients and, e is the error.

Examples of some of the usage of the autoregressive model include: a model for fore-

casting the price of crude oil, for finding Internet time delay improving dynamic per-

formances for real time applications, control systems, long term wind prediction that is

used for a renewable energy source. One major drawback of the autoregressive model

is that past values will not always be the best predictor of the future values specially in

the case where the fundamentals of the data are changed.

2.6 Current System Architecture

This section will provide an in-depth discussion of the current vKey client-server ar-

chitecture, how it is a trusted endpoint, how the deployment takes place, and what

components are involved in its operations. The figure and architecture in this section

are proprietary of DLS Technology (Ottawa, Canada).

Currently, vKey is a software that is loaded onto any bootable media, for example, a

USB stick, hard drive or a MicroSD card. It acts like a deployed virtual laptop but with

Chapter 2. Background and Related Work 28

trusted secure remote access for both thin and thick clients. A thin client is a network

computer without a hard disk and acts as a simple terminal to the server. They are

generally used where the user has a well-defined and systematic number of tasks for

which the system is being used. On the other hand, thick clients perform the bulk of the

processing in client-server applications. Thick clients are generally found in nature of

operating systems and software, as they can handle thier own resources.

So how does vKey become a trusted endpoint? vKey uses a computer’s screen and

peripheral devices while bypassing the local hard disk. It leaves a zero footprint of the

user information since it does not read, write or store anything from the computer. Once

the user plugs in vKey device into a personal computer and reboots it, vKey device in-

stantly turns the personal computer into a secure and trusted computer. It provides

industry standard secure virtualization technology that allows users to launch and ac-

cess enterprise applications and data hosted in a secure cloud computing environment.

Figure 2.12 explains the working model of the current vKey solution. In the external

network, there are various users that are connected to the De-Militarized Zone (DMZ)

via the Internet. The DMZ is an isolated network provisioned between the internal and

the external networks. It is a physical or logical network that links the organization’s

external-facing services to the Internet. It adds an additional layer of security to the

organization’s local area network. In DMZ, vDM appliance and vKey help desk are

placed.

Chapter 2. Background and Related Work 29

Figure 2.12: Current vKey architecture

The vKey Device Manager (vDM) utility is a management service that allows an admin-

istrator to manage, monitor, and configure vKey virtual machines, including the ability

to capture an image from the device and building a physical device from a catalog of

vKey images which is later distributed to clients. In the internal network, the active di-

rectory module acts as a single point of access for system admin in a centralized system

which is responsible for handling the user data, security, and resource distribution. The

file server is responsible for file storage and transporting the files using the file transfer

protocol over the network. vEB is a physical USB device that is used to create other

physical vKey software.

2.7 Methodologies to Allocate Virtual Machines in the Cloud

This section discusses the state of the art approaches for achieving the goal of deploying

virtual machines in a cloud environment. To begin with, A. Beloglazov et al. [18] say

Chapter 2. Background and Related Work 30

that with the introduction of cloud computing, data centers have become much more

power efficient since they can run multiple virtual machines on a single physical server.

This allows servers that are not running virtual machines to be turned off or put to sleep

thus consuming less power. However, the downside of reducing the number of physical

servers leads to a reduction in performance. Hence, to address the power-performance

trade off, the authors propose an energy-efficient VM placement algorithm which aims

to reduce the power consumption of data centers. They propose to exploit all the VM

copies which increase the average utilization of the servers. To place copies of the VM

without affecting the energy efficiency, the algorithm makes use of the dynamic pro-

gramming to determine the number of VMs which can be placed on the servers. To

improve the efficiency of the algorithm, the paper uses a local search algorithm to ex-

amine the total energy consumption in the system. If the utilization of a given server is

less than the threshold set by the cloud provider, it will shut down. If the total power

consumption is found to be less than the power consumption from the previous con-

figuration, the new configuration is saved. The paper aims to reduce the energy costs

by 20%, but it fails to consider the processing load when a VM is being copied from

one server to others. The paper also fails to discuss what will happen to the virtual

machines that might be running on the server when the algorithm decides to turn it off

based on the utilization threshold. The decision to determine the VM placement ignores

the communication resources and secondary storages. Also, this paper fails to address

the possibility of VM failures while it is being copied.

A survey by Z. Mann et al. [19] discuss how cloud computing had overcome the storage

problem of a large sum of data using features such as unlimited scalability, and pay per

Chapter 2. Background and Related Work 31

use services to users. The virtual machine allocation is determined by thier placement

on the host and how virtual migration plays a role in the energy consumption. The

major problem discussed in this paper for the allocation of virtual machines is energy

minimization. Energy minimization has always been a concern for cloud providers.

Resource management is another main concern for building an efficient and profitable

cloud data centers. Proper management will lead to the proper number of servers being

active (others will be turned off or sleeping). The researcher’s approach for the energy

consumption is based on the virtual machine migration from one server to another. This

approach highlights a solution to the problem discussed in [18] about what will happen

to the virtual machines running on the server. However, this paper fails to address the

issue of allocating the virtual machines depending on the client workload.

Further, M. Nejad et al. [20] describe a novel auction-based technique to solve the prob-

lem of allocating the virtual machines to the users. The problem is handled by providing

the resources either by static provisioning or by dynamic provisioning. In static provi-

sioning, the cloud provider provides the resources to the users before even knowing

their demand. Whereas, in dynamic provisioning, resources are allocated based on the

user request. Dynamic provisioning has proven to be more efficient and thus, the mar-

ket demands are fulfilled efficiently.

Later, S. Zaman et al. [21] talk about how cloud computing providers use fixed alloca-

tion mechanism for allocating virtual machines to their users. The paper reveals that

the combinatorial auction-based mechanism can significantly improve the allocation ef-

ficiency while generating higher revenue for the cloud providers. In the paper, they

proposed two methods of a combinatorial auction-based mechanism for solving the

Chapter 2. Background and Related Work 32

allocation problem of virtual machines in a cloud environment. But in both of the pro-

posed methods, the authors fail to talk about the effect of the load of the clients arriving

in the system, as clients have a dynamic demand for virtual machines.

Gagliano et al. [22], further advance the research done in [21] by investigating the effect

of allocating the resources required for computations via auctions, in which the client

is intelligently able to calculate the required resources. But, the calculation done by the

client could lead to increased idle resources which are not the best solution in terms of

server utilization.

Further, Gomoluch et al. [23] proposed a double auction protocol for allocating virtual

machines in a cloud and proved that it is better than the conventional approaches dis-

cussed above. Later, Lehmann et al. [24] proposed a study for combinatorial auctions

for single-minded clients and designed a greedy mechanism for the auction, which was

used by [19] to allocate virtual machines in the cloud.

Lastly, the effect of allocating virtual machines using these auctions-based techniques on

the commodity market is discussed by the paper proposed by Wolski et al. [25]. It shows

the relation between the price and the market stability that could help the provider to

estimate its monetary values.

From the research papers discussed above, we got the idea of making a system that

will dynamically allocate virtual machines to users in the cloud. However, the question

to answer is how to make this dynamic nature possible. To do so, we further looked

into researches that focus on using prediction-based techniques to analyze the client

workload. These are described below.

Chapter 2. Background and Related Work 33

In [26] Zhu et al. introduced a method to vertically scale the configuration of the re-

sources such as VM type, VM memory and VM storage. Vertical scaling is the process in

which the number of virtual machines remains the same but the amount of resources al-

located to them is increased based on the demand. Also, they used an ARMAX method

to forecast the CPU cycles and the memory configurations that would be required for

successfully hosting an application. This model is best to use if the information on the

resources required is decided by the users.

A different model, proposed by Bonvin et al. [27] scale the servers based on the past

performance and the profit made. In this model, the number of virtual machines can

either be increased or decreased and the number of resources allocated to the virtual

machines can also be increased depending upon the requirements. However, this model

does these changes on the entire host and therefore might lead to wastage of resources.

The systems discussed above are reacting to the changes made in the client workload

but only after evaluating the utilization and the throughput of the system. Therefore, if

the changes in the client arrival behavior are quicker than the modification time, then

clients will experience a delay in getting the virtual machines unless extra virtual ma-

chines are available. Assuming that the changes in the client workload are dependent

on the time, a time-series prediction model could be able to solve the above problem.

It could proactively reconfigure the system before the demand for virtual machines in-

creases greatly. This way, the systemwould be ready to accommodate the incoming

clients.

Next, Tang et al. [28] introduce a novel algorithm to deploy virtual machines in a cloud

computing environment. The proposed model uses a bin-packing algorithm to place the

Chapter 2. Background and Related Work 34

virtual machines. Also, the paper uses the concept of forecasting theory to predict the

order of the autoregressive model via the least square method. The coefficients obtained

using this method are combined with the bin-packing algorithm and as a result, the

number of virtual machines decreases. We will be using a similar idea to reduce the

number of virtual machines but with a different approach.

Further, Shaw and Singh [29] designed a double exponential smoothing model to make

a decision on live migration of running virtual machines and also decide the appropriate

host for migration. In order to reduce the number of VM migrations, the paper proposes

an algorithm that decides the importance of migrating a virtual machine based on the

present and future workload. To make a prediction about the future workload, the

paper uses an exponentially smoothing technique, where all the data from the past are

given equal weightage. As the user’s behavior is dynamic in nature, the paper fails to

address a possibility where we might have to give higher weightage to some specific

values in the past data. Also, the paper does not propose any method to select the VM

for migration.

A widely used technique named linear regression is able to make faster predictions

compared to autoregression. However, it demands a simple data set in comparison to

time-series. In papers [30] and [31], it is proven that the workload in data centers shows

a behavior that could easily be addressed by the time series model. Therefore, it would

be appropriate to use autoregression for forecasting the client workload in our proposed

adaptive system. A similar approach is introduced by Rodrigo et al. [32] for dynamic

provisioning of resources for SaaS applications by using the ARIMA model to analyze

workload.

Chapter 2. Background and Related Work 35

In conclusion, various papers have proposed different algorithms to allocate virtual ma-

chines in a cloud environment to reduce the clients waiting time. Also, various schemes

are discussed to provision the resources to a virtual machine with the aim to reduce the

number of un-utilized resources. However, all the studies discussed above fail to ad-

dress the issue of allocating the virtual machines depending upon the load of the clients

arriving in the system. Further, the existing state of the art systems does not address the

issue of the client’s data privacy. Therefore, to address these issues, a new prediction-

based technique to allocate virtual machines in a cloud environment is described in the

next chapter.

Chapter 3

System Design and Implementation
In this chapter, three models are proposed for allocating virtual machines in the cloud.

These virtual machines have a pre-installed secure remote access platform called vKey

(discussed in Section 2.6) which is used for secure login. The first model, referred to as

Baseline System (BS), uses a traditional approach of allocating virtual machines to users.

Upon receiving a request, this model creates a virtual machine from a pre-installed tem-

plate and allocates it to the user. In the second model, named Reactive System (RS), a

fixed number of virtual machines are pre-created and kept in a halted state in the Citrix

XenServer. When a client demands a virtual machine, one of the virtual machines is

switched to the running state and allocated to the client. The third model, reffered to

as Proactive System (PS), is the model that has been delivered to DLS Technology. PS is

an adaptive learning system in which the number of virtual machines that are created

a-priori is dynamic, unlike RS. In this model, the system continuously collects the ar-

rival data to learn the behavior of the clients and uses it to predict the number of virtual

machines that need to be created a-priori in a certain time period. The rest of this chap-

ter discusses the three proposed systems in detail. More precisely, Section 3.1 explains

the baseline system and the algorithms associated with it. This section also explains the

algorithms and working of the modules which are common across the three systems.

36

Chapter 3. System Design and Implementation 37

Next, Section 3.2 and Section 3.3 explain the new modules that have been added for the

reactive and the proactive systems respectively.

3.1 Baseline System

The baseline system uses a very simple and traditional approach for allocating a virtual

machine to incoming clients requests. In this approach, no virtual machines are created

a-priori. Therefore, when a client requests for service, a virtual machine is copied from

a pre-defined template and then allocated.

As shown in Figure 3.1, clients are an external component of the system. The baseline

system consists of an allocator which further consists of three daemons running in par-

allel that are connected through TCP sockets. The various components of the baseline

system are explained below.

Allocation logic

Allocator

VM destroyerSTMClients

Figure 3.1: Architecture of the baseline system

• Clients: Multiple clients arrive independently of one another and request a VM for

a particular period of time. Clients do not always request the same type of VM. For

example, a client from company A will have access to a different VM than a client

from company B. To indicate which type if VM is requested, we used the following

notation VMx. For simplicity and without loss of generality, the systems proposed

Chapter 3. System Design and Implementation 38

in this thesis has been developed and tested with 2 types of services: VMA and

VMB.

The allocator is the key component of the baseline system which is composed of three

daemons as discussed below:

• Allocation logic: The allocation logic is the brain of the allocator. It receives the

client requests consisting of the Client ID (ClientIDi), Arrival Time (Ai
t), Service

time (Hi
t) - time for which a virtual machine is used by the client and type of the

VM requested (VMi
x) by the ith client. Once the request is received, it gets queued

in a First In First Out (FIFO) queue. Then, the first request from the queue is picked

up and starts getting processed. Depending upon the type of request, the capacity

requirements of the current host server are checked and if these constraints are

satisfied, a new VM is created and allocated to the client. If there is not enough

space in the current host server, the allocator logic checks whether another host

server is available in the cluster. If the host is available, then the same process is

repeated unless there is no host available. When no host is available in the cluster,

the client request is rejected.

• Service Time Manager (STM): The responsibility of the STM is to keep track of the

service time for all the currently active clients. The reason for making it a separate

daemon is that, as we are simulating the client requests and hence when a virtual

machine is started for a client, we need to decrement virtual machine hold time.

For decrementing the VM hold time for each client, the current thread needs to go

to sleep for one second. Hence, the STM is a multi-threaded daemon where one

Chapter 3. System Design and Implementation 39

thread keeps track of the VM hold time and another thread receives the VM hold

time requests from the allocation logic and appends them to a FIFO queue. Once

Hi
t reaches zero for a particular client, the Client ID and UUID are passed to the

VM destroyer.

• VM destroyer: The job of the VM destroyer is to destroy virtual machines. How-

ever, before destroying a VM, it has to be in the halted state and also the data

associated with the client needs to be deleted. It does the following tasks in the

given order.

– Stop virtual machine: After the service of the client is completed, the VM is

halted.

– Delete virtual disk: It means deleting all client specific data stored in the

default storage repository and memory.

– Delete virtual machine: Finally, the VM is being destroyed from the Citrix

XenServer.

For each request, the timestamps are collected and added to the database for perfor-

mance analysis. Figure 3.2 shows the flowchart of the baseline system and describes

how a client request is processed. The algorithm number (written as ‘Algo 19’ in short)

in the flowchart represents the algorithm used for the respective module. Note that the

same convention is used in the other flowcharts (Figure 3.6 and Figure 3.11).

3.1.1 Initial Connection Setup of the Baseline System

The initial connection setup shown in Figure 3.3 needs to be done for the baseline sys-

tem. It is imperative to mention that this sequence diagram only shows the positive

Chapter 3. System Design and Implementation 40

Clients

Algo 19

Algo 4

Algo 5

Algo 3,7

Algo 10

Algo 2

Algo 8

Allocation logic (Algo 1)

STM (Algo 6)VM destroyer (Algo 9)

Deserialize tuple

Shutdown template
VMx

CreateVMx

Allocate to client i

Shutdown

DeleteVDI for
Delete
Nx = Nx -1

Start the new server

Turn off the server

Analyze the
request type

Enough
capacity on
server for
VMx

Another
server

available

Can we
turn off
server

if

Check
if template
VMx is
halted

System full

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 3.2: Flowchart for the baseline system

Chapter 3. System Design and Implementation 41

cases which mean that the connection is made when the request is sent. This is done

for sake of simplicity but in case the connection request is rejected, it needs to be sent

again. Initially, the Citrix XenServer needs to be turned on, so that it can receive re-

quests. The different modules are connected to one another via a client-server model,

therefore the socket server needs to be started first so that it can receive a request from a

client socket. After the Citrix XenServer is turned on, the VM destroyer sends a connec-

tion request to the Citrix XenServer. If these connections are successful, then a socket

server is turned on at port x. Further, the service time manager daemon will send a

connection request to the Citrix XenServer. Once, the connection is successful, a socket

server will be started on port y. Similarly, the allocation logic establishes a connection

with the Citrix XenServer, which in-turn starts a socket server on port z. As all socket

servers are up and running, now the STM will send a client socket request from port

x to port y and establishes a client-server connection between STM and VM destroyer.

Similarly, a client-server connection is established between the STM and the allocation

logic using ports y and z respectively. The order in which the various daemons need to

be started within the allocator.

VM destroyer→ STM→ Allocator logic

Once all the connections are successfully made, the allocator is ready to handle the client

requests and waits for them.

Chapter 3. System Design and Implementation 42

:Allocation
 logic

:STM :VM
destroyer :Database

:Citrix
 XenServer

connection req

connection req

connection req
connection req

connection req

connection req

connection req

Start socket server on port y

Start socket server on port x

Start

Start socket server on port z

Strict

sd B_Conn

Figure 3.3: Initial connection setup for the baseline system

Chapter 3. System Design and Implementation 43

3.1.2 Allocation Logic

The allocation logic is the brain of the allocator. It receives the client requests and ac-

cording to the VM required by the client, that particular type of virtual machine is cre-

ated from a given template and then allocated to the client.

As shown in Algorithm 3.1, initially, the allocator logic daemon tries to login to the

XenServer using a valid username and password. If the login is successful, it initializes

the server socket object which is responsible for handling the client service requests.

Following this, a client socket object is initialized which sends the time management

requests to the STM (here we assume that the STM is up and running to receive time

requests from the allocation logic). In case the login is not successful, an error is shown

on the console (Line 21). On a successful connection, the allocator starts accepting client

requests. Requests coming from the clients are de-serialized and then parsed to get

ClientIDi, Hi
t and VMi

x where i denotes the ith client and, x denotes the type of the

virtual machine requested by the client. These service request tuples are appended to a

FIFO queue and served in a first-in-first-out manner. Then, every request is sent to the

next method called CreateAndAllocateVM. The role of CreateAndAllocateVM is to serve a

client request by creating the required type of VM and then allocating it to the respective

client followed by starting of the virtual machine. Also, time stamping is done as a client

arrives at allocator logic.

Algorithm 3.2 is a pseudo-code to understand the process of creating a virtual machine

of type x as per the client demands. The method CreateAndAllocateVM further calls

another method called CreateSingleVM. This method creates a virtual machine by tak-

Chapter 3. System Design and Implementation 44

Algorithm 3.1: BaselineAllocatorLogic
Input: Login credentials for XenServer, Service Time manager and VM Destroyer

need to be up and running
Output: VM creation request sent to CreateAndAllocateVm and other clients are

waiting in queue
1 Try to Login into XenServer . using valid credentials

2 if connection with XenServer← True then
3 Create server socket object to receive client requests
4 Create client socket object to send connection request to STM
5 if Pool logic is connected to STM then
6 while Pool logic and STM connection is persistent do
7 Accept client connection request
8 while Client service requests← True do
9 Get ClientIDi . De-serializing service request tuple

10 Get Hi
T

11 Get VMi
x

12 Get Ai
T

13 Enqueue service request tuple to FIFO queue
14 foreach earliest service request ∈ queue do
15 Call CreateAndAllocateVM(RequestTuple) method
16 end

17 end

18 end

19 end

20 else
21 Handle exception and show error message
22 end

Chapter 3. System Design and Implementation 45

Algorithm 3.2: CreateAndAllocateVM

Input: ClientIDi, Hi
T, VMi

x, Ai
T, Sessionid

Output: VM created successfully if requirements are met OR VM not created

1 isCreated← CreateSingleVM(Sessionid, VMi
x)

2 if isCreated← True then

3 Get VMCreationStartTime

4 Get VMCreationEndTime

5 Get UUID of VM which is created . This is unique ∀ VM’s

6 Allocate VM to client

7 Dequeue current request

8 Start virtual machine

9 Get VMStartTime ← now() . System time in milliseconds

10 Generate JSON tuple

11 Serialize tuple[UUID, Hi
T] . using pickle.dumps()

12 Send request tuple to Service Time Manager using client socket

13 Write ClientIDi, VMCreationStartTime, VMCreationEndTime, VMStartTime, UUID to DB

14 Commit to DB

15 else

16 Reject service request . As VM memory or Storage requirements are not met

17 Dequeue request from FIFO Queue

18 Set VMStartTime ← null

19 Write ClientIDi, VMCreattionStartTime, VMCreationEndTime, VMStartTime, UUID to

DB
20 end

Chapter 3. System Design and Implementation 46

ing Sessionid and VMi
x as input. Here, Sessionid refers to the unique session ID which is

provided by XenServer. Based on the client request type (VMi
x), CreateSingleVM method

creates a virtual machine of type x if all the constraints discussed in Section 3.1 are sat-

isfied. Further, this method returns true, if a VM is created and false otherwise. This

value is saved to a boolean variable named isCreated. If the virtual machine is created

(lines 2-14) then various data points are retrieved and saved such as VMCreationStartTime,

VMCreationEndTime and UUID. VMCreationStartTime represents the time when the virtual ma-

chine creation process was started. VMCreationEndTime is the time stamp at which the cre-

ation process of a VM is completed and UUID is the unique reference given by the Ctirix

XenServer for each virtual machine it creates. This reference is very important as it is

required to perform various operations like halting, starting, restarting or destroying a

virtual machine once the user ends a session. Further, this virtual machine is allocated

to the client and the service is started. As soon as the service is started, the service time

is noted and saved to a variable named VMStartTime. It is important to mention that the

tuple ¡ClientID, UUID¿ represents which virtual machine is allocated to which client.

As soon as the service is started, a JSON time request tuple is generated, serialized

and sent to the next daemon called Service Time Manager. The starting of the virtual

machine and sending the time tuple to the Service Time Manager happens in parallel.

Furthermore, this data is written to a database and committed. If the virtual machine

is not created, then the client request is rejected and dequeued from queue followed by

setting values to null in the database.

Algorithm 3.3 explains how a virtual machine is created based on VMi
x where x ∈ A

or B. Before starting the creation of a virtual machine, the VMCreationStartTime is set to the

Chapter 3. System Design and Implementation 47

Algorithm 3.3: CreateSingleVM

Input: Sessionid, VMi
x

Output: isCreated, UUID, VMx, VMCreationStartTime, VMCreationEndTime

1 Set VMCreationStartTime ← now()
2 Select VMTemplatex based on requested VMx

3 areRequirementsMet← CheckVMConstraints(Sessionid, VMTemplatex)

4 if areRequirementsMet← true then
5 vms← session.xenapi.VM.getAllRecords()
6 foreach vmRef ∈ vms do
7 Get vmRec using vmRe f . Reference will by used to copy template

8 if vmRec[‘state′]← halted & vmRec[‘nameLabel’]← VMTemplatex then
9 Get VMTemplatere f

10 break

11 end

12 end
13 SelectedStorageRepo← defaultStorageRepo . hard-disk for ex.

14 Perform network settings
15 Create VIF instance(Device, Network, VM, MAC, QoS Type)
16 CreatedVMRe f ← session.xenapi.VM.copy(VMTemplatere f , vmName,

SelectedStorageRepo)
17 Get UUID of created VM using CreatedVMRef . for future reference

18 Add kernel command line . Can be interactive ∨ non-interactive

19 Set VMCreationEndTime ← now()
20 Set isCreated← True
21 Return isCreated, UUID, VMx, VMCreationStartTime, VMCreationEndTime

22 else
23 Set isCreated← False
24 Set UUID ← null
25 Set VMCreationStartTime ∧VMCreationEndTime ← null
26 Return isCreated, UUID, VMtype, VMCreationStartTime, VMCreationEndTime

27 end

Chapter 3. System Design and Implementation 48

current system time in milliseconds. It is done so that we can find out how much time

the VM creation takes. Then, based on the type of service requested by the client, that

type of VM template is selected. If service of type A is requested, then VMTemplateA is

selected else VMTemplateB is selected. This method further makes a call to the Check-

VMConstraints method to ensure that all the constrains are satisfied. The rationale be-

hind this is that, before creating a virtual machine, we need to ensure that the minimum

requirements of the host such as memory and storage are met so that client service can

run seamlessly. If the CheckVMConstraints method returns true, it means that all con-

strains are satisfied and there is enough space and memory in the host to accommodate

the request. If the CheckVMConstraints method returns false on Line 23, it means that all

the hosts are either out of memory or storage, and the client is rejected with the message

“Try again later”. In the case where the requirements are met, we need to make sure

that the template from which we want to copy is in the halted state (as shown in lines

4-21). This is done by iterating through all the templates of the virtual machines and

selecting the required template VM. Next, we need to select the storage that we will be

using for the virtual machine. In the Citrix XenServer, we can make a particular stor-

age as our default storage repository. After selecting an appropriate storage, we need

to configure the network. Further, an VIF instance is created by providing various pa-

rameters as mentioned at Line 15. Finally, the virtual machine is copied by providing

template reference and storage to the session.xenapi.VM.copy method provided by the

Citrix XenServer. We can also set the name of the virtual machine to be created in this

method. After all these configurations are done, the VMCreationEndTime is timestamped

according to the system’s current time.

Chapter 3. System Design and Implementation 49

Algorithm 3.4: CheckVMConstraints
Input: Sessionid, VMTemplatex, MemoryThresholdx, StorageThresholdx

Output: reRequirementsMet← true or false
1 hostList← session.xenapi.host.getAll() . Getting all hosts in cluster

2 srList← session.xenapi.SR.getAll() . Getting all storage repositories

3 foreach currentSr ∈ srList do
4 srName← session.xenapi.SR.getNameLabel(currentSr)
5 if srName← “hd” then
6 Total storage← session.xenapi.SR.getPhysicalSize(currentSr) . In bytes

7 Used storage← session.xenapi.SR.getPhysicalUtilisation(currentSr)
8 Get Total memory and Used memory in bytes
9 Make unit conversion if required . From bytes to GB

10 FreeStorage← (Total storage - Used storage)
11 FreeMemory← (Total memory - Used memory)
12 end
13 end
14 if VMTemplatex ← VMTemplateA then
15 if FreeStorage > StorageThresholdA & FreeMemory > MemoryThresholdA

then
16 return areRequirementsMet← true
17 end
18 else
19 Call CheckAnotherHost(hostList, AllVariablesReceivedByCurrentFunction)
20 end
21 end
22 else if VMTemplatex ← VMTemplateB then
23 if FreeStorage > StorageThresholdB & FreeMemory > MemoryThresholdB then
24 return areRequirementsMet← true
25 end
26 else
27 Call CheckAnotherHost(hostList, AllVariablesReceivedByCurrentFunction)
28 end
29 end

Chapter 3. System Design and Implementation 50

Algorithm 3.4 shows the pseudo-code for the CheckVMConstraints algorithm. This al-

gorithm is responsible for checking whether the memory and storage constraints for

a particular type of virtual machine are satisfied or not. This method initially checks

the requirements of the current host and if for some reason, the current host is not able

to create a virtual machine, then requirements are checked for all other hosts in the

cluster unless there in no host available. CheckVMConstraints requires the least mem-

ory and storage requirements denoted by MemoryThresholdx and StorageThresholdx re-

spectively, where x represents the type of virtual machine. This method also requires

the knowledge about which template to use for creating a respective type of virtual

machine. Initially, a list of all the available hosts in the cluster and all the storage reposi-

tories are obtained using the session.xenapi.host.getAll() method which is provided by the

Citrix XenServer API. These lists are then stored in the variables hostList and srList re-

spectively. The srList is iterated until we find a storage type in which we want to create a

virtual machine, which is a hard disk in our case. After selecting “hd” as our preferable

storage type, we get the total storage and the used storage in bytes using getPhysicalSize

and getPhysicalUtilisation methods. In a similar way, the total memory and used mem-

ory are computed for the current host. As the XAPI returns the values in bytes, we can

make the necessary conversation to MegaByte (MB) or GigaByte (GB). Free storage and

free memory are computed by subtracting the used value from the total value. Once

this is done, the type of the template is then checked form which we need to copy. If the

selected template is VMTemplateA, then memory and storage conditions are checked

as shown in Line 14. If both of these constraints are satisfied, then areRequirementsMet

variable is set as true. If aforementioned conditions are not satisfied, then CheckAnoth-

erHost method is called which will check if these requirements are satisfied in another

Chapter 3. System Design and Implementation 51

machine. CheckAnotherHost will recursively check for all available hosts in a cluster. As

shown in Line 22, if the selected template is VMTemplateB, then constraints for memory

and storage are checked and the same steps are repeated.

Algorithm 3.5: CheckAnotherHost
Input: hostList, Sessionid, VMTemplatex, MemoryThresholdx, StorageThresholdx

Output: isAvailable← true or false
1 numberOfPeers← session.xenapi.host.getHaNetworkPeers(hostList)
2 if numberOfPeers← 0 then
3 return isAvailable← false
4 end
5 else if numberOfPeers ≥ 1 then
6 foreach host ∈ hostList do
7 call CheckVMConstraints(parameterlist[...]) . recursive calling

8 return isAvailable← true

9 end

10 end

Algorithm 3.5 is a method to check whether another host is available or not. First, it

finds the total number of hosts in the cluster by using a getHaNetworkPeers() method

of XAPI and saves it in a variable called numberOfPeers. As shown in Line 2, if there is

no other host available in the cluster, then isAvailable is returned as false. If numberOf-

Peers ≥ 1, then CheckVMConstraints is called again with the required parameters such

as Sessionid, VMTemplatex, MemoryThresholdx and StorageThresholdx.

Chapter 3. System Design and Implementation 52

3.1.3 Service Time Manager

In the previous section, we discussed how a VM is created and allocated to the client,

and the various methods used to verify that all constraints are met. This section will

provide insights on what happens when a VM service is turned on or in other words,

when clients start using the virtual machine. Figure 3.4 shows how the STM handles all

the requests arriving from the allocation logic. There are two threads running in parallel

inside the STM: Thread 1 is responsible for accepting the service time requests sent by

the allocation logic. These requests are then de-serialized, parsed and appended to a

shared ClientsToBeServed list. Thread 2 iterates over the ClientsToBeServed list and checks

whether the service has finished or not. It does it by checking if the remaining service

time is > 0. If the service is finished, then Thread 2 appends the particular finished

request to a ClientsFinishedServing list. Once, Thread 2 has finished an iteration on the

entire list, it sleeps for one second using thread.sleep(1) and then decrements the remain-

ing service time of all the clients in the ClientsToBeServed list by 1 second. Next, the data

in the ClientsFinishedServing list is passed to the VM Destroyer such that the list can be

reused for the next iteration. Please note that one of the major reasons for having two

separate threads in the STM is that in order to decrement time, the incumbent thread has

to sleep and hence it will not be able to receive the time requests sent by the allocation

logic. An explanation of the STM daemon is given below with the help of pseudo-code.

Algorithm 3.6 explains the working of the STM daemon. Before starting this daemon,

we need to ensure that the VM destroyer is up and running so that it can receive requests

from the STM. After successful login to the Citrix XenServer, a connection request is sent

to the VM destroyer. If this request is accepted, then two threads start in parallel. These

Chapter 3. System Design and Implementation 53

Service time manager

Thread 1

Thread 2

 ClientsToBeServed List
 (Shared)

 ClientsFinishedServing List

Requests

Append requests

Append served requests

Access & Remove requests

Figure 3.4: Overview of the service time manager

Algorithm 3.6: ServiceTimeManager
Input: Login Credentials for XenServer, VM Destroyer is up and running
Output: Stops the requests after service is over and writes to database

1 Create server socket object and wait of connection from Pool Manager
2 Create client socket object to send stop requests to VM Destroyer
3 Try to login to XenServer
4 if Login to XenServer← successful then
5 Send connection request to VM Destroyer
6 if Service time manager & VM Destroyer← connected then
7 Start RequestHandler() . on Thread1

8 Start Timer() . on Thread2

9 end

10 end

Chapter 3. System Design and Implementation 54

Algorithm 3.7: RequestHandler
Input: Server socket object
Output: isAvailable

1 Initialize ClientsToBeServed list
2 while true do
3 running← true
4 while running do
5 BinaryTuple← Receive tuple from Pool Manager
6 JSONTuple← Binary tuple . De-serialize using pickle.loads()

7 if JSONTuple 6= null then
8 Get ClientIDi, UUID, Servicetime

9 Append ClientIDi, UUID, Servicetime to ClientsToBeServed list

10 end
11 else if Exception is raised then
12 Running← false
13 end

14 end

15 end

threads are discussed in more detail below.

Whenever the service for a particular client is started, the allocation logic sends a re-

quest to the STM. In Algorithm 3.7, the request handler is responsible for receiving the

time requests from the allocation logic. The While loop in Line 2 is used so that the

request handler keeps on receiving client requests until this process is killed explicitly.

Binary request tuples are received from the allocation logic and further de-serialized

and parsed to form JSON tuples. An if condition on Line 7 checks whether the tuple is

not null. In case the data format is not valid, an exception will be raised which can be

Chapter 3. System Design and Implementation 55

handled appropriately. The received request is appended to a shared ClientsToBeServed

list for further processing.

Algorithm 3.8 explains the concept of having a time module. This module is responsible

for decrementing the service time for various clients. First, the ClientsToBeServed list is

initialized. A while loop on Line 3 makes sure that the list is iterated as long as the

system is up and running. Further, an if condition on Line 4 checks whether there is a

request which is in the ClientsToBeServed list. Then for all such requests, the service time

is decremented by 1 second. Another if condition in Line 7 checks if the service time

of that particular client is 0. In this case, the service end time of the ith client is noted

by using the system millisecond time and saved to the Hi
t variable. As we are currently

iterating over the ClientsToBeServed list, when we find that the service for a particular

client has been finished, we save it to the ClientsFinishedServing list which will be used

once we finish up iterating the ClientsToBeServed list. Now, as the service is finished, we

need to send a VM destruction request to the VM destroyer. This is done by forming a

destruction request tuple as shown in Line 10. This tuple is serialized and then sent to

the VM destroyer using the socket connection which was set up earlier. Also, we need to

save the values to a database for performance evaluation purposes. Hence, the required

values are inserted to the database. Note that, we are making database connection in this

thread instead of the main thread because most databases allow to write in the database

from the same thread from which the connection object was made. At Line 15, a for

loop iterates over the ClientsFinishedServing list and it removes all the finished requests

from ClientsToBeServed list. After this loop is over, the ClientsFinishedServing list is re-

initialized to be used in the next iteration. Finally, a sleep time of one second is used to

Chapter 3. System Design and Implementation 56

Algorithm 3.8: Timer
Input: ClientsToBeServed list & ClientsFinishedServing list & Database cursor

Output: Service time is decremented & Served clients are removed & VM

Deletion request is sent to VM destroyer & Database is updated

1 Initialize ClientsFinishedServed← null

2 Database cursor← Login to database . we used Sqilte3

3 while true do

4 if ClientsToBeServed 6= null then

5 foreach item ∈ ClientsToBeServed list do

6 Hi
T ← Hi

T − 1

7 if Hi
T ← 0 then

8 Servicei
EndTime = now() . System millisecond time

9 Append this request to ClientsFinishedServing list

10 Generate [Clientid, ServiceEndtTime, UUID] tuple

11 Serialize and send tuple to VM destroyer

12 Write to database and commit

13 end

14 end

15 foreach tuple ∈ ClientsFinishedServing list do

16 Remove tuple from ClientsToBeServed list

17 end

18 ClientsFinishedServing← null

19 time.sleep(1) . sleep for 1 second

20 end

21 end

Chapter 3. System Design and Implementation 57

decrement time logically.

3.1.4 VM Destroyer

Until now, we have discussed how a virtual machine is created, steps by which it is

allocated and steps taken to manage the service time. Now, we will discuss the concept

of how to destroy a virtual machine. Destroying the VM and its VDI is a very impor-

tant step as it will ensure that the entire data of the client is destroyed and cannot be

retrieved. VM destroyer is the module designed to receive requests from the STM and

is responsible for the destruction of the virtual machines.

Algorithm 3.9 is the pseudo-code which explains the virtual machine destroyer. After

successful login to the database, a server socket object is created so that it can receive

requests from the STM. Login to XenServer is done using valid credentials. As shown

in Line 20, if the login is not successful, then an exception is handled and an error mes-

sage is shown on the console. On the other hand, if the login is successful as shown in

Line 4, then the server waits for requests from the STM. A while loop on Line 6 ensures

that the STM has a connection with the VM Destroyer. With a successful connection

establishment, the system starts accepting VM destruction requests, de-serializes them

and raises an exception if there is any issue with the data format. After making sure

that requests have arrived in the proper format, they are appended to a FIFO queue

for destruction. This step is required as destroying a virtual machine is a multi-step

process that needs to be followed. In other words, VM deletion takes a certain amount

of time. It makes complete sense to add them to the queue and then delete them in a

FIFO manner. A for loop in Line 14 picks up the first deletion request and calls the Shut-

Chapter 3. System Design and Implementation 58

down&DestroySingleVM() function for each request. Once this request is completed, it

is dequeued from the queue and another request is served. A detailed discussion of the

Shutdown&DestroySingleVM() method is provided next.

Algorithm 3.10 shows the pseudo-code for shutting down a single virtual machine fol-

lowed by the destruction of the VDI and the VM. This method is recursive in nature

and thus iterates for all the VM deletion requests. Session ID, UUID, Service End Time

and Client ID are passed to this function. This is because, after the successful dele-

tion of the virtual machine, the database is also updated. Now, for shutting down a

virtual machine a UUID is required. Initially, a reference for each virtual machines is

saved to variable vms by using the VM.getAllRecords method of XAPI. A for loop on

Line 2 iterates through all the VM references and breaks finally when a virtual ma-

chine is deleted. The main point of focus here is that before destroying the virtual

machine, we need to find the right virtual machine by comparing the UUIDs. Also,

the powerState of the virtual machine is checked, which should be in “running state”

at this time. Once the required virtual machine has been found, then it is brought to

the halted state using the VM.hardShutdown(vmRef) function. After the virtual machine

has been stopped, we need to delete the data which was used by the client. Client-

specific data is stored in VDI which needs to be deleted prior to deleting the VM. A

for loop on Line 6 iterates through all the available VBDs and then delete the selected

VDI. Once the deletion of the VDI is completed, we can destroy the virtual machine us-

ing the VM.destroy(vmRef) function. As soon as the VM is destroyed, its deletion time

is saved in the VMDestructionTime variable. Furthermore, various variables like UUID,

ServiceEndTime, ClientID and VMDestructionTime are saved to the database and committed.

Chapter 3. System Design and Implementation 59

Algorithm 3.9: VMDestroyer
Input: Valid login credentials for the Citric XenServer & VM deletion requests

from service time manager
Output: Deserialize the deletion request and append it to a queue

1 DatabaseCursor← login to the database . VM-Destruction Database

2 Create server socket for receiving requests from Service time manager
3 xenapi.loginWithPassword(username, password)
4 if Login with XenServer← Successful then
5 serversocket.listen() . waiting for request from time manager ...

6 while true do
7 running = true
8 clientsocket← serversocket.accept() . Accept request from time manager.

9 receivedData← clientsocket.recv()
10 if receivedData 6= null then
11 Deserialize and parse deletion requests
12 Raise Exception if format if not OK
13 Append deletion requests to FIFO Queue
14 foreach earliest request ∈ Queue do
15 Call Shutdown&DestroySingleVM(Sessionid, UUID,

ServiceEndTime,ClientIDi)
16 Dequeue request

17 end

18 end

19 end

20 else
21 Handle exception and show error message

22 end

Chapter 3. System Design and Implementation 60

Algorithm 3.10: Shutdown&DestroySingleVM

Input: Sessionid, UUID, ServiceEndTime,ClientIDi

Output: VM’s are halted and then destroyed & VDI’s are destroyed & DB is
updated

1 vms← session.xenapi.VM.getAllRecords()
2 foreach vmRef ∈ vms do
3 if vmRec[powerState]← running or vmRec[uuid]← UUID then
4 session.xenapi.VM.hardShutdown(vmRef) . Step #1 : shutting down VM

5 vbds← session.xenapi.VM.getVBDs(vmRef)
6 foreach vbd ∈ vbds do

7 end
8 vdiRef← session.xenapi.VBD.getVDI(vbd)
9 Try session.xenapi.VDI.destroy(vdiRef) . Step #2 : destroy VDI

10 if VDI destroyed← True then
11 pass
12 else
13 Raise exception and close relevant socket connections
14 Close XenServer connection

15 end
16 session.xenapi.VM.destroy(vmRef) . Step #3 : destroy VM

17 VMDestructionTime ← now()
18 Write (UUID, ServiceEndTime, ClientIDi, VMDestructionTime) to database
19 Commit to Database
20 Print success message on console
21 break

22 end

23 end

Chapter 3. System Design and Implementation 61

3.2 Reactive System

In the previous section, we allocated virtual machines in a simple way (create and al-

locate VMs as clients come). But that approach has some major setbacks which will be

discussed in this section and proved by the performance evaluation in the next chapter.

In this section, we will walk through the architecture of the reactive system which is

pictorially shown in Figure 3.5. Further, we will discuss the new methods we introduced

to overcome the drawbacks of the baseline system. To do so, we introduced an idea of

maintaining a pool of virtual machines with a fixed threshold or pool size. This way,

when a client arrives, there is a virtual machine waiting for it in the pool (this is the goal

we are trying to achieve). Thresholds of the virtual machine that are maintained in the

pool are defined below:

TA = Threshold number for type A (VMA) machines (3.1)

TB = Threshold number for type B (VMB) machines (3.2)

When comparing Figure 3.5 to Figure 3.1, it is easy to observe that another daemon

called VM creator has been added to the architecture. The reason to do so will be clear

as we dig deeper into the reactive system. Also, we have introduced the pool manager

which has the role to maintain a smooth flow of data from one daemon to another and

also allocate the virtual machines to clients similar to allocator in Figure 3.1.

Also, in this section, we will explain only those daemons and algorithms which are

different or new from the baseline system explained in Section 3.1.

1. Clients: This module works the same way as we have discussed in Section 3.1.

Chapter 3. System Design and Implementation 62

Pool logic

Pool manager

VM creator

VM destroyerSTM

Clients

Figure 3.5: Architecture of the reactive system

Multiple clients arrive asking for the service of a particular type.

2. Pool logic: This module is more advanced and different from the allocation logic

of the baseline system. It is the brain of the pool manager. It receives the client

request which has the information about the Client ID, Arrival Time, Service Type

as discussed in Section 3.1. When a request arrives, it is queued in a FIFO queue.

Then, the pool logic picks the first request in the queue and checks the type of the

virtual machine that has been requested and then checks whether that particular

type of virtual machine is present in the pool of virtual machines or not. If the

virtual machine is present, it is allocated to the client and in parallel on a second

thread, a similar type of virtual machine is created from the template and placed

in the pool in order to maintain a constant pool size. If the virtual machine is not

present in the pool, a request is sent to VM creator with the information of which

type of virtual machine needs to be created while the client waits in the queue.

Once, the creation process is over, the virtual machine is started and allocated to

the client. Please note that the pool logic is only allocating the virtual machine but

Chapter 3. System Design and Implementation 63

not creating them. This makes it different from the allocator logic studied in the

previous section.

3. Service Time Manager: The STM works the same way and has the same responsi-

bilities as discussed in the baseline system (see Section 3.1.3).

4. VM creator: In this module, there are two threads which work in parallel. The

first thread, is responsible for receiving the requests coming from the pool logic

and appending them to a FIFO queue. Then, the second thread picks the first

request from the queue and checks the type of virtual machine that needs to be

created. Upon identifying the type, it starts to create a virtual machine and then

places the created virtual machine back to the pool.

5. VM destroyer: This daemon is responsible for deleting the virtual machine and its

disk image. The process of how it is done is explained in Section 3.1.4.

Figure 3.6 shows the flowchart for a clients request in the reactive system and how

are different algorithms linked to each other and are marked with the corresponding

algorithm number.

3.2.1 Initial Connection Setup for the Reactive System

Figure 3.7 explains the initial connection setup of the pool manager of the Reactive Sys-

tem. The first setup is to turn ON the Citrix XenServer so that it can accept all the

incoming requests from the pool manager. As discussed, our architecture is based on

the client-server socket and therefore, we need to ensure that the server socket is run-

ning smoothly in order to receive client socket requests. Once, the Citrix XenServer is up

Chapter 3. System Design and Implementation 64

Nx = Nx - 1

Pool

Nx

Clients

Algo 19

Algo 5

Algo 17

Algo 10 Algo 8

Pool logic (Algo 11) VM creator (Algo 15)

STM (Algo 6)VM destroyer (Algo 9)

Deserialize tuple

Shutdown template
VMx

Start copying VMxNx = Nx + 1

Allocate to client i

Shutdown

DeleteVDI for
Delete
Nx = Nx -1

Start the new server
Turn off
the server

Analyze the
request type

Enough
capacity on
server for

VMx

Another
server

available

Can we
turn off
server

VMx
available in

pool

If
Nx > Tx

If
Nx < Tx

if

Check
if template
VMx is
halted

System full

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Admin

Figure 3.6: Flowchart for the reactive system

Chapter 3. System Design and Implementation 65

and running, the VM destroyer sends a connection request to the XenServer. If the in-

coming request is accepted by the server, then a socket server starts on port x. Now, the

VM creator also sends a connection request to the server and if the request is accepted,

then another socket server starts on port y. Similarly, the STM and the pool logic send a

connection request to the server and a socket server is turned ON on port z and s respec-

tively. At this time, all the socket server ports are running. Now VM destroyer sends

client socket request from port x to port y and establishes a client-server connection.

Similarly, a client-server connection is established between port y-z and z-s respectively.

Below is the order in which different daemons are started in the pool manager:

VM Destroyer→ VM creator→ Service Time Manager→ Pool Logic

Now, since all the connections are successful, the pool manager is ready to handle the

incoming client requests.

3.2.2 Pool Logic

The pool logic of the reactive system is different from the allocator logic discussed in

Section 3.1.2. It has two different threads running in parallel and has an additional

client-server connection to the VM creator. The pool logic is the brain of the pool

manager. Once the pool logic has established a successful connection with the Citrix

XenServer, then it creates a connection to accept client requests. The pool logic further

checks for the connection with the STM and the VM creator. If the connections are well

established, it calls two methods named RunPool and ClientAllocator respectively in par-

allel as shown on Line 12 of Algorithm 3.11. If the connection was not successfully

established, an error message is displayed on the console. Algorithm 3.11 shows the

Chapter 3. System Design and Implementation 66

:Pool logic :STM :VM
destroyer

 :VM
 creator :Database

:Citrix
XenServer

connection req

Start socket
server
on port z

Start socket server
on port x

Start socket
server
on port y

Start

Start socket server on port s

Strict

sd R_Conn

connection req

connection req

connection req

connection req

connection req
connection req

connection req

connection req

Figure 3.7: Initial connection setup for the reactive system

Chapter 3. System Design and Implementation 67

pseudo-code of the pool logic for the reactive system.

The RunPool method makes a call to another method called CreateAllIntialVMS explained

with the help of Algorithm 3.12. This method takes Session ID and the threshold values

of both type of virtual machines (TA and TB) as inputs and is responsible to ensure that

a fixed number of virtual machines is present in the pool in the halted state. First, the

number of standby machines of both Type A (NA) and Type B (NB) are statically set to

zero. Then a for loop runs on Line 3 and gets the list of all the virtual machines present

in the server. Next, for all the virtual machines found, it checks for the power state

(which should be halted)and the VM type. Now, another for loop at Line 12 compares the

values of the threshold (Tx) to the number of virtual machines in the server on standby

(Nx). If the Tx value is greater than the value of Nx, then the number of virtual machines

that need to be created is found by subtracting Nx from Tx and a request is sent to the

VM creator to create the virtual machines. If the value of Tx is less than the value of Nx,

then the number of virtual machines that need to be destroyed are found by subtract-

ing Tx from Nx and a request is sent to the VM destroyer to delete the required virtual

machines.

Further, another method called CheckWhenToStartClientHandlingServer is called whose

responsibility is to check whether a minimum number of the virtual machines is avail-

able or not. This is required as virtual machines are being created by the VM creator

daemon. This function makes sure to start the client request handling server when the

minimum number of standby virtual machines have been created and are available in

standby mode. The client request handling server receives requests from clients and

then appends them to a FIFO queue called ClientsToBeServed. Then, for each client at the

Chapter 3. System Design and Implementation 68

Algorithm 3.11: ReactivePoolLogic
Input: Login credentials for XenServer & Service time manager & VM destroyer

needs to be up and running & TA & TB

Output: VMs are getting allocated and creation requests are sent to VM creator

1 Try to login into XenServer . using valid credentials

2 if connection with XenServer← True then

3 S1← Create serversocket object to receive client requests

4 C1← Create clientsocket object to send connection request to STM

5 C2← Create clientsocket object to send connection request to VM creator

6 ClientsToBeServedArray← null

7 VMA Name← ‘VMType-A’

8 VMB Name← ‘VMType-B’

9 VMA Template Name← ‘Template-A’

10 VMB Template Name← ‘Template-B’

11 if Pool logic is connected to STM then

12 while Pool logic and STM connection is persistent do

13 Call RunPool(Sessionid) . On thread #1

14 Call ClientAllocator(Sessionid) . On thread #2

15 end

16 end

17 else

18 Handle exception and show error message

19 end

Chapter 3. System Design and Implementation 69

head of the ClientsToBeServed queue calls the ClientAllocator function.

On the second thread in Algorithm 3.11, a method named ClientAllocator is called and is

explained in Algorithm 3.13. This method is solely responsible for allocating the virtual

machines to the incoming client requests. First, the earliest request in the ClientsToBe-

Served queue is picked up and information such as Client ID and VM Type is obtained.

This information is further sent to a method called AllocateAndStartVM and the request

is removed from ClientsToBeServed queue.

The method AllocateAndStartVM is explained in Algorithm 3.14. The first step in the

method is to create a list named AllocatedVMList. This list has the information of all

the virtual machines that were allocated previously. It is mandatory to ensure that no

virtual machine is reallocated. Let us consider an example to explain how can a virtual

machine be reallocated after it has finished serving a user an destroy process is in effect.

Let’s assume virtual machine ‘XX’ was allocated to client ‘C1’ at time ‘T1’. After some

time, ‘C1’ releases the virtual machine and steps to destroy the virtual machine are ini-

tiated. As mentioned in Section 3.1.4, the VM destroyer involves a set of steps, where

the first step is to shut down a running VM in order to destroy the VDI and VM. Now,

let’s assume that client ‘YY’ comes in requesting a VM at the same time when VM ‘XX’

was in the process of deletion (meaning it was in halted state). This creates a confu-

sion for the pool logic as the condition that the VM should be in halted state (meaning

the virtual machine in available in the pool) is satisfied and pool logic reallocates the

particular virtual machine. This results in an error due to the fact that same VM will

be getting allocated and deleted at the same of time. Thus, to avoid confusion, the list

AllocatedVMList comes in handy. Now pool logic finds, all the virtual machines that

Chapter 3. System Design and Implementation 70

Algorithm 3.12: CreateAllInitialVMS
Input: Sessionid & TA & TB
Output: Minimum number of VM’s have been created

1 Set NA , NB ← 0 . where, NA represents # standby VM of Type-A

2 vms← session.xenapi.VM.getAllRecords()
3 foreach vmRef ∈ vms do
4 vmRec← vms[vmRef]
5 if vmRec[‘isAtemplate’]← False & vmRec[‘isControlDomain’]← False &

vmRec[‘powerState’]← ‘Halted’ & vmRec[‘nameLabel’]← ‘VMType-A’
then

6 NA ← NA + 1
7 end
8 if vmRec[’isAtemplate’]← False & vmRec[‘isControlDomain’]← False &

vmRec[‘powerState’]← ‘Halted’ & vmRec[‘nameLabel’]← ‘VMType-B’ then
9 NB ← NB + 1

10 end
11 end
12 foreach Tx ← A & B do
13 if Tx > Nx then
14 Cx = Tx - Nx . where, Cx is # VM’s need to be created of type-x

15 for x ≤ Cx do
16 Nvm ← 1 . Nvm = 1 means , create 1 VM

17 Tuple← [VMType ,Nvm]
18 Serialize tuple and send to VM creator
19 x← x + 1
20 end
21 else
22 Dx = Nx - Tx . where, Dx is # VM’s need to be deleted of type-x

23 for y ≤ Dx do
24 Nvm ← 1 . Nvm = 1 means, create 1 VM

25 DestroySingleVM(Sessionid, VMType)
26 y← y + 1
27 end
28 end
29 end

Chapter 3. System Design and Implementation 71

are present in the server and are not present in AllocatedVMList. If a virtual machine is

found in the server, then it is started and allocated to the client. The start time of the

virtual machine is saved and serialized with other information and passed to STM on

one thread. On the second thread, a tuple with VMx is passed to VM creator to create

a virtual machine of a similar type as allocated. This step ensures that the Nx is always

equal to Tx.

Algorithm 3.13: ClientAllocator
Input: Sessionid & Client Request

Output: Minimum number of VM have been created

1 cursor, db← connection to allocation database . From the same thread

2 while true do

3 if ClientsToBeServed Queue 6= Empty then

4 Get earliest request tuple

5 Get ClientIDi, Hi
T and VMx

6 IsRequestSent← False

7 AllocateAndStartVM(Sessionid, ClientIDi, VMx, Hi
T, cursor, db,

IsRequestSent)

8 Remove request from Queue

9 end

10 end

3.2.3 Reactive VM Creator

So far we have discussed how virtual machines are allocated to incoming clients. Now,

we need to describe how virtual machines are created. Figure 3.8 explains the concept

Chapter 3. System Design and Implementation 72

Algorithm 3.14: AllocateAndStartVM

Input: Sessionid, ClientIDi, VMx, Hi
T, cursor, db, IsRequestSent

Output: VM has been allocated or waiting to be allocated
1 AllocatedVMList← null . For avoiding the ambiguous condition

2 cursor.execute(‘select uuid from allocationTable’)
3 rows← cursor.fetchall()
4 foreach row in rows do
5 AllocatedVMList← row[0]
6 end
7 vm, vms← None, session.xenapi.VM.getAllRecords()
8 foreach vmRef ∈ vms do
9 if vmRec[‘uuid’] not in ‘AllocatedVMList’ & vmRec[‘isAtemplate’]← False &

vmRec[‘powerState’]← ‘Halted’ & vmRec[‘nameLabel’]← ‘VMx’ then
10 vm← vmRef
11 session.xenapi.VM.start(vm, False, True)
12 uuid← vmRec[‘uuid’] . saving for reference

13 VMStartTime ← now()
14 Form time tuple to send it to Service time manager
15 Serialize and send tuple via C1 object . step # 1

16 Tuple← [VMtype, 1]
17 Serialize and send request to VM creator via C2 object . step # 2

18 Write VMStartTime, UUID and ClientIDi to allocation database . step # 3

19 break
20 end
21 end
22 if vm← None & IsRequestSent← False then
23 Tuple← [VMtype , 1]
24 Serialize and send tuple via C2 object
25 IsRequestSent← True
26 end
27 if vm← None & IsRequestSent← True then
28 AllocateAndStartVM(Sessionid, ClientIDi, VMx, Hi

T, cursor, db, IsRequestSent)
. recursive calling

29 end

Chapter 3. System Design and Implementation 73

VM creator

Thread 1

Thread 2

 Creation Queue
 (Shared)

Requests

Append requests

Access & Remove requests

Figure 3.8: Architecture showing working of VM creator

of VM creator of the reactive system. There, are two threads working in parallel and

one shared queue. On Thread 1, a method named CreationRequestHandler is called and

on Thread 2, method VMCreatorWorker is called. CreationRequestHandler receives the

requests from the pool logic and deserializes them and appends them to the Creation

Queue in FIFO order. Further, the VM creator daemon obtains the information about

Session ID, Type of VM and sends it to another method called VMCreatorWorker.

Algorithm 3.15: ReactiveVMCreator
Input: Login credentials for XenServer, VMTemplatex, MemoryThresholdx,

StorageThresholdx

Output: Stops the requests after service is over and writes to database
1 Create server socket object and wait of connection from pool manager
2 SessionId← Try to login to XenServer
3 if Login to XenServer← successful then
4 Creation Queue← null
5 Start CreationRequestHandler() . on Thread 1

6 Start VMCreatorWorker(Sessionid) . on Thread 2

7 end

Chapter 3. System Design and Implementation 74

Algorithm 3.16: CreationRequestHandler
Input: Server socket reference
Output: Receives the requests and handles them appropriately

1 while true do
2 Running← true
3 ClientSocket, address← serversocket.accept()
4 while running do
5 Request← socket.receive()
6 if request != null then
7 De-serialize the request
8 Append request to shared queue

9 end
10 end
11 end

The VMCreatorWork method (see Algorithm 3.17), picks the first request from the queue

and then makes a call to function CreateSingleVM which starts copying a new virtual

machine. Once the process of copying a virtual machine is completed, the variable

isVmCreated is set to true and the database is updated. The function CreateSingleVM is

explained in detail in Section 3.1.2 (Algorithm 3.3).

The service time manager is responsible to keep track of all active clients and is used to

decrease the simulated time by one second. The STM for the reactive system works the

same way as in the baseline system and is explained in Section 3.1.3.

The VM destroyer also has the same responsibility i.e. to delete the virtual machine and

the disk image and the steps to do so are explained in Section 3.1.4.

Chapter 3. System Design and Implementation 75

3.3 Proactive System

Until now we have discussed how the virtual machines are allocated in the baseline

system and the reactive system. We saw that the reactive system solves issues in the

baseline system by maintaining a pool of virtual machines and allocating them to clients

upon request which significantly decreases the client waiting time. This point will fur-

ther be discussed in the next chapter. The proactive system is the novel idea and promi-

nent system. It is a smart and adaptive system which learns the client arrival behavior

over time.

Algorithm 3.17: VMCreatorWorker
Input: SessionID

Output: Creates a VM and updates it to database successfully or VM not created

due to various reasons

1 dbRef, cursorRef← connect to vm creation database while true do

2 if creation queue = null then

3 vm← Get the first element from queue

4 isVmCreated, UUID, VMx, CreationStartTime, CreationEndTime ←
CreateSingleVM(SessionID, VMToBeCreated)

5 if isVmCreated← true then

6 Update database(UUID, VMx, CreationStartTime, CreationEndTime)

7 Dequeue the request from queue

8 else

9 Dequeue the request from queue

10 end

11 end

12 end

Chapter 3. System Design and Implementation 76

Figure 3.9 shows an overall architecture of the proactive system. All the daemons:

Client, Pool logic, STM, VM creator and VM destroyer works the same way as ex-

plained for the reactive system in Section 3.2. The only difference between the reactive

and proactive system is the new daemon called Predictor. Please note that in a real

implementation all the modules except the client and the STM modules will need to

be incorporated. The client and the STM modules were required only to evaluate the

system.

1. Predictor: This module is the heart of the proactive system. It is responsible to

read and analyze the historical client arrival data and makes a prediction for the

required number of virtual machines in a specific period of time. To make a pre-

diction, it uses an autoregressive prediction model. Autoregressive models are a

fundamental class of time series model. They take the advantage of the fact that

time series data is sequential and order is very important to maintain. We are us-

ing this model because our client arrival data is in time series format and autore-

gressive is remarkably flexible at handling a wide range of different time series

patterns. In this model, we forecast the number of required virtual machines by

using a linear combination of the past values. The term autoregression indicates

that it is a regression of the variable against itself. Below is the equation that gives

an idea of an autoregressive model:

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + et (3.3)

where, c is a constant, et is the white noise and yt are the lagged values.

The coefficients φ1, φ2, . . . , φp defines the importance of the lagged values. The

Chapter 3. System Design and Implementation 77

Pool logic

Pool manager

VM creator

VM destroyerSTM

Predictor

Clients

Figure 3.9: Architecture showing different components of proactive system

largest coefficients are multiplied by the observations in the time series. The Equa-

tion (3.3) states that our prediction yt is heavily dependent on the most recent

values and least on the most lagged value. However, the coefficients don’t neces-

sarily have to follow this pattern. The main point to note here is how a time series

is correlated to its past values.

Figure 3.11 shows the flowchart for a clients request in the baseline system and how are

different algorithms linked to each other.

3.3.1 Initial Connection Setup of the Proactive System

Figure 3.10 illustrates the initial connection setup of the pool manager of the proactive

system. It is very important to ensure that all connections among the different daemons

are well established. The first step is to turn On the Citrix XenServer so it can accept all

the incoming request from the pool manager. Next, we start the predictor module so

that it can start reading the historical client arrival data. The system proposed is based

Chapter 3. System Design and Implementation 78

on the client-server socket. Once both the Citrix XenServer and the predictor module

are up and running, VM destroyer sends a connection request to the Citrix XenServer. If

the request is accepted by the Citrix XenServer, it sends an acknowledgment and starts

a socket server on port x. Further, the VM creator sends another request to the Citrix

XenServer and if it is accepted then another socket server starts on port y. Similarly, a

socket server connection is established between the STM and the server on port z and

port p2 respectively. Now that all the socket servers are up and running, so VM de-

stroyer sends a client socket request from port x to port y and a client-server connection

is established between VM destroyer and VM creator. In the same way, a client-server

connection is established between VM creator - STM and STM - Pool logic. Once all

these connection are done another client-server connection is made between the pre-

dictor and pool logic on port p1. When all the connections are successful and all the

modules are up and running, the pool manager starts accepting the incoming clients

requests. Below is the order in which different modules are started:

VM destroyer→ VM creator→ STM→ Pool logic← Predictor

3.3.2 Pool Logic

The pool logic of the proactive system is slightly different from the reactive system we

studied in Section 3.2.2. It has three different threads instead of two. The first thread

receives the incoming request and appends it to a FIFO queue. The second thread picks

the earliest request from that queue and sends it to the ClientAllocator. On the third

thread, the pool logic is connected to the predictor module. The predictor module is

responsible for making a forecast of the different threshold values (i.e. TA and TB) for a

Chapter 3. System Design and Implementation 79

:Pool logic :STM :VM
destroyer

 :VM
 creator :Database

 :Citrix
XenServer :Predictor

connection req

connection req

connection req

connection req connection req

connection req

connection req

connection req

connection req
on port p2

connection req

Start socket server
on port z

Start socket server
on port x

Start socket
server
on port y

Start Start

Start socket server
on port p1 and p2

connection req on port p1

Strict

sd P_Conn

Figure 3.10: Connections between different modules of proactive system

Chapter 3. System Design and Implementation 80

specific time frame. Once, the predictions have been made, then these values are passed

to the pool logic where they are used in the method called CreateAllIntialVMS explained

in Algorithm 3.12.

Algorithm 3.18 explains the concept of how the predictor module works. This module

takes the input as the past values of clients arrival data and the type of service they used.

A connection to the database is made from where it reads the historical data. Then, it

ensures that there is a connection with the pool logic. Now, we create an empty array

for Time, Type A virtual machines and Type B virtual machines respectively. At Line 8,

we calculate the interval length by diving the time to go back by the interval gap. For

example, let’s assume we want to make a prediction for the next 15 minutes at 7:00 pm

using the last 1 hour of data. Using this example, the time to go back becomes 60 min-

utes and with a time interval gap of 5 minutes, we obtain an interval length of 12. Now,

this means 12 different intervals of time between 6:00 pm to 7:00 pm i.e. 6:00-6:05, 6:05-

6:10, . . . , 6:55-7:00. These intervals of time are now appended to the TimeArray using a

for loop at Line 11. At the end of the for loop, we reverse the order of the time array. The

array formed in the previous step has both types of virtual machines. Next, we form

separate arrays for both Type A and Type B virtual machines by appending them to ar-

rays named ClientAarray and ClientBarray respectively as shown on Line 15. The reason

to form separate arrays for each type of clients is that the autoregression model can be

applied to symmetrical data. At Line 22, we use an in-build stats model that uses the

Fit function to train on the data in the lists ClientAarray and ClientBarray. The maxlag is

calculated by subtracting the predicted length from the interval length. From the above

example, we found the interval length to be 12, now to find the predicted length we

Chapter 3. System Design and Implementation 81

divide 15 minutes by 5 minutes. Therefore, the predicted length becomes 3 and maxlag

becomes 9. Once the training has been done on the data, another method is used on

Line 23 to make a prediction based on the trained data.

Further, these predicted values are sent to the pool logic using the client socket port

where they replace the previous values. Predicting the threshold values make the pool

size dynamic. So, to maintain the pool size with respect to the threshold values of

the specific time frame, a function named ThresholdManager is called. The job of this

function is to compare the new threshold value to the previous ones. If the new values

are greater than the previous values, then a call to method VM creator is made, which

starts copying the desired number of virtual machines and adds them to the pool. If the

new threshold values are less than the previous values, then a call to the method VM

destroyer is made, which starts to delete the desired number of virtual machines from

the pool. The destroyer function will only delete virtual machines that are in halted

state and not allocated to clients.

Figure 3.11 shows the flowchart for a clients request in the baseline system and how are

different algorithms linked to each other.

Chapter 3. System Design and Implementation 82

Algorithm 3.18: Predictor
Input: TimeToGoBack & TimetoPredict & TimeIntervalGap & Timesleep
Output: Minimum number of VMs have been created

1 PredictedTA← 0
2 PredictedTB← 0
3 Cursor← database connection to Allocation Database
4 CS1← Client socket object for sending predicted values to pool manager
5 TimeArray← null
6 ClientAarray← null
7 ClientBarray← null
8 IntervalLength← TimeToGoBack / TimeIntervalGap

9 Now← datetime.datetime.now()
10 PastTime← now + datetime.timedelta(minutes = - TimeToGoBack)
11 for x ∈ range(1,IntervalLength) do
12 TimeArray.append(Now + datetime.timedelta(minutes =- TimeIntervalGap * x))
13 end
14 Reverse the TimeArray
15 for i ∈ range(1,IntervalLength) do
16 ACount← select count(*) from tableName where vmType = ‘TypeA’ and

arrivalTime BETWEEN TimeArray[i-2] AND TimeArray[i-1]
17 BCount← select count(*) from tableName where vmType = ‘TypeB’ and

arrivalTime BETWEEN TimeArray[i-2] AND TimeArray[i-1]
18 Append ACount to ClientAarray
19 Append BCount to ClientBarray
20 end
21 ARA← AR(ClientAarray)
22 PA← ARA.fit(maxlag, ic=’hqic’, trend=’nc’)
23 PredictedTA← PA.predict(start , end , dynamic=True)
24 ARB← AR(ClientBarray)
25 PB← ARB.fit(maxlag, ic=’hqic’, trend=’nc’)
26 PredictedTB← PB.predict(start , end , dynamic=True)
27 send PredictedTA & PredictedTB to Pool Logic using CS1

28 Thread.sleep(Timesleep)

Chapter 3. System Design and Implementation 83

Nx = Nx - 1

Clients

Algo 19

Predictor
(Algo 18)

Algo 5

Algo 17

Algo 10 Algo 8

Pool logic (Algo 11) VM creator (Algo 15)

STM (Algo 6)VM destroyer (Algo 9)

Deserialize tuple

Shutdown template
VMx

Start copying VMxNx = Nx + 1

Allocate to client i

Shutdown

DeleteVDI for
Delete
Nx = Nx -1

Start the new server

Turn off
the server

Analyze the
request type

Enough
capacity on
server for

VMx

Another
server

available

Can we
turn off
server

VMx
available in

pool

If
Nx > Tx

If
Nx < Tx

if

Check
if template
VMx is
halted

System full

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Pool

Nx

Figure 3.11: Flowchart for the proactive system

Chapter 4

Performance Analysis
This chapter describes the use cases and experiments that are conducted to study the

proposed systems. The request generator is described first. Next, the workload and

systems parameters are outlined. Finally, the results of the experiments and the system

behavior are evaluated and summarized.

4.1 Request Generator

The request generator is a module designed to simulate the behavior of the client ar-

rival in the systems. It generates synthetic data which is then passed to the allocator

in the baseline system and to the pool manager in the reactive and proactive systems.

The data tuple that corresponds to each generated request comprises of the following

components and is elaborated in Table 4.1.

< ClientIDi, Hi
T, Ai

T, VMi
x >

Each request corresponds to a specific client (ith client) requesting a VM. The generation

of the client requests is described next with the help of the pseudo-code given in Algo-

rithm 4.1. The first step is to successfully make a connection to the database (Line 1).

Upon a successful connection, we need to provide a few inputs parameters such as:

84

Chapter 4. Performance Analysis 85

Table 4.1: Data tuple sent by the request generator

Symbol Description

ClientIDi Unique client ID of ith client

Hi
T Virtual machine hold time of ith client

Ai
T Arrival time of ith client

VMi
x Type of VM requested by ith client

• the probability to recieve a request for a specific VM type. In our case, since we

consider 2 different VM types, pA and pB are provided (see lines 2-3).

• the arrival rate at which requests are being generated (Line 5).

• the service rate (Line 5) so that we can simulate how long the VM will be used for

(referred to as VM hold time).

• the simulation time (Line 6) for which the experiment will be run.

From, the value of the arrival rate, the inter-arrival time between the consecutive re-

quests is calculated using the inbuilt function of python called expovariate (Line 15).

Similarly, the expovariate function is also used to calculate the virtual machine hold time

for each request (Line 16). Next, the algorithm decides the type of virtual machine by

using the choice function and based on the output, the VM type is set to VMA or VMB

(Line 18). Now, a tuple is created with all the values obtained, serialized and sent to

the allocator (in the baseline system) or the pool manager (in reactive and proactive sys-

tems) respectively. These steps (line 14-29)are repeated each time a new client request is

generated until the simulation end time.

Chapter 4. Performance Analysis 86

Algorithm 4.1: RequestGenerator

1 if database connection← successful then
2 pA← x where x ∈ [0,1]
3 pB← 1-x
4 λ← arrival rate
5 µ← service rate
6 ExpectedEndTime← simulation time in minutes
7 Now← datetime.datetime.now()
8 Difference← datetime.timedelta(minutes = Timeend)
9 Tend← now + difference

10 ClientSocket← socket object
11 ClientSocket.connect(‘ServerIP’,‘Client Port number’)
12 ClientID← 1
13 if clientSocket connection← successful then
14 while datetime.datetime.now() ≤ Tend do
15 InterArrivalTime← random.expovariate(λ)
16 HoldTime← random.expovariate(µ)
17 RequestTime← datetime.datetime.now()
18 var← numpy.random.choice(numpy.arrange(1,3), PA, PB)
19 if var← 1 then
20 VMType← A
21 else
22 VMType← B
23 end
24 ClientTuple← [ClientID, RequestTime, InterArrivalTime, ServiceTime]
25 Send request to allocator (Baseline system) OR
26 Send request to pool manager (Reactive & Proactive systems)
27 Save this data to arrival database
28 ClientID← ClientID + 1
29 Time.sleep(InterArrivalTime)
30 end
31 end
32 end

Chapter 4. Performance Analysis 87

4.1.1 Workload and System Parameters

During experiments, each workload and system parameter is varied in a given exper-

iment while the others were held at their default values. The various values for both

workload and system parameters used in the experiments are shown in Table 4.2. The

values in bold correspond to the default value for the parameter. The following are the

workload parameters used while evaluating the performance of the systems:

• Arrival Rate (λ): It is the rate at which clients arrive in the system. We are using

the Poisson arrival process, which implies that the inter-arrival times are exponen-

tially distributed.

• Virtual Machine Hold Time (HT): It is the amount of time a client uses the services

of the virtual machine. This time is also exponentially distributed.

• Probability of VM Type (px): This parameter is used to select the type of virtual

machine. It is needed since there are two types of services a client can request

(type A and type B).

The following system parameter is used while evaluating the system performance:

• Pool Size (PS): This parameter is only used in the reactive system because we are

maintaining a pool of virtual machines with a static threshold value for both types

of virtual machines.

Chapter 4. Performance Analysis 88

Table 4.2: Workload and system parameters

Parameter Values Units Distribution/Process

λ 30, 40, 50, 60, 68, 100, 110 Clients/Hour Poisson Process

HT 5, 10, 15, 20, 25, 30 Seconds Exponential Distribution

px 0, 0.25, 0.5, 0.75, 1 - Constant

PS 10, 20, 30, 40, 50, 56 - Constant

4.2 Performance Metrics

Two performance metrics are used to compare the performance of the three systems:

Mean waiting time (WT) and mean idle time (IT). The computation of these metrics is

based on other auxiliary performance metrics and time stamps generated during the

experiments as discussed below. Figure 4.1 represents the different time stamps for the

baseline system and Figure 4.2 shows the different time stamps for both the reactive and

proactive systems.

• Total clients (CTot): It is the total number of clients that arrived in the system.

• Queuing time (QT): It is the average time for which a client waits for the services

in a FIFO queue.

• Creation start time (CST): Time at which the creation of a virtual machine starts.

• Creation end time (CET): Time at which the creation of a virtual machine is com-

pleted.

Chapter 4. Performance Analysis 89

• Creation time (CT): It is the time taken to create a virtual machine in Citrix XenServer.

It is obtained as:

CT = CET −CST (4.1)

/ /
Figure 4.1: Time stamps for the baseline system

Indefinate Time

/
Figure 4.2: Time stamps for the reactive and proactive systems

• Service start time (SST): It is the time at which the virtual machine is allocated to

the client who starts working on the virtual machine.

• Service end time (SET): It is the time at which a client has finished working on the

virtual machine and terminates the session.

• Destruction start time (DST): The time at which the process of deleting a virtual

machine starts.

• Destruction end time (DET): The time at which the process of deleting a virtual

machine is completed.

Chapter 4. Performance Analysis 90

• Destruction Time (DT): It is the time taken to destroy the virtual machine and the

disk image associated with it. It is obtained as:

DT = DET −DST (4.2)

• Waiting Time (WT): It is the time a client has to wait before a virtual machine is

allocated to it. Waiting time in the baseline system is calculated as the sum of

queuing time and creation time.

WT = QT + CT (4.3)

Waiting time in both reactive and proactive systems is only equal to the queuing

time since the systems have a pool of pre-created VMs.

WT = QT (4.4)

• Idle time (IT): Idle time of a virtual machine is defined as the time difference be-

tween the service start time and creation end time. In other words, it is the time

for which the virtual machine was idle in the pool (not being used by the client)

in a halted state. Please note, there is no idle time in the baseline system beacuse

virtual machine is only created when the client requests a virtual machine.

IT = CET − SST (4.5)

• Mean waiting time (WT): The average time a request spends in the queue before

the virtual machine is allocated.

WT =
∑N

i=1 WT

CTot
(4.6)

Chapter 4. Performance Analysis 91

• Mean idle time (IT): It is the mean time for which a virtual machine is idle in the

pool.

IT =
∑N

i=1 IT

CTot
(4.7)

4.2.1 Experimental Setup

All the three systems are built on the PyCharm Integrated Development Environment

(IDE) using the python programming language version 2.7. Proof-of-concept proto-

types for the three systems have been tested on a Citrix XenServer deployed on a system

comprising a 3.5 GHz CPU with 4 cores and 16 GB of memory using simulated (syn-

thetic) client workload. A module called “Client” is deployed on a system equipped

with an Intel Core i7 CPU and 16 GB RAM running the Ubuntu 14.04 operating sys-

tem. This module is used to generate client requests at the desired rates. A JSON tuple

which consists of synthetic workload data such as client id, service type and service

time is passed to the pool manager for each request generated.

The performance metrics such as the average waiting time and the average idle time

are computed during each experiment. A set of experiments was performed with a

duration of 180 minutes for each experiment. Note that running the experiment for 180

minutes ensured that the system was running in a steady state.

For the prediction module, the algorithm makes prediction every 10 minutes using the

past data. We found out that making predictions every 10 minutes provides the best

trade-off between computation time and the percentage of error.

Accuracy of the Average Waiting Time

Chapter 4. Performance Analysis 92

The accuracy of the average waiting time determined during the experiments is dis-

cussed in Appendix A.

Accuracy of the Prediction Algorithm

A separate set of experiments was performed to show the accuracy of the prediction as

we increase the value of the arrival rate. A discussion of these experiments is presented

in Appendix B.

4.3 Experiments for the Baseline System

This section discusses the effect of the different workload parameters described in Sec-

tion 4.1.1. All the simulations were performed for a duration of 180 and the results

(average values)obtained from multiple runs are presented.

4.3.1 Effect of Arrival Rate on the Mean Waiting Time

Figure 4.3 shows the relationship between the average waiting time of the clients in the

baseline system and the arrival rates. In this case, the wait time for a client is the sum

of the time taken to create a virtual machine (CT) and the time taken to start a virtual

machine (SST). The figure shows that at λ = 30 clients/hour, the average time required

to create a VM and allocate it to clients is 28.276 seconds. But as λ increases, the average

waiting time also increases. This is due to the fact that with a higher number of clients

arriving in the system, contention for the resources increases. This leads to an increase

in the length of the queue which increases the time to serve the clients. To note, if we

increase λ to 60 clients/hour, which is twice the value when we started the system, the

waiting time increases by more than 35%. On further increasing λ to 68 clients/hour,

Chapter 4. Performance Analysis 93

the system reaches its saturation point as the traffic intensity becomes almost equal to 1

as the number of clients arriving in the system is almost equal to the number of clients

being served by the system thus from this point, the average waiting time increases

sharply.

30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

30

35

40

45

50

Baseline System

λ Value

30 28.276

40 29.889

50 31.766

60 37.274

68 48.673

Figure 4.3: Effect of λ on WT

4.3.2 Effect of Hold Time on the Mean Waiting Time

Figure 4.4 shows how the virtual machine hold time impacts the average waiting time

for the clients. For this experiment, the number of incoming arrivals is fixed at a rate

of 60 clients/hour. The virtual machine hold time is varied from 5 to 15 seconds. As

we increase the time for which a client uses a virtual machine on the server, the load on

the server increases which results in increasing the start time (it is the time between the

Chapter 4. Performance Analysis 94

creation end time and the service start time) of a virtual machine. So, when clients hold

the virtual machine for a longer duration, the start time for acquitting a VM increases

which result in the increment of the overall average waiting time for the clients.

5 6 7 8 9 10 11 12 13 14 15
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45

Baseline System

HT Value

5 35.253

10 37.274

15 42.926

Figure 4.4: Effect of HT on WT

4.3.3 Effect of Probability of Selecting the type of VM on the Mean

Waiting Time

There could be a possibility that the clients coming into the system do not have the same

probability of occurrence. Figure 4.5 explains the relationship between the probability of

selecting the type of a virtual machine and the average waiting time for clients. When

the probability of selecting a virtual machine of type A pA = 0, it means that all the

clients coming into the system are demanding a virtual machine of type B. Since the

Chapter 4. Performance Analysis 95

size of the virtual machine of type B is bigger in comparision to type A, the overall

waiting time for clients is higher. At pA = 1, all the clients coming into the system are

demanding the virtual machines of type A. Since the size of the virtual machine of the

type A is smaller in comparison to the type B, the creation time and the start time is less

resulting in a lower overall average waiting time of the clients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Baseline System

pA Value

0 38.619

0.25 37.364

0.5 36.074

0.75 35.021

1 34.877

Figure 4.5: Effect of px on WT

4.4 Experiments for the Reactive System

This section explains the effect of different workload parameters on the average waiting

time of the clients and the average idle time of virtual machines in the reactive system.

As a reminder, the reactive system has a fixed size of the pool of VMs that are pre-

created and ready to be assigned to clients. The default pool size for the reactive system

is set at 30 where the number of virtual machines of each type is 15 (VMA = VMB = 15).

The simulations were performed for a period of 180 minutes.

Chapter 4. Performance Analysis 96

4.4.1 Effect of Arrival Rate on the Mean Waiting Time

The average waiting time of clients is observed to increase with an increase in the ar-

rival rate for the clients in the reactive system (see Figure 4.6). In the case of the reactive

system, the waiting time for the client is only the time it spends in the queue. As men-

tioned in Section 3.2, a fixed number of virtual machines are created a-priori and are

placed in a pool on a server in a halted state. As we increase λ from 30 clients/hour

to 100 clients/hour, the average waiting time for the clients increases. This is due to

the fact that with a higher number of clients arriving in the system, contention for re-

sources increases. This leads to an increase in the length of the queue which increases

the time to serve clients. Now, if we further increase λ to 110 clients/hour, the system

reaches a saturation point, where the arrival rate is almost equal to the service rate and

the waiting time for clients increases sharply.

30 40 50 60 70 80 90 100 110
0

3

6

9

12

15

18

21

24

27

30

Reactive System

λ Value

30 5.943

40 6.217

50 6.826

60 7.817

80 10.861

100 17.749

110 29.556

Figure 4.6: Effect of λ on WT

Chapter 4. Performance Analysis 97

4.4.2 Effect of Hold Time on the Mean Waiting Time

When we increase the virtual machine hold time in the system, we observe a mono-

tonic increase and as shown in Figure 4.7. In this system, clients arrive at a rate of 60

clients/hour and the hold time is varied from 5 to 30 seconds. As we increase the hold

time, it results in an increase in the waiting time for the clients. This is due to the fact

that the more time the clients spend in the system, it increases the load on the server as

it is handling various process at the same time, which leads to the higher start time and

thus increasing the overall average waiting time for the clients. It is the same behavior

as observed in the baseline system. Also, the hold time cannot be increased beyond

30 seconds because at this time, the system is already at its maximum capacity as the

default arrival rate is set to 60 clients/hour and deleting a virtual machine takes on

average 27 seconds, this makes the service rate 61 clients/hour.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Reactive System

HT Value

5 7.569

10 7.747

15 8.019

20 8.372

25 9.011

30 9.499

Figure 4.7: Effect of HT on WT

Chapter 4. Performance Analysis 98

4.4.3 Effect of Probability of Selecting the Type of VM on the Mean

Waiting Time

Figure 4.8 presents the impact of the probability of selecting the type of the virtual ma-

chine on the mean waiting time for the client. In the case of the reactive system, when

the probability of selecting a virtual machine is varied, the average waiting time of

clients shows a non-monotonic behavior. At pA = 0, all the clients coming in the sys-

tem are demanding a virtual machine of type B, but the pool has an equal number of

VMs of each type. Thus, once all virtual machines of type B in the pool are allocated,

the request starts queuing up and increases the waiting time. Also, at this point, the

pre-created virtual machines of type A remains unused in the system. However, when

the probability of selecting a virtual machine is equal for both types i.e. pA = pB = 0.5

the waiting time decreases. The decrease in the waiting time is due to the fact that the

pool has both types of virtual machines are pre-created (with 50% ratio for each type

of virtual machine). In this case, the clients coming into the system are demanding for

both types of virtual machines and therefore, the system can accommodate more clients

before requests start queuing up. When we reach the point where pA = 1, all the clients

coming in the system are demanding a virtual machine of type A. This situation is the

same as the one explained when pA = 0 (i.e. the average waiting time increases).

4.4.4 Effect of Pool Size on the Mean Waiting Time

Figure 4.9 depicts how the average waiting time of clients is affected by varying the pool

size. For example, a pool size of 30, there are 15 virtual machines of each type. When

increasing the pool size, the average waiting time for clients decreases. The decrease

Chapter 4. Performance Analysis 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Reactive System

pA Value

0 8.906

0.25 8.213

0.5 7.817

0.75 8.115

1 8.728

Figure 4.8: Effect of pA on WT

in the wait time is due to the fact that the number of clients coming in has a constant

arrival rate of 60 clients/hour for this experiment. Therefore, increasing the pool size

means that more clients will be served right away from a pre-created VM. More pre-

cisely, At PS = 10, there are only 5 virtual machines of each type. Therefore, the queuing

starts to occur due to the small pool size which results in an average wait time of 10.714

seconds. When increasing the pool size to 30, more clients can be accommodated be-

fore the queuing, therefore the average waiting time decreases. It is important to note

that due to memory and storage restrictions of host server used in the experiments, we

cannot accommodate more than 56 virtual machines.

4.4.5 Effect of Arrival Rate on the Mean Idle Time

Virtual machines are pre-created and maintained in the pool (in the halted state) until

a client requests a virtual machine. Figure 4.10 shows the effect of arrival rate on the

Chapter 4. Performance Analysis 100

10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

11

12

Reactive System

PS Value

10 10.714

20 8.228

30 7.193

40 6.387

50 6.012

56 5.893

Figure 4.9: Effect of PS on WT

average idle time of the virtual machines. We observe a decreasing behavior because

as the number of clients arriving in the system increases, the virtual machines are al-

located faster to the users, which means they spend less time in the halted state while

maintaining the pool size.

4.5 Experiments for the Proactive System

This section explains the effect of different workload parameters on the average waiting

time of the clients and the average idle time of the virtual machines in the proactive

system. The simulations were performed for a period of 180 minutes.

4.5.1 Effect of Arrival Rate on the Mean Waiting Time

In the case of the proactive system, the waiting time is calculated as the time spent

in the queue before the allocation of a virtual machine. Figure 4.11 explains the effect

Chapter 4. Performance Analysis 101

30 40 50 60 70 80 90 100 110
 (clients/hour)

0

100

200

300

400

500

600

700

800

900

1000
Reactive System

λ Value

30 934.037

40 656.857

50 448.119

60 283.222

80 175.884

100 149.016

110 144.334

Figure 4.10: Effect of λ on IT

of the arrival rate on the average waiting time of the client. In the proactive system,

the pool size is not static, it is predicted based on the previous client requests arriving

in the system. To predict the number of virtual machines that would be required for

each type, an autoregression model is used (see Section 3.3.2). The prediction is done

for every 10 minutes by learning the behavior of the clients from the past data. As

we increase the arrival rate, the client’s average waiting time increases. At the point

where λ = 30 clients/hour, the average waiting time is 6.447 seconds. If we double the

arrival rate to 60 clients/hour there is only a difference of 1.68 seconds. The waiting

time does not increase significantly until the value of λ becomes 100. This is due to the

reason that as we increase the arrival rate, the average number of clients in the system

also increases, which means that the model has more data to train on and thus gives a

prediction value with a lower error (i.e. a better prediction). These forecast values are

the number of clients that might be coming in the system in next 10 minutes for each

Chapter 4. Performance Analysis 102

type of the virtual machine. At λ = 110, the system saturates and thus, the waiting time

increases rapidly.

30 40 50 60 70 80 90 100 110
0

3

6

9

12

15

18

21

24

Proactive System

λ Value

30 6.447

40 6.478

50 7.412

60 8.127

80 10.411

100 14.673

110 23.574

Figure 4.11: Effect of λ on WT

4.5.2 Effect of Hold Time on the Mean Waiting Time

The proactive system also shows an increase in the average waiting time for the clients

with respect to the virtual machine hold time. In this system, the clients arrive at a

default rate of 60 clients/hour and the hold time is varied from 5 to 30 seconds. As we

increase the hold time of a virtual machine, it results in the increment of the waiting time

for the clients. This is due to the reason that if clients spend more time in the system,

it increases the load on the server as it is handling various processes at the same time,

which leads to the higher start time of a virtual machine and thus increasing the overall

average waiting time of clients.

Chapter 4. Performance Analysis 103

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Proactive System

HT Value

5 7.961

10 8.107

15 8.219

20 8.457

25 8.801

30 9.413

Figure 4.12: Effect of HT on WT

4.5.3 Effect of Probability of Selecting the Type of VM on the Mean

Waiting Time

Figure 4.13 shows how the proactive system behaves when the probability of the type

of virtual machine selection is varied. At point when pA is 0 (case 1), all the clients are

requesting a virtual machine of type B. Now, the predictor will forecast the values of

both types of virtual machines but as all the past values of type A are 0, the predictor

will forecast 0 for type A machines which means that there is no error in prediction.

However, while predicting the number of type B machines, there is a significant error as

the model has fewer data to train. Thus the waiting time is only dependent on the error

percentage of type B virtual machines and we obtain a value of 7.023 seconds. When the

probability of selecting the type of the virtual machine is 0.5 for each type (case 2). The

error in the prediction value for both types of virtual machines, therefore, the waiting

Chapter 4. Performance Analysis 104

time increases. At pA = 1, all the clients coming in the system are demanding the virtual

machines of type A, so similar to case 1, the average waiting time of clients decreases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Proactive System

px Value

0 7.023

0.25 7.801

0.5 8.127

0.75 7.533

1 6.614

Figure 4.13: Effect of px on WT

4.5.4 Effect of Arrival Time on the Mean Idle Time

The virtual machines are dynamically created based on the past history of the clients

arriving in the system and the type of service they are demanding for. We observed

a decrease in the average idle time of virtual machines with an increase in the arrival

rate. This behavior is shown in the Figure 4.14. With the arrival rate of 30 clients/hour,

we have a higher average idle time for all the virtual machines that were allocated to

the clients. This is because, with a lower arrival rate, the predictor has fewer data to

train. So when the predictor forecasts higher threshold values, more virtual machines

are created and left idle in the pool. This increases the idle time of the virtual machines.

When predictor forecast lower threshold values it decreases the idle time of the virtual

Chapter 4. Performance Analysis 105

machine. But as we increase the arrival rate of clients, the predictor has more data

to learn the behavior of requests and forecasts more accurate threshold values. This

reduces the number of virtual machines that will be created and stacked in the pool in

the halted state, which decreases the overall average idle time.

30 40 50 60 70 80 90 100 110
 (clients/hour)

0

50

100

150

200

250

300

350

400

450
Proactive System

λ Value

30 442.343

40 235.768

50 173.753

60 126.342

80 84.714

100 71.026

110 70.453

Figure 4.14: Effect of λ on IT

4.6 Comparison of the Systems

In the previous sections, we studied the effect of different workload parameters on the

performance of all the three systems individually. This section provides a comparison

of the three systems. We will also discuss the suitability of a system for a given set of

workload matrices. The run length for all the experiments is fixed to 180 minutes.

Chapter 4. Performance Analysis 106

4.6.1 Effect of Arrival Rate on the Mean Waiting Time

Figure 4.15 compares the performance of all the three systems. As seen earlier, as we

increase the arrival rate, the waiting time for the clients is increasing. But, the point

to note here is that the waiting time increases more sharply for the baseline system.

This is due to fact that the clients coming in the baseline system have to wait for a VM

until it is created and then started. The baseline system reaches its saturation point

when λ reaches 68 clients/hour, whereas in case of reactive and proactive systems the

saturation point is attained at higher values of the arrival rate (around 110 clients/hour).

The reason for this is the fact that for the proactive and reactive systems, the virtual

machines are created a-priori and maintained in a pool. This means that the system

is ready with virtual machines before the client arrives in the system. Therefore, the

waiting time is only the time spent in the queue. Further, if we compare the reactive

system with the proactive system, we observe that for λ lower than 70 clients/hour,

the reactive system has less waiting time than the proactive system and for λ above 70

client/hour, the proactive system is better and has a lower waiting time. This is due

to the fact that in the case of the proactive system, as the number of clients arriving

in the system increases, the data on which the model can train itself increases, which

tends to decrease the percentage of error in the predicted values. The proactive system

is dynamic in nature and prepares itself by adjusting the threshold values as required.

Thus, with a higher prediction accuracy, it performs better than the reactive system.

The proactive system creates or destroys the virtual machines based on the predicted

threshold values to make the pool ready to accommodate the incoming clients. As a

result, the number of clients waiting in the queue decreases, which gives us an overall

Chapter 4. Performance Analysis 107

average waiting time that is lower than a reactive system. In the case of the reactive

system, the pool size remains the same and the number of virtual machines created

a-prior is fixed. Due to this reason, the waiting time is lesser for smaller values of λ.

However, when increasing λ, the queuing time increases because virtual machines need

to be created to maintain the pool size and creating a virtual machine requires time

which increases the time spent in the queue by the client, and thus leads to an increased

overall average waiting time. Further, the difference between the reactive and proactive

systems increases, for λ = 110 clients/hour the average waiting time achieved is 23.57

seconds for the proactive system which is 25.37% lower than the reactive system.

30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

50
Baseline System
Reactive System
Proactive System

Figure 4.15: Effect of λ on WT

Chapter 4. Performance Analysis 108

4.6.2 Effect of Hold Time on the Mean Waiting Time

The impact of the average VM hold time on the waiting time is presented in the Fig-

ure 4.16. Here, the number of clients arriving in the system is fixed at its default value:

60 clients/hour. We observe an increase in the average waiting time for all the three

systems. The reason for this increase is that starting a virtual machine requires some

time and this time is directly proportional to the load on the server.

6 8 10 12 14 16 18 20 22 24 26 28 30
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45

Baseline System
Reactive System
Proactive System

Figure 4.16: Effect of HT on WT

In the case of the baseline system, the load on the server is due to factors like the time

required for creating virtual machines, running virtual machines on the server, and de-

stroying virtual machines. Thus, when HT is varied from 5 to 15 seconds, the load on the

Chapter 4. Performance Analysis 109

server increases which further increases the virtual machine start time, that increases the

overall average waiting for the clients. In the case of the reactive system, the increase in

the average waiting time of the client with an increase in the virtual machine hold time

is very small. In the reactive system, the load on the server is due to following reasons:

the number of virtual machines in the pool and the number of virtual machines which

are in the active state (i.e. used by the client). Now, as the HT increases, the amount of

time clients spend on the server increases. This means that a higher number of virtual

machines are active and for a longer duration. Thus, the virtual machine’s start time

increases which result in an increase in the overall waiting time of the clients. The re-

active and proactive systems could handle higher HT when compared to the baseline

system, the reason being the waiting time of the clients does not include the creation

time. The proactive and reactive system’s results produce comparable values of the

average waiting time for a given arrival rate .

4.6.3 Effect of Probability of Selecting the Type of VM on the Mean

Waiting Time

The impact of the probability of selecting a specific type of virtual on the average wait-

ing time of the client is displayed in Figure 4.17. While evaluating this graph, we ob-

served that among the three systems, the baseline system has the highest average wait-

ing time. When the value of pA the number of clients coming in the system are all

demanding for a virtual machine of type B. As we move towards pA = 1, the number of

clients requesting virtual machine of type A is increasing and when the value becomes

1, all the clients are demanding virtual machine of type A. Because the size of virtual

Chapter 4. Performance Analysis 110

machine of type A is smaller than the size of a virtual machine of type B (256 MB vs 512

MB) virtual machines of type A takes less time to create and start. As a result, the overall

average waiting time decreases as the number of clients demanding virtual machine of

type A increases. When comparing the reactive and proactive systems at a point where

the probability of selecting a virtual machine is half for each type, the system shows an

increase in the average waiting time of the clients in comparison to the reactive system.

This behavior is only shown in this case where the arrival rate is fixed at 60 clients/hour

and the hold time is held at 10 seconds. But, when we increase the arrival rate, the av-

erage waiting time decreases and the proactive system becomes the best option among

the three systems. The reason is that the more historical data the system can use, the

better the prediction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Baseline System
Reactive System
Proactive System

Figure 4.17: Effect of px on WT

Chapter 4. Performance Analysis 111

4.6.4 Effect of Arrival Rate on the Mean Idle Time

The effect of the arrival rate on the mean idle time of virtual machines is shown in

Figure 4.18. As, discussed earlier, both the reactive and proactive systems show a de-

crease of the idle time when the arrival rate is increased from 30 clients/hour to 110

clients/hour. When comparing the reactive and proactive systems, the average idle

time of a virtual machine is lower in the proactive system. The reason for the difference

in the performance of the two systems is that the proactive system has a dynamic pool

thus, only the required number of virtual machines are created a-priori and this number

is forecasted by the predictor based on the historical data. Further, the decrease could be

justified, by saying that when the number of clients arriving in the system increases, the

predictor has more data to train and gives a more accurate prediction. As the accuracy

of the prediction increases, the pool logic reconfigures the system to accommodate the

incoming clients which decrease the idle time for a virtual machine.

30 40 50 60 70 80 90 100 110
 (clients/hour)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
Reactive System
Proactive System

Figure 4.18: Effect of λ on IT

Chapter 5

Conclusions & Future Work
This chapter first provides a summary of the proposed adaptive system for allocating

virtual machines to clients to provide secure remote access via a cloud environment. The

goals of the system are to reduce user waiting time and reduce the amount of idle re-

sources to improve the overall performance of the system. Next, it describes the salient

features of the three systems designed in order to achieve the thesis goals. Finally, it

highlights a few ideas that could be added in the future to further improve the system.

5.1 Summary & Contributions

As companies shift from desktop applications to cloud-based SaaS applications(such as

vKey), the competition for the end-user experience by cloud providers offering similar

services grows. In order to survive in such a competitive market, cloud-based com-

panies must achieve a good quality of service for their users along with ensuring the

security of the confidential data. However, meeting the user requirements, reducing

user waiting time and reducing the amount of idle resources in a cost effective manner

is a challenging task as the rate of arrival for user requests varies over time. This is the

challenge we were trying to solve in this collaborative research project with DLS.

The objectives of this thesis research that is directed at addressing these issues were dis-

112

Chapter 5. Conclusions & Future Work 113

cussed in Chapter 1. Since clients arriving in the system do not follow a fixed pattern,

the company could end up with a monetary loss if the amount of idle resources is not

controlled. Also, if the system is not provisioned to accommodate the client workload,

the company might face a loss of reputation. In this thesis, we proposed an adaptive sys-

tem to dynamically allocate virtual machines to users based on the prediction of client

arrivals using autoregression. The system can predict the future needs based on the

history of the users and reconfigure the system in advance to accommodate the client

workload. We refer to that system as the proactive system and a real prototype for this

system was built and tested. Results show that the proactive system can reduce waiting

time by 78.19% compared to a baseline system and can reduce the idle number of re-

sources by 55.39% compared to a reactive system. Finally, the prototype was transfered

to DLS Technology so that they can deploy it in a real work environment.

In the first system (referred to as the baseline system), we used a straightforward ap-

proach to allocate virtual machines to clients. Once a client comes into the system re-

questing a virtual machine, the algorithm simply creates a virtual machine from a given

template and allocates it to the client. As previously mentioned, creating a virtual ma-

chine takes a finite amount of time and as a result, clients arriving within a short period

of time start to queue up in the system. Various scenarios were used to calculate the

waiting time for different arrival rates in order to attain the results stated in Chapter 4.

Results revealed that, although simple, this system is not the best way to address the re-

quirements of the clients as their waiting time increases greatly. This led to the devising

of the reactive and proactive systems that gave rise to a significant improvement in per-

formance. A short discussion on the comparison of the proactive and reactive systems

Chapter 5. Conclusions & Future Work 114

is presented next.

Comparison between the proactive and the reactive systems

The following observations are based on the results of the experiments described in the

thesis.

• At higher arrival rates, the average waiting time of clients for the proactive system

is significantly lower than that achieved on the reactive system.

• The average idle time achieved with the proactive system for a given arrival rate

is smaller in comparison to that achieved in the reactive system.

• The threshold values for the number of virtual machines of type A and type B

used in the reactive system are tuning parameters that need to be determined by

the system administrator. No such parameter tuning is required with the proactive

system.

5.1.1 Digest of the Contributions

This subsection summarizes the major findings of the thesis and related results.

• To address the problems in the baseline system, a different approach was designed

in which a pool of virtual machines is maintained in a halted state such that when

a client comes in with a request, a virtual machine is usually available to satisfy

the requirements. As discussed in Chapter 4, this approach resulted in a lower

waiting time for the clients under various scenarios. However, from the results,

Chapter 5. Conclusions & Future Work 115

we also concluded that maintaining a fixed size pool of virtual machines leads to a

waste of resources and idle resources can further be linked to energy consumption,

cost of operation, etc. which might incur a monetary loss.

• To overcome the problem of idle resources, we proposed a proactive approach for

dynamic allocation of virtual machines based on the historical data of the client

arrivals. The approach analyzes the client behavior by using autoregression. It

predicts the number of clients that might be coming into the system during a spe-

cific period of time. Then, it reconfigures the system and maintains only the pre-

dicted number of virtual machines in the pool and as a result, the amount of idle

resources were reduced. Further, we also evaluated the effect of this approach

on the waiting time of the clients. The simulation results discussed in Chapter

4 showed that this approach proves to be best as it reduces the average waiting

time and the amount of idle resources in comparison to the reactive system thus

benefiting both users and the company.

5.2 Future Work

To the best of our knowledge, this system is one of a kind and if DLS Technology de-

cides to deploy the system in a production environment the system might end up being

registered as a patent. But before that, here are few ideas that could be used in order to

further improve the system.

• The predictions made in the proactive systems could be used to find the ratio of

the different clients that will join the system. This ratio then can be used to create

Chapter 5. Conclusions & Future Work 116

a proportional number of virtual machines based on the free space available to

fill the hard disk. Since the VMs that are waiting to be assigned are in halted

mode, this would not consume more resources (CPU memory) and could provide

slightly more flexible since it could provide extra VMs in case predictions were

not accurate.

• A live migration of virtual machines could also be incorporated based on the stor-

age specification. Migrating the running virtual machines could allow the com-

pany to shutdown servers that are partially used which could eventually save

energy, therefore decreasing the overhead to the company.

• In the proactive system, the predictions could me made more accurate by using a

different model to analyze the workload component in terms of time series. For

example, neural network models are powerful enough to learn the most important

past behaviors and understand whether or not those past behaviors are important

features in making future predictions. It is like a model which has its own memory

and which can behave like an intelligent human in making decisions.

Appendices

117

Appendix A

Accuracy of Measurement:

Confidence Intervals
The accuracy of the measurements made during the experiments is captured in the

confidence intervals associated with the average waiting time of clients. Three sam-

ple graphs are presented in figures A.1, A.2, A.3. For all the points in the three graphs,

the confidence interval for the average waiting time of the users was found to be less

than 7.18% of the mean at a confidence level of 95%. Since there was a large time associ-

ated with running the experiments, the confidence intervals could only be determined

for this sample set of the three graphs.

118

Appendix A. Accuracy of Measurement:
Confidence Intervals 119

30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

30

35

40

45

50

Baseline System

Figure A.1: Confidence intervals for the baseline system

30 40 50 60 70 80 90 100 110
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Reactive System

Figure A.2: Confidence intervals for the reactive system

Appendix A. Accuracy of Measurement:
Confidence Intervals 120

30 40 50 60 70 80 90 100 110
0

3

6

9

12

15

18

21

24

27

30

Proactive System

Figure A.3: Confidence intervals for the proactive system

Appendix B

Accuracy of Measurement:

Predicted Values
To evaluate the effect of the arrival rate on the accuracy of the predicted values, we

ran three separate experiments with different arrival rate (50, 100 and 500 clients per

minute). These experiments ran for a total of 60 minutes with clients arriving according

to a Poisson process. The first 50 minutes were used to train the algorithm and the last

10 minutes were used to compare the predicted values to the actual values.

In figures B.1, B.2 and B.3, the x-axis represents the simulation time and the y-axis repre-

sents the number of client request that was received during a specific time interval. The

red points correspond to the actual values and blue points correspond to the predicted

values. As can be seen, the predicted values seem to be close to the actual values. How-

ever, with an increase in the arrival rate, the predictions become more accurate. This is

due to the fact that with higher arrival rates, the algorithm has more data to train with.

121

Appendix B. Accuracy of Measurement:
Predicted Values 122

Figure B.1: Actual values vs predicted values for λ = 50 clients/minute

Figure B.2: Actual values vs predicted values for λ = 100 clients/minute

Appendix B. Accuracy of Measurement:
Predicted Values 123

Figure B.3: Actual values vs predicted values for λ = 500 clients/minute

References
[1] DLS Technology, “vKey Technologies.” 2018. [Online]. Available: http://www.

dlstech.com/products. [Accessed: 12-Jun-2018].

[2] J. Niemi, Empowering IT Solutions with Server Virtualization. PhD thesis, Turku Uni-

versity of Applied Sciences, Finland.

[3] G. Ahmed, Implementing Citrix XenServer Quickstarter. Packt Publishing Ltd, 2013.

[4] C. Takemura and L. S. Crawford, The Book of Xen: A Practical Guide for the System

Administrator. No Starch Press, 2010.

[5] T. Cerling and J. L. Buller, Mastering Microsoft Virtualization. John Wiley & Sons,

2011.

[6] W. Von Hagen, Professional Xen Virtualization. John Wiley & Sons, 2008.

[7] C. Pettey, “Cloud Computing Will Be As Influential As E-business.” 2018. [On-

line]. Available: https://www.gartner.com/newsroom/id/707508. [Accessed: 08-

Jan-2018].

[8] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service Oriented Cloud Computing Archi-

tecture,” in Seventh IEEE International Conference on New Generations in Information

Technology (ITNG), pp. 684–689, 2010.

124

http://www.dlstech.com/products
http://www.dlstech.com/products
https://www.gartner.com/newsroom/id/707508

References 125

[9] S. Ray, “7 Types of Regression Techniques you should know.” 2017. [Online]. Avail-

able: https://www.analyticsvidhya.com. [Accessed: 03-Feb-2018].

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The Linux virtual

Machine Monitor,” in The Linux Symposium, vol. 1, pp. 225–230, 2007.

[11] F. Bellard, “QEMU, A Fast and Portable Dynamic Translator,” in Annual Conference

on USENIX Annual Technical Conference, ATEC ’05, pp. 41–41, USENIX Association,

2005.

[12] T. Abels, P. Dhawan, and B. Chandrasekaran, “An Overview of Xen Virtualiza-

tion,” in Dell Power Solutions, vol. 8, pp. 109–111, 2005.

[13] T. Mackey, “XenServer: Core Architecture and Critical Components.” 2018. [On-

line]. Available: https://www.oreilly.com/learning. [Accessed: 11-Jan-2018].

[14] Citrix, “Xenserver-7-0-Management-API-Guide.” 2018. [Online]. Available: https:

//docs.citrix.com/content/dam/docs/en-us/xenserver. [Accessed: 03-Feb-

2018].

[15] S. Ray, “Essentials of Machine Learning Algorithms (with Python and R Codes),”

Analytics Vidhya, vol. 10, no. 08, 2015.

[16] R. Adhikari and R. Agrawal, “An Introductory Study on Time Series Modeling and

Forecasting,” arXiv:1302.6613, 2013.

[17] S. S. Priya and L. Gupta, “Predicting the Future in Time Series using Auto Re-

gressive Linear Regression Modeling,” in Twelfth IEEE International Conference on

Wireless and Optical Communications Networks (WOCN), pp. 1–4, 2015.

https://www. analyticsvidhya.com
https://www.oreilly.com/learning
https://docs.citrix.com/content/dam/docs/en-us/xenserver
https://docs.citrix.com/content/dam/docs/en-us/xenserver

References 126

[18] A. Beloglazov and R. Buyya, “Energy Efficient Allocation of Virtual Machines in

Cloud Data Centers,” in 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing (CCGrid), pp. 577–578, 2010.

[19] Z. Mann, “Allocation of Virtual Machines in Cloud Data Centers—A Survey

of Problem Models and Optimization Algorithms,” in ACM Computing Surveys

(CSUR), vol. 48, p. 11, 2015.

[20] M. M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful Greedy Mechanisms for

Dynamic Virtual Machine Provisioning and Allocation in Clouds,” in IEEE Trans-

actions on Parallel and Distributed Systems, vol. 26, pp. 594–603, 2015.

[21] S. Zaman and D. Grosu, “Combinatorial Auction-based Allocation of Virtual Ma-

chine Instances in Clouds,” in Journal of Parallel and Distributed Computing, vol. 73,

pp. 495–508, Elsevier, 2013.

[22] R. A. Gagliano, M. D. Fraser, and M. E. Schaefer, “Auction Allocation of Computing

Resources,” in Communications of the ACM, vol. 38, pp. 88–102, 1995.

[23] J. Gomoluch and M. Schroeder, “Performance Evaluation of Market-based Re-

source Allocation for Grid Computing,” in Practice and Experience in Concurrency

and Computation, vol. 16, pp. 469–475, Wiley Online Library, 2004.

[24] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth Revelation in Approximately

Efficient Combinatorial Auctions,” in Journal of the ACM (JACM), vol. 49, pp. 577–

602, 2002.

References 127

[25] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “Analyzing Market-based Resource

Allocation Strategies for the Computational Grid,” in The International Journal of

High Performance Computing Applications, vol. 15, pp. 258–281, Sage Publications

Sage CA: Thousand Oaks, CA, 2001.

[26] Q. Zhu and G. Agrawal, “Resource Provisioning with Budget Constraints for

Adaptive Applications in Cloud Environments,” in 19th ACM International Sym-

posium on High Performance Distributed Computing, pp. 304–307, ACM, 2010.

[27] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic SLA-Driven Provision-

ing for Cloud Applications,” in 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pp. 434–443, 2011.

[28] Z. Tang, Y. Mo, K. Li, and K. Li, “Dynamic Forecast Scheduling Algorithm for

Virtual Machine Placement in Cloud Computing Environment,” in The Journal of

Supercomputing, vol. 70, pp. 1279–1296, Springer, 2014.

[29] S. B. Shaw and A. K. Singh, “Use of Proactive and Reactive Hotspot Detection Tech-

nique to Reduce the Number of Virtual Machine Migration and Energy Consump-

tion in Cloud Data Center,” in Computers & Electrical Engineering, vol. 47, pp. 241–

254, Elsevier, 2015.

[30] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud using Pre-

dictive Models for Workload Forecasting,” in IEEE International Conference on Cloud

Computing (CLOUD), pp. 500–507, 2011.

[31] V. Debusschere, S. Bacha, et al., “Hourly Server Workload Forecasting up to 168

References 128

hours Ahead using Seasonal ARIMA Model,” in IEEE International Conference on

Industrial Technology (ICIT), pp. 1127–1131, 2012.

[32] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload Prediction us-

ing ARIMA Model and its Impact on Cloud Applications,” in IEEE Transactions on

Cloud Computing, vol. 3, pp. 449–458, 2015.

[33] K. R. Lee, “Impacts of Information Technology on Society in the new Century,” in

Route de Chavannes C, vol. 27, 2002.

[34] B. Clark et al., “Xen and the Art of Repeated Research,” in FREENIX Track, USENIX

Annual Technical Conference, pp. 135–144, 2004.

[35] I. E. Sutherland, “A Futures Market in Computer Time,” in Communications of the

ACM, vol. 11, pp. 449–451, 1968.

[36] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented Federation

of Cloud Computing Environments for Scaling of Application Services,” in Inter-

national Conference on Algorithms and Architectures for Parallel Processing, pp. 13–31,

Springer, 2010.

[37] R. Jansen and P. R. Brenner, “Energy Efficient Virtual Machine Allocation in the

Cloud,” in IEEE International Green Computing Conference and Workshops (IGCC),

pp. 1–8, 2011.

[38] H. Goudarzi and M. Pedram, “Energy-efficient Virtual Machine Replication and

Placement in a Cloud Computing System,” in 5th IEEE International Conference on

Cloud Computing (CLOUD), pp. 750–757, 2012.

References 129

[39] P. Raycroft, R. Jansen, M. Jarus, and P. R. Brenner, “Performance Bounded Energy

Efficient Virtual Machine Allocation in the Global Cloud,” in Sustainable Computing

on Informatics and Systems, vol. 4, pp. 1–9, Elsevier, 2014.

[40] A. Beloglazov and R. Buyya, “Optimal Online Deterministic Algorithms and

Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation

of Virtual Machines in Cloud Data Centers,” in Practice and Experience in Concur-

rency and Computation, vol. 24, pp. 1397–1420, Wiley Online Library, 2012.

[41] S. B. Shaw and A. K. Singh, “Use of Proactive and Reactive Hotspot Detection Tech-

nique to Reduce the Number of Virtual Machine Migration and Energy Consump-

tion in Cloud Data Center,” in Computers & Electrical Engineering, vol. 47, pp. 241–

254, Elsevier, 2015.

[42] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud comput-

ing on-demand resources based on pattern matching,” in IEEE Second International

Conference on Cloud Computing Technology and Science (CloudCom), pp. 456–463, 2010.

[43] C. Chatfield, An Introduction to the Analysis of Time Series. CRC press, 2016.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation for the Thesis
	Research Objectives
	Proposed Solution
	Contributions of the Thesis
	Thesis Outline

	Background and Related Work
	What is Virtualization
	Types of Virtualization
	OS Level Virtualization
	Paravirtualization
	Full Virtualization

	Overview of Cloud Computing
	Components of Citrix XenServer
	Citrix Xen
	Xen Virtualization
	Citrix XenServer - A Cloud-optimized Server
	Xen API

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Autoregression
	Current System Architecture
	Methodologies to Allocate Virtual Machines in the Cloud

	System Design and Implementation
	Baseline System
	Initial Connection Setup of the Baseline System
	Allocation Logic
	Service Time Manager
	VM Destroyer

	Reactive System
	Initial Connection Setup for the Reactive System
	Pool Logic
	Reactive VM Creator

	Proactive System
	Initial Connection Setup of the Proactive System
	Pool Logic

	Performance Analysis
	Request Generator
	Workload and System Parameters

	Performance Metrics
	Experimental Setup

	Experiments for the Baseline System
	Effect of Arrival Rate on the Mean Waiting Time
	Effect of Hold Time on the Mean Waiting Time
	Effect of Probability of Selecting the type of VM on the Mean Waiting Time

	Experiments for the Reactive System
	Effect of Arrival Rate on the Mean Waiting Time
	Effect of Hold Time on the Mean Waiting Time
	Effect of Probability of Selecting the Type of VM on the Mean Waiting Time
	Effect of Pool Size on the Mean Waiting Time
	Effect of Arrival Rate on the Mean Idle Time

	Experiments for the Proactive System
	Effect of Arrival Rate on the Mean Waiting Time
	Effect of Hold Time on the Mean Waiting Time
	Effect of Probability of Selecting the Type of VM on the Mean Waiting Time
	Effect of Arrival Time on the Mean Idle Time

	Comparison of the Systems
	Effect of Arrival Rate on the Mean Waiting Time
	Effect of Hold Time on the Mean Waiting Time
	Effect of Probability of Selecting the Type of VM on the Mean Waiting Time
	Effect of Arrival Rate on the Mean Idle Time

	Conclusions & Future Work
	Summary & Contributions
	Digest of the Contributions

	Future Work

	Appendices
	Accuracy of Measurement: Confidence Intervals
	Accuracy of Measurement: Predicted Values
	References

