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Abstract

Fog computing is a paradigm of geographically distributed computing residing at

the edge of the network. Fog computing is made up of fog nodes providing compute,

storage and networking services to end users. In this thesis, we propose an exact

model for the planning and design problem of fog networks. The model simultaneously

determines the optimal location, the capacity and the number of fog node(s) as well as

the interconnection between the installed fog nodes and the cloud, while minimizing

the delay in the network and the amount of traffic going to the cloud. To address this

multiobjective problem, three multiobjective optimization methods (weighted sum,

hierarchical and trade-off) are evaluated. The CPLEX solver was used to optimize

the model for the three methods with different problem sizes and the results are

analyzed. The results show that, as the input size increases, the delay and the traffic

also increase in a linear form; whereas the solution time increases in non-polynomial

time. The weighted sum method was able to achieve the best trade-off results for the

delay and the traffic, whereas the hierarchical method was able to return minimum

delay but with worse traffic going to the cloud. As the model considers realistic edge

device traffic parameters and constraints, it can be helpful in deploying fog networks

in the current cloud computing architecture.
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Chapter 1

Introduction

Cloud computing is a computing paradigm, where infrastructure of dynamic scal-

ability is provided for data, file storage and applications. Cloud computing is used

by a large pool of connected private or public networks. With massive storage and

computation capacity, cloud computing has been a driving force in Internet of Things

(IoT) providing a variety of services. With the evolution of machine learning appli-

cations, big data and the increased number of connected devices, the cloud model

alone is not applicable for time-critical operations. Issues of performance, security,

reliability and high consumption of bandwidth in the cloud promoted the idea of fog

computing.

Fog computing can be defined as a non-trivial extension of the cloud residing on

the edge of the network. Fog computing provides the same services as the cloud

in a limited or full service. It is a Micro Data Center (MDC) focused on applica-

tions and services which are broadly distributed. An MDC is a small, containerized

Data Center (DC). Unlike the traditional cloud DC, an MDC can be as small as

a19 inch box with less than 10 servers and 100 Virtual Machines (VM) [1]. Fog

computing is a highly virtualized architecture providing services like computation,

storage and networking between end-devices in an IoT and Cloud of Things (CoT).

Unlike the centralized technology of cloud, fog computing is targeted towards widely

distributed applications and services. Fog applications have a distributed directory

system to communicate with mobile devices acknowledging mobility techniques. Fog

computing supports low latency applications such as augmented reality, gaming, video

streaming, etc. The widespread geographical distribution of fog nodes, defined as the

location where several physical devices provide resources such as virtual Central Pro-

cessing Unit (vCPU), memory and storage to various services [2], will deliver high

1
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quality streaming services to mobile nodes and moving vehicles through proxies and

access points positioned in vital places such as tracks and highways. The cloud will

always have an important role in IoT. Hence, by providing an improved Quality of

Service (QoS) and reducing the amount of traffic in the cloud, fog computing is not

a replacement but a complement to the cloud architecture.

1.1 Problem Statement

With the complexity of networks and the large number of devices, service providers

need efficient planning tools to design optimal networks. Efficient network planning

tools can help in designing optimal networks guaranteeing better service to the end

users. The fundamental goal of network planning is to implement an optimum net-

work addressing realistic traffic parameters. Unlike earlier generations, computer-

based automatic planning tools are now required for large networks. The network

design problem can be solved by using simulation or solving mathematical models.

Simulation is typically used when a mathematical model cannot be developed for

a network design problem. A basic representation of the network is modeled in a

tool where the simulated network is examined with different inputs and parameters.

Unfortunately, most network planning problems are NP-hard [3, 4].

Network planning is a massive research field with many applications in IP net-

works, optical networks, wireless networks, cellular networks, cloud computing, etc.

To the best of our knowledge, no work has considered the planning and design of fog

networks in collaboration with the cloud. It can be recognized that the fog nodes will

be the distributed fog network entities enabling the deployment of fog services. For a

normal fog network, there will be a lot of fog nodes to be installed and to deliver the

expected performance improvements, proper planning of these fog nodes is necessary.

Consequently, many factors such as the number of nodes, locations, node sizing, con-

nectivity between fog and cloud, traffic distribution and so on need to be considered.

Given the large number of fog nodes in the network combined with a vast number of

edge devices over the entirety of the geographical region of interest, the search space

for an optimal solution is huge. Therefore, sophisticated methods and algorithms are

required to help network planners in the decision making process.

The purpose of the fog network is to improve the end user experience by reduc-

ing parameters like delay in the network, the amount of traffic in the cloud and so
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on. Optimizing more than one parameters converts the problem into a multiobjec-

tive optimization problem resulting in a number of non-dominated solutions. The

multiobjective optimization problem can be studied from different viewpoints with

different solution goals while solving it. Hence, it is very hard to find a best compro-

mised solution for all the objective functions even with a comprehensive knowledge

of the problem.

There are different methods to solve multiobjective optimization problems. How-

ever, it is a very complex task to choose the best method as different methods have

various requirements and can perform differently with different problems. Ideally, for

the best convergence towards the Pareto set, the optimization method that handles

the minimum amount of complexity should be used [5, 6]. But defining the amount

of complexity is not straightforward. To mitigate that, a number of methods can be

used simultaneously to understand and solve the problem. Moreover, the planning

problem can be solved with exact and approximate multiobjective algorithms, each

having its own advantages and disadvantages.

The fog network planning is a complex but necessary step towards building efficient

fog networks. To that end, this thesis addresses the above mentioned problems and

proposes an exact mathematical model with different multiobjective optimization

methods for the planning and design of fog networks.

1.2 Research Objectives

According to the problem statement explained in the previous section, the main

objective of the thesis is to develop a tool to help network providers with the planning

and design of fog networks. More precisely, we aim to achieve the following two sub-

objectives:

� Propose a mathematical model for the planning and design of fog networks from

a green field scenario. The model will simultaneously determine the optimal lo-

cation, the number, and the capacity of the fog node(s) and the interconnection

between the installed fog node(s) and the cloud while considering edge device

requests. The goal of the model is to minimize the delay in the network and

the amount of traffic going to the cloud.

� Evaluate the performance of the proposed model and analyze the results with

different optimization methods. The three multiobjective optimization methods
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are the weighted sum, the hierarchical and the trade-off method. The goal of

this sub-objective is to compare the three multiobjective optimization methods

and find the best method for appropriate scenarios.

1.3 Methodology

To achieve our objectives, we will first review the different concept of cloud com-

puting. This will help in realizing the weakness of the current cloud architecture

and the need of fog computing for IoT. The current contributions in fog computing

will also be reviewed to have an updated view of the state-of-the-art. The following

methodology will be used in approaching the planning problem of fog networks.

� Generate a snapshot of traffic with realistic parameters: The requested amount

of traffic needs to be known to properly plan fog networks. To generate the

traffic, a small program will be developed taking into consideration different

aspects like number of packets, amount of memory/vCPU requested, etc.

� Develop the mathematical model: In order to develop the mathematical model,

a set of mathematical equations will be written to represent the architecture of

fog networks. The goal of the model will be to minimize the delay experienced by

the users and minimize the amount of traffic that must go to the cloud. Different

assignment, capacity and uniqueness constraints will be taken into consideration

to create a realistic fog network scenario. A set of decision variables will be used

in determining the type and number of fog node(s) to be placed in the network.

Since we will cast the problem as a multiobjective optimization problem, a

multiobjective Pareto-optimization approach will be adapted to find the optimal

fog network deployment that considers both objective functions. The model will

be written in OPL and a solver called CPLEX will be used to solve the problem.

The solver will return the optimal solution or the best solution found when it

reaches its time limit.

� Analyze the results of the fog planning problem: A detailed example will be

used to explain the planning problem. Then, using CPLEX, we will solve the

planning problem for the three methods with different problem sizes. The result

analysis will investigate the comparison of the three optimization methods with
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respect to traffic, delay and solution time. Next, the Pareto-efficiency of the

three methods will be analyzed for each problem size.

1.4 Thesis Contributions

The main contribution of this thesis is to to develop an exact model for the

planning and design of fog networks. The major contributions of this thesis are

summarized as follows:

� A mathematical model is proposed for the planning and design of fog networks

for a brand new infrastructure in current cloud architecture. The main contribu-

tion of the model is the consideration of realistic edge device request parameters

like vCPU, memory, etc. in determining the optimal location, capacity, type

and number of fog node(s). Moreover, the optimal interconnection between the

fog node(s) and the cloud is also determined by the planning model. As the

model considers the delay in the network and the traffic going to the cloud, the

planning tool will help fog service providers to deploy fog node(s) in the existing

cloud architecture in an efficient manner with an improved QoS.

� As there are two objective functions, the main intention is to study different

multiobjective optimization techniques to address the Pareto optimality and

trade-off between the objective functions. As a result, three multiobjective

optimization methods are used in solving the fog planning problem. Then, the

results are analyzed and compared for the three methods with the weighted sum

method achieving the best trade-off results for the two objective functions.

1.5 Thesis overview

The rest of the thesis is organized as follows. In Chapter 2, a literature review of

cloud and fog computing is conducted. Chapter 3 introduces the planning problem

followed by the mathematical model to solve the fog planning problem. Then, the

mathematical model is modified to the three multiobjective optimization models.

Chapter 4 presents the simulation results for the three modified models compared in

terms of objective functions, solution time and Pareto-efficiency. Finally, the thesis
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is concluded in Chapter 5 by summarizing the findings and proposing future research

directions.



Chapter 2

Background and Related Work

Since the concept of fog computing is an extension of cloud computing, it is

important to understand different notions related to cloud computing. To that end,

Section 2.1 first discusses the history and the current architecture of cloud computing

and then introduces the concept of fog computing. Section 2.2 reviews some of the

applications and current research specifically related to fog computing. Section 2.3

reviews the network planning and design process and finally we summarize the chapter

in Section 2.4.

2.1 Introduction to Cloud Computing

Cloud computing is experiencing an exponential growth over the years. As the

cloud service enables new and efficient business models, small and medium businesses

are integrating to the cloud platform. The word cloud was commonly used as a

metaphor for Internet and a network on telephone schematics was usually illustrated

with a standardized cloud like shape. Later, it was used to label the Internet in com-

puter network diagrams. Sometime around 1955, John McCarthy came upon with the

time sharing theory, which is very similar to present day cloud computing. In 1970s,

IBM released an operating system called VM that allowed users to have more than

one virtual systems (or VMs) on a single physical node. The 50s time sharing model

was taken to a whole new level by the VM operating system and many of the elemen-

tal functions in virtualization software that are presently used can be traced back to

this early VM operating system. To provide more users through shared connection

to the same physical infrastructure, in 1990s, virtualized private network connections

were offered by telecommunication companies. This development facilitated a better

7
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network equity and higher control over bandwidth usage by adjusting the traffic as

required. In the meantime, with the fervent start in virtualization for PC-based sys-

tems, and with the availability of Internet,the integration of virtualization was the

next logical step. In 1997, Professor Ramnath Chellappa coined the term cloud com-

puting in a talk on new computing paradigm. In 2002, with the creation of Amazon

Web Services (AWS), Amazon provided an advanced system of cloud services accom-

modating storage to computation. Later, in 2006, the Elastic Compute Cloud (EC2)

was introduced by Amazon as a commercial web service. The EC2 enabled renting

of computers by small companies on which their own computer applications could

be run. In 2009, the Google App Engine brought low-cost computing and storage

services, and Microsoft followed with Azure.

2.1.1 Definitions

Although cloud computing is widely acknowledged, many researchers suggested

their own definition with respect to their research domain. The National Institute of

Standards and Technology (NIST) defines cloud computing as a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction [7]. Sotomayor et al. denote that cloud is more often used to

refer to the IT infrastructure deployed on an infrastructure as a service provider data

center [8]. Vasquero et al. mention that clouds are a large pool of easily usable and

accessible virtualized resources (such as hardware, development platforms and/or ser-

vices). These resources can be dynamically reconfigured to adjust to a variable load

(scale), allowing also for an optimum resource utilization. This pool of resources is

typically exploited by a pay as you go model in which guarantees are offered by the

infrastructure provider by means of customized Service Level Agreement (SLA) [9].

As can be seen, it is hard to come up with a single definition of cloud computing.

In fact, cloud computing is not a new technology, but rather brings together a num-

ber of standing technologies with a new operational model to run business in a new

dimension. Certainly, many cloud computing technologies, such as virtualized envi-

ronments and utility computing, are not new. Instead, these existing technologies

are leveraged to fulfill the economic and technological demand required by today’s

network environment. [7].
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2.1.2 Related Technologies

Cloud Computing emerged from years of research in various similar technologies.

The following technologies are usually compared with cloud computing, each sharing

some similarities with cloud computing.

Grid Computing

Grid computing is a model of distributed computing where computing, data, stor-

age, application or network resources are coordinated and shared over dynamic and

geographically dispersed organization [10]. There are some similar features between

cloud computer and grid computer such as:

� Multitask and multitenancy are part of both computing technologies, implying

that customers can perform various tasks, gaining access to single or multiple

application instances. Peak load capacity and infrastructure costs can be re-

duced by sharing resources among a large number of users. Cloud and grid

computing administer SLAs for guaranteed uptime availability, for instance,

99 percent. When the service declines below the level of guaranteed up time

service, service credit is offered to the consumer for receiving late data.

� Scalability is another common feature between cloud and grid computing. Scal-

ability is achieved through load balancing of application instances connected

through web services and running separately on a variety of operating systems.

CPU and network bandwidth are allotted and de-allotted on demand. Based

on the number of users, instances, and the volume of data transferred at a

particular time, the systems storage capacity fluctuates [11].

Similarly, the major differences between grid and cloud are as follows:

� Business Models Business models in grid computing are generally based on

mutual agreements between the service provider and the consumer, whereas

provision of resources in cloud computing constitutes of more differentiated

business models ranging from service provider to service provider and mixed

approach.

� Resource Management: While grids depend on batch systems, clouds resource

management solution is represented by the application of virtualization tech-

nologies.
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� Resource Provision Model: The communications in grid resource provision mod-

els are established offline relying on virtual organizations. On the otherside, the

usage of SLAs, trust management and compliance are the key to resource pro-

vision models in clouds.

� Resource Availability: Sometimes, there are plenty of resources in grids which

are idle and at some other times, there are no available resources, therefore the

resources are shared on the best-effort delivery. The matter of concern in clouds

are to find the balance between utilization of resources to facilitate productive

consumption of resources and reducing energy consumption on the one hand

and wasting resources due to the standby mode of devices and virtualization

overhead on the other.

Utility Computing

Utility computing comprises the on demand basis of renting computer resources

such as network bandwidth, hardware and software as-required [12]. There is a sim-

ilarity between utility and cloud computing as both concepts entertain the idea of

leasing computer technology. But they have some major differences between them.

One of the fundamental differences between utility and cloud computing relates to the

behavior of the leasing. While a third party is used for software and infrastructure for

both technology, these services are much more directly accessed by utility computing.

This form of computing makes the use of technology like another utility, such as gas

or electricity, and by the end of the month, businesses would be charged according to

the usage. Though, all the services in cloud computing are still rented, the source of

the services are less known by the companies. Users still pay for what they use, but

the company providing the service utilizes a much more complex system of infrastruc-

ture and software, usually involving a grid network that supports multiple tasks at

once. Another difference is that utility computing is dependent on basic computing

practices, often utilizing traditional programming styles in a well-established busi-

ness context. Cloud computing, in contrast, involves creating an entirely distinctive

virtual computing environment that empowers programmers and developers in new

ways.
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Autonomic Computing

Autonomic computing was introduced by IBM as a term to describe a self-

managing system that tries to get involved in computing system. IBM divided the self-

managing system into four categories: self-optimizing, self-healing, self-configuring,

and self-protecting [13]. The main difference between autonomic and cloud computing

is that autonomic computing is focused on reducing the system complexity. Whereas,

the objective of cloud computing focuses on decreasing the resource cost rather than

to diminish system complexity. As there will be a lot of pre-processing done in the

fog nodes, the reduction of resource usage in the cloud will help in focusing to a more

automated system.

Virtualization

Virtualization is a technology providing virtualized resources for high-level appli-

cations by abstracting away the specifics of physical hardware. The common name

of a virtualized server is virtual machine or VM [7]. Virtualization abstracts com-

pute resources as VMs with association of storage and networking connectivity. The

cloud determines how those virtualized resources are allocated, delivered and pre-

sented. Virtualization facilitates rapid scaling of resources which is hard to do by

non-virtualized environments.

2.1.3 Service Models

Cloud services can be classified into three distinct models: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). Each

one is described below.

Infrastructure-as-a-Service

IaaS is a vastly automated and standardized service where computer resources

are hosted and owned by service providers and provided to customers on-demand,

integrating storage and networking capabilities. This infrastructure can be self-

provisioned by customers, using a Web-based graphical user interface that accom-

modates the overall environment as an IT operations management console [14].

Typical examples of IaaS include: Joyent, Google Compute Engine (GCE), Mi-

crosoft Azure, Cisco Metapod, Amazon Web Services (AWS) and IBM SoftLayer.
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Common use-case: Expands present data center infrastructure for temporary

workloads (e.g. increased Canada Day holiday site traffic).

Platform-as-a-Service

PaaS allows developers to build applications and services over the Internet by

providing a platform and environment. PaaS services being hosted in the cloud can

easily be accessed by users via web browsers. Users can create software applications

with the help of tools supplied by the provider of the service. In PaaS, customers

can subscribe to preconfigured features, giving the option to include their required

features or discarding the unwanted ones [15].

Typical examples of PaaS include: Google App Engine, Etelos, Force.com, IBM

Bluemix, Qrimp and AppJet.

Common use-case: Increases developer efficiency and work rates while also mini-

mizing an applications time-to-market.

Software-as-a-Service

SaaS is the cloud-based delivery of complete software applications that run on

infrastructure managed by the vendor. SaaS applications use the web to deliver

applications whose interface is accessed on the clients side and handled by a third-

party. Most SaaS applications can be run directly from a web browser without the

requirement of downloads or installation, although some require plugins [16].

Typical examples include Cisco WebEx, Citrix GoToMeeting, Workday, Google

Apps, Salesforce.

Common use-case: Replaces conventional on-device software.

2.1.4 Deployment Models

Public Cloud

Public clouds provide users with a lucrative pay-as-you-go model. Public clouds

are owned and managed by third parties. The infrastructure costs are divided among

a number of different users delivering remarkable economies of scale to customers.

The same infrastructure is used by all customers with finite configuration and security

protections operated and supported by the provider. Public clouds have the capability

to scale smoothly, as they can be larger than enterprise clouds, if required.
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Private Cloud

Private clouds are solely built for a single company. Private clouds are intended

to acknowledge their interest on data security. Unlike public clouds, there is a better

authority on security in private clouds. There are two different type of private clouds:

� On-premise private clouds: On-premise private clouds, also called internal

clouds, are accommodated within the company, hosting its own data center.

This cloud computing is best fitted for applications requiring complete man-

agement and configurability of the infrastructure and security by providing a

more regulated protection. The capital and operational costs are incurred by

the company itself.

� Externally hosted private clouds: In this type of private cloud, an exclusive

cloud environment with maximum privacy is provided to the enterprise. The

cloud provider hosts the cloud externally especially for the companies that avoid

public cloud.

Hybrid Cloud

Hybrid clouds are the combination of both public and private clouds. Hybrid

clouds improve the flexibility of computing, where infrastructures of third party can

be used partially or fully by the cloud providers [17]. The hybrid cloud environ-

ment is capable of providing on-demand externally provisioned scale. Any unforeseen

rise in workload can be negotiated by reinforcing a private cloud with the available

infrastructure of public cloud.

2.1.5 VM Placement in Cloud

Similar to fog nodes in a fog network, the VM is one of the key entities in the cloud

computing architecture. The planning of VM is one of the most challenging problem

which aims to find the best PM to host the VMs. The VM placement and assignment

has an effect on the overall resource utilization, performance, power consumption

and cost reduction of data centers. With a massive number of possible optimiza-

tion criteria, a number of formulations have been proposed over the years for the

static and dynamic VM placement problem. For example, a stable traffic aware VM

placement problem is studied in [18]. The authors defined the problem as Min Cut
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Ratio-aware VM Placement (MCRVMP) and propose two heuristics called 2-Phase

Connected Component-based Recursive Split (2PCCRS) and Greedy Heuristic (GH).

The 2PCCRS adopts a two-stage approach and solves the problem with the aid of

a mathematical solver. The first stage places the connected components on network

switches whereas in the second step, the VMs are placed on PM. In GH, the VMs are

placed greedily on the available hosts without using any mathematical programming.

The results show that there is an increase in data center scalability while decreasing

the number of dropped packets. A hierarchical energy-aware resource management

solution is proposed in [19]. The resource demands are modeled as random variables

considering the correlation among the variables. Compare to the non-hierarchical

model, the hierarchical model achieves around 15% energy cost reduction. The au-

thors in [20] propose a Mixed Integer Linear Program (MILP) formulation that aims

to place the VMs in the data center with minimum power consumption. The objective

function is to minimize the sum of the power consumption of all associated DCs, the

power consumption in the Internet Protocol (IP) layer and the power consumption in

the Wavelength Division Multiplexing (WDM) layer. The results show a reasonable

amount of power saving in geographically distributed multiple medium size DCs.

One of the most common approaches for the optimization is multi-objective solved

as mono-objective. The authors in [21] adopt a variation of the weighted sum method

in optimizing virtual machine placement and traffic flow routing. The joint optimiza-

tion demonstrates a reduction in network power costs in cloud data centers. In [22],

the authors propose a VM placement scheme minimizing the number of active phys-

ical servers and network elements. The results are an optimized network traffic and

a reduction in energy consumption. Static and dynamic server consolidations are

proposed in [23] for the VM migration. For the dynamic consolidation, the authors

adopt a hierarchical approach by introducing the previous mapping of VM in physical

servers as a constraint. Initially starting with a zero mapping, after each iteration

the previous mapping is added. An energy efficient approach based on the Minimum

Correlation Coefficient (MCC) method for VM placement is proposed in [24]. A fuzzy

Analytic Hierarchy Process (AHP) is used to make a trade-off between SLA and low

energy. A suitable trade-off between SLA violation reduction and power efficiency in

cloud data centers was evaluated from the simulation results.
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2.1.6 Limitations

Though cloud computing comes with lot of advantages, a rapid growth of users

and the demand of higher QoS results in following limitations.

� Performance: Cloud computing is established within the Internet, a large non-

homogeneous network with attributes of numerous technologies, speeds, topolo-

gies with non-central control. Due to the heterogeneity and loosely controlled

nature of Internet, there is a lot of performance related challenges in the cloud.

One such issue that affects the performance is latency. Users who are located

far away from cloud providers can experience high delays.

� Security and privacy: One of the biggest limitations of the cloud is security

and privacy. When customer data is outside the firewall, the integrity and

confidentiality of data is highly vulnerable. As the system responses and data

transmission travel a long distance to and from the user device to cloud, different

types of encryption are required. As cloud providers use diverse structures and

independent locations in delivering the technology, there is less trust between

customers and providers.

� Bandwidth cost: The bandwidth cost for data-intensive applications is very

high. Although cloud computing reduces expenses on hardware and software,

companies have to spend more on network bandwidth.

� Reliability: Cloud computing can cause significant time delays to companies

resulting in financial losses due to network failures and outages. Moreover,

when all the raw data generated by end devices is sent at the same time, it

could create a bottleneck. Bottlenecks from high volume of data transfers are

one of the most common cause of network crash and outages [25].

2.2 Fog Computing

To address some of the limitations mentioned previously, the concept of fog com-

puting has been recently introduced. Fog computing is a flexible system of connectiv-

ity which brings the computational, storage and networking elements of the cloud near

to the edge of the network. Fog computing can have an impact on the performance,

security, bandwidth and reliability as described below:
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� Performance: One of the mission critical applications in IoT will be tactile

Internet which requires extremely low latency, high reliability and security with

real time data processing. By performing the required processing near the

devices, fog computing can provide real time response with reduced latency.

� Security and privacy: As fog computing is not centralized and it is closer to the

edge devices, it enhances the security of encrypted data making it less vulnerable

to hostile elements. This will allow the users to have their data and applications

in close proximity, building more trust between the users and service providers.

As the cloud is located in a remote location, the nearest cloud DC can be outside

the country border. If a company wants to keep its data within the country,

the fog can be a viable option compared to the remote cloud.

� Bandwidth cost: Instead of using the backbone network, users can download

through local connections which can reduce the bandwidth cost significantly.

Moreover, less data will be sent to the cloud since processing will be done

locally.

� Reliability: With the help of fog localization and cloud centralization, there

can be interplay of data processing between fog and cloud, hence reducing the

burden of all the data processing in the cloud.

2.2.1 Architecture

Figure 2.1 shows a reference fog architecture consisting of different layers. The

bottom-most layer comprises of end devices, gateways and sensors. Additional appli-

cations are installed for efficient use of the technology. The second layer is where the

fog nodes are resided along with the core network. The last layer consists of cloud

components. Below is a description of the three layers.

Layer 1

The first layer is composed of smart objects (IoT devices) that are generating

data. The devices can be mobile phones, wireless sensors, vehicles, etc. with var-

ious applications installed transmitting and receiving data and information to the

immediate upper layer and/or the cloud layer.
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Figure 2.1: Reference architecture for fog computing

Layer 2

The fog computing layer is made up of fog nodes and smart devices such as

intelligent gateways, routers and Access Point Name (APN). In this layer, the fog

nodes and smart devices perform tasks like routing, data storing and preprocessing,

caching and packet forwarding towards the cloud. Additionally, this layer incorporates

resource management software while maintaining the entire infrastructure. This layer

ensures the QoS to the different fog technology applications as well as the connectivity

between the fog nodes and the cloud.

Layer 3

The cloud computing layer consists of servers and data centers with extensive

storage capability. Applications and data which require permanent storage and pow-

erful processing are redirected to the cloud. Unlike traditional cloud architecture,

the cloud does not serve every individual query. The fog computing layer decides the

accessibility and usage of the cloud in an efficient and disciplined manner.

2.2.2 Protocol

There is no implementation or suggestion of any specific protocol for fog comput-

ing. Since fog nodes will be providing real time service to numerous edge devices, it

is imperative to look at the protocols with more details for a relaiable service. As fog

nodes are nested in a middle layer, a number of IoT protocols, as mentioned below,
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which are currently being developed or in use can be applied.

Data Distribution System

DDS is a middleware protocol and Application Program Interface (API) standard

used for data-centric connectivity from the Object Management Group. DDS provides

low-latency data connectivity and a scalable architecture making it useful for mission-

critical IoT applications. It uses a publish/subscribe model making sure that data of

one node is known by all other nodes [26].

Constrained Application Protocol

CoAP is a low cost software protocol designed to be used in small, low-power wire-

less sensor networks, switches and similar components that are controlled remotely.

CoAP is designed by the Internet Engineering Task Force (IETF) and the interface

is modeled after Internet Hypertext Transfer Protocol (HTTP) requests. CoAP pro-

vides low overhead and multicast support making it an efficient protocol [27].

Message Queue Telemetry Transport

MQTT was invented by Dr. Andy Stanford-Clark of IBM, and Arlen Nipper

of Arcom in 1999. It is a publish-subscribe-based messaging protocol suitable for

constrained devices and high-latency, low-bandwidth or unreliable networks. There

are different modifications of MQTT such as IBM MessageSight, Mosquitto, emqttd,

RabbitMQ, HBMQTT - which differ in features and may employ additional features

upon requirement [28].

Advanced Message Queuing Protocol

AMQP is an open standard application layer protocol which provides interoper-

ability between servers. It is a message-oriented middleware with a robust system

guaranteeing endpoint to endpoint message delivery despite node failures. Despite

being heavyweight and more established compared to other protocols, it can be used

in the IoT framework where message reliability is the main focus [29].
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Alljoyn

Alljoyn is a collaborative open source software through which compatible devices

and applications communicate together [30]. It is a flexible framework promoting

proximal network. Although the communication layer is limited to wi-fi, it can be

used in fog network.

2.2.3 Application

The concept of fog computing has many different important applications. Below

we review these applications and cite relevant work where fog is playing an important

role.

Vehicular Networks and Smart Grid

The authors in [31] propose mobile fog, which is geospatially distributed, large-

scale and latency sensitive on demand fog service for future Internet applications.

Two large scale vehicle-to-vehicle (V2V) application scenarios are simulated. The first

application is V2V video streaming and the second is mobility driven Complex Event

Processing (CEP), where sensor data is requested for processing from a certain query

range by a vehicle. The simulation results show that compare to cloud computing,

the fog computing approach reduces network traffic and latency. A literature review

by the author in [32] discusses the application of the fog computing framework to

implement Software Defined Network (SDN) for vehicular networks. This framework

may help in efficient traffic light control and accommodate a number of inputs like

Electronic Toll Collection (ETC), Radio-frequency Identification (RFID) tags in cars

by installing readers in traffic lights, cameras at traffic lights, etc. creating green

traffic waves. Furthermore, the author proposes a multi-layered demand response

management system connected to fog devices in a smart grid. Effective coalition

between consumers, fog and cloud can minimize the overall power loss as well as

reduce communication costs within a smart grid.

Healthcare

The authors in [33] propose a three-layer architecture integrating a role model, a

layered cloud computing architecture, as well as a fog-computing-informed paradigm

to provide a feasible architecture for healthcare and elderly-care applications. The
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proposed model employs a service-oriented architecture for device mapping where the

process flow of the healthcare application is modeled using Business Process Mod-

eling Notation (BPMN). The fog computing layer improves the performance of the

whole system by providing computing and storage, mobility support, security mea-

sures, location awareness and low latency. The validity of the architectural model

was exhibited by a use-case as a template for a smart sensor-based healthcare in-

frastructure. In [34], FAST, a fog computing assisted distributed analytic system to

monitor fall for stroke mitigation is proposed. A set of new fall detection algorithms

was developed by the authors based on acceleration magnitude values and non-linear

time series analysis techniques, as well as new filtering techniques to facilitate the

fall detection process. Fog computing was used to design and employ a real-time

fall detection system distributing the analytic throughout the network by dividing

the detection between the edge devices and servers in cloud. The proposed system

attains the high specificity and sensitivity when investigated with real-world data.

Moreover, the response time and energy consumption of the system are similar to

the most efficient current approaches. In [35], the authors conduct a case study on

Electrocardiogram (ECG) feature extraction using fog computing at smart gateways.

The fog layer improved on bandwidth utilization, QoS assurance and emergency no-

tification. The experimental results show that more than 90% bandwidth efficiency

and low-latency real time response could be achieved using fog computing.

Preprocessing and Content Delivery

The integration of IoT with cloud computing can be one of the primary use of

fog computing. However, there are many challenges in this integration. The authors

in [36] discuss one of the major challenges which is data trimming or preprocessing.

There will be congestion in data center and core network when sending immense

amount of raw data generated by IoT environments. A smart gateway-based commu-

nication is proposed for trimming or preprocessing data before sending it to the cloud.

The IoT devices can send their generated data by using single-hop or multi-hop com-

munication. In single-hop, the data goes directly to the smart gateway for necessary

preprocessing whereas in the multi-hop, the data will go through the sink node to

the smart gateway. The smart gateway with the help of fog computing can provide a

better utilization of network and cloud resources. In [37], the authors discuss the use

of edge servers in the fog computing architecture for web optimization. Users will be
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connected to the Internet through fog nodes. Each HTTP request made by the user

will go through the fog nodes where the fog nodes will reduce the time for web page

to load by performing different optimization. General web optimizations like smartly

organizing the web page composition, caching Hypertext Markup Language (HTML)

components and minimizing the size of web objects can be done by the fog devices.

In addition to that, the fog devices will perform optimizations on the basis of network

conditions and user behavior. Moreover, the user machines can be monitored by fog

devices and it can send graphics of suitable resolutions depending on the browser

rendering time.

2.2.4 Current Research Related to Fog Computing

There are many organizations and academies focusing their research on fog com-

puting. The open fog consortium is founded by members from Cisco, Dell, Intel,

Microsoft, ARM and Princeton University [38]. It is working on influencing stan-

dards development through liaisons with other organizations as well as promoting

innovation and industry interest in fog computing. In this section, we outline the

current and future research directions in fog computing.

Programmability

Although the mobile fog in [31] is a fundamental development in fog and named

mobile, the model is based on a tree topology where the fog nodes are fixed. Hence,

a more general model may need to be proposed with diverse networks where fog

nodes are decentralized and dynamically mobile. There are plenty of active research

in computation offloading in the mobile and cloud computing domain [39, 40]. The

important question in offloading in fog computing is how to accord with the three

fold dynamic of a) radio access, b) nodes in the network and c) resources associated

to it. A context adaptive model for offloading in Mobile Edge Computing (MEC)

programming framework is presented in [41] named as Cloudaware. The authors

present the offloading framework with the objectives of i) speed up computation, ii)

save energy or bandwidth and iii) enable offloading for dynamic mobility. Further

studies should be done in learning how to offload in the multi-layered device-fog-cloud

infrastructures.
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Energy Consumption

Since fog computing is a distributed technology with a large number of nodes,

it can be less energy-efficient compared to the centralized cloud computing. In [42],

the authors compare the energy consumption of applications using nano data centers

(nDCs) in fog computing and using centralized DCs in cloud computing. The authors

proposed time-based and flow-based energy consumption model. A set of experiments

and measurements were performed to validate the models. The findings suggest that

depending on several system design factors, the nDCs might result in energy saving.

However, the energy savings are limited to infrequently accessed applications that

generate and distribute large amount of data in end-user premises. Hence, the reduc-

tion of energy consumption in fog computing still need to be addressed. The authors

in [43] study the tradeoff between power consumption and delay by mathematically

formulating the workload allocation problem in fog-cloud computing system. Simu-

lation and numerical results show that communication bandwidth and transmission

latency can be reduced by drawing slightly more energy consumption.

Security and Reliability

Similar to current virtualized environments, fog computing is challenged with se-

curity and privacy issues. Authentication at different level of fog nodes is one of

the major security issues identified by the authors in [44]. Public Key Infrastruc-

ture (PKI) involving multicast authentication [45] can be a solution to the problem.

Authentication cost can be reduced by using measurement-based methods to iden-

tify unwanted fog nodes. Another promising solution for authentication can be the

Trusted Execution Environment (TEE) technique [46]. The policy management is-

sues in a fog environment were identified by the authors in [47], and a policy-based

management framework and policy specification criteria is proposed. The efficiency

of the proposed framework was highlighted by suggesting a set of use-case scenarios

based on smart transportation systems.

Resource Management and Accountability

The authors in [48] investigate the optimization of maximum task completion time

minimization problem in fog computing supported software-defined embedded system
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(FC-SDES) with joint consideration of image placement and task scheduling. A low-

complexity three-stage algorithm is proposed dealing with I/O and task computation

time. The efficiency of the algorithm was validated by performance evaluation from

the simulation based studies. A service oriented resource management model for fog

deployment is presented by the authors in [49], which allow IoT devices to operate

efficiently with fair management of resources. The proposed resource management

framework is formulated on the basis of fluctuation in probability of resource utiliza-

tion with respect to customers resource usage and allocates resources predicting the

user behavior. Hermes, a framework that bridges the fog and cloud support analy-

sis through federated query evaluations, is proposed in [50]. By selectively sampling

the data generated by continuously sensing the environment, the framework reduces

communication and memory consumption on fog nodes and cloud. Accrediting the

users to share their resource in hosting applications will add dynamic to fog business

models. The proposed user-in-the-loop approach by the authors in [51] can be used

where incentives like reward programs, progressive tariffs or environmental indicators

can be offered to users.

Mobile Edge Computing

MEC is a similar technology to fog computing. MEC brings the computational

capacity within the Radio Access Network (RAN) to minimize delay and increase

context awareness [52]. But there are some basic differences with fog computing. For

example, the locationof the fog nodes can vary between the edge devices and the cloud

with a proximity of one or more hop. In MEC, nodes are located in the macro Base

Station (BS) with the proximity of a single hop only. The access mechanism between

fog node and edge device is heterogeneous (Bluetooth, Wi-Fi or mobile networks)

but the access mechanism for MEC is only mobile networks. Although the internode

connection is possible in both technologies, unlike the nodes in MEC, fog nodes are

able to do internode communication even without a direct connection between them

with the help of the cloud.

2.3 Network Planning Process

Planning a network is a very complex task due to many factors such as the network

size, the heterogeneous nature of the equipment, the dynamic behavior of the users,
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the rapid changes in technology, etc. As a result, it is important to follow an organized

methodolgy in planning and designing a network. The steps involved in planning and

designing a network can be summarized as follows [53].

� Define design inputs: The important first step for network planning is to collect

network input information and conduct requirement analysis. This step can be

done by gathering comprehensive information on edge device traffic patterns

and volume, estimated hardware type and cost, network capacity and QoS

requirements. In general, the required data collection is complex and time

consuming. Due to the unavailability of data, most of the time, the desired

input is generated and considerable effort is put to validate the inputs with

respect to real-time scenario.

� Network design: In this step, different design and dimensioning techniques are

examined to create an appropriate algorithm for the network topology. This

step includes recognizing the different network entities, geographical location,

sizing and costing. Depending on the requirements, the output of the design

can be the network topology, QoS, cost and so on.

� Optimization: The optimization of the network is done based on certain de-

sign precedence like delay, traffic, cost, power consumption, etc. The optimal

solution is used as a benchmark and further improvement can be done. This

step can be repeated with the evolution of network with different inputs and

constraints.

� Performance analysis: After a number of iterations, a set of results can be

obtained. This step requires the analysis and validation of the obtained results.

The validation includes the sensitivity and statistical analysis of the uncertain

variables.

There is lot of research focusing on the planning and design of networks in the field

of computer and communication networks. For example, the authors in [54,55] address

the cellular network planning problem using appropriate optimization techiniques.

The UMTS network planning problem is addressed in articles [56, 57]. The authors

in [58,59] conducted a comprehensive research on the controller planning problem in

SDN. Different planning tools for wireless networks as listed in [60] are developed by

academics and industry researchers. The authors in [61] identify the Gigabit Passive
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Optical Network (GPON) planning problem and proposes a Lagrangian heuristic

algoruthm to find the optimal placement of distribution points. Recently, the network

function virtualization placement problem is explored by many researchers. The

authors in [62–65] propose different placement models and algorithms with various

optimization criteria.

As can be seen from the above paragraph, network planning is a huge field within

the field of Operation Research (OR). In this thesis, we focus on the planning and

design of the emerging concept of fog networks.

2.4 Chapter Summary

The literature review shows the importance of fog computing especially in the

context of IoT. Fog computing can be seen as a complement to cloud computing

resulting in a better overall system for the end users. As an infant technology, fog

computing has many challenges that still need to be addressed before its deployment.

Most importantly, network planning mechanisms should be adopted which satisfies

the end users as well as the requirements of the service providers hosting the fog

nodes.

At the best of our review, there is no work on the planning and design of fog

networks. In fact, most papers dealing with fog computing already assume that

fog nodes are already deployed and available to use. As a result, the next chapter

introduces a new mathematical model for the planning and design of fog networks.



Chapter 3

Mathematical Model for Fog Planning

Problem

On a network of IoT devices with the coexistence of applications and hetero-

geneous services, it is not easy to find the best placement location for the installation

of fog nodes. The planning problem can only be solved by the use of combinatorial

methods and as the problem size gets larger, the number of possible combinations

increases exponentially. For example, a network that has 5 possible locations and

200 edge device clusters, there are approximately 5200 different possible solutions for

the planning problem. Given the limited capacity of fog nodes, assigning an edge

device to a fog node for an optimal network is also a complex assignment problem.

Furthermore, with the random distribution of edge device locations and their various

requirements, it is challenging to determine the capacity of each fog node.

In this chapter, a mathematical model is formulated for the planning problem with

a comprehensive explanation of the model. Given a set of edge device requests, the

model simultaneously determines the optimal location, the number, and the capacity

of the fog node(s) as well as the connection between the fog node(s) and the cloud. As

the model has two different objectives (minimize delay and bandwidth), the Pareto

optimality needs to be established, i.e., the delay in the network should not be worse

off to minimize the traffic in the cloud.

The rest of this chapter is organized as follows. In the next section, we present

the model formulation. Then, different techniques are described in order to solve

optimization problems with multiple objectives functions.

26
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3.1 Model Formulation

The translation process from analyzed information into mathematical representa-

tion is known as model formulation. The model can be formulated by defining the

objective function, and the set of constraints and specifying the input to the prob-

lem that defines the search space. The objective and each constraint is expressed

algebraically in terms of the decision variables. The objective is to minimize network

delay and cloud traffic with respect to each constraint.

To model edge devices, we use the notion of clusters where each cluster represents

an agglomeration of edge device requests. We are using this approach to reduce

complexity as typically, several users (hundreds or even thousands) are using the

cloud at the same time in a given area.

3.1.1 Assumptions

To formulate the mathematical model, we assume the following information is

known:

� There is no existing infrastructure meaning that we do the planning from a

green field scenario.

� The location of all edge devices and the possible locations of each fog node (i.e.,

x and y coordinates). For each edge device, the amount of generated traffic and

the link speed are also known.

� The bandwidth availability and the cost of each link type for the connection

between the fog nodes and the cloud.

� The characteristics (i.e., memory, vCPU, cost) of different types of fog nodes

that may be installed in a network.

� The location of the cloud. We assume that the cloud is located in a remote

location and if an edge device cannot be served by the fog, it will be connected

to the cloud. We also assume that the cloud has unlimited memory and vCPU.

� The fog nodes send a fraction of its total traffic to the cloud. This assumption

is based on the fact that if an edge device is served by a fog node, most of the

work will be done at the fog node level. However, some data may still be sent
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from the fog to the cloud for various reasons such as backup, enhanced services,

etc.

The output of the planning problem focuses on the following:

� Selecting the optimal geographic location(s) to deploy fog node(s) in the network

(i.e. where to deploy the fog nodes).

� Defining the optimal number of fog nodes that needs to be installed in the

network.

� Specifying the type (capacity) of fog nodes to be installed in the network.

� Specifying the types of links used to interconnect the various network elements.

The primary goal of the Fog Planning Problem, denoted (FPP), is to find the best

locations for installing fog nodes so that the network delay experienced by the users

and the amount of traffic going towards the cloud are minimized.

3.1.2 Sets

� U, set of edge device clusters that are present in the network, U = {u1, u2, ...}

– λu, the total amount of memory required by a cluster of edge devices of

type u ∈ U

– αu, the total number of vCPU required by a cluster of edge devices of type

u ∈ U

– θu, the number of packets requested to the fog nodes or the cloud by a

cluster of edge devices of type u ∈ U

– κu, the link speed of a cluster of edge devices of type u ∈ U

� N, set of fog types that can be installed, N = {n1, n2, ...}

– λn, the total amount of memory available for a fog of type n ∈ N

– αn the number of vCPU available for a fog of type n ∈ N

– θn, the network interface capacity of a fog of type n ∈ N

– βn, the number of nodes available for a fog of type n ∈ N
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– φn, the cost for a fog of type n ∈ N

� L, set of possible link types that can be used to interconnect fog nodes and

cloud, L = {l1, l2, ...}

– ωl, the bandwidth (in Gbps) of a link of type l ∈ L

– ξl, the price (in dollars per meter) of a link of type l ∈ L

� P, set of possible locations to install the fog nodes, P = {p1, p2, ...}

3.1.3 Constants

� σ, average packet size (in bytes) sent by the edge devices.

� τ , maximum budget (in dollars) allowed for the deployment of the fog.

� t, speed of light (3*108 meters per second).

� h, average number of hops packets take from edge devices to fog nodes.

� k, average processing delay (in seconds) per hop.

� r, percentage of traffic going to the cloud from fog nodes.

3.1.4 Functions

� Distance (a, b) is a function that calculates the distance between points a and

b. The value of points a and b are the x, y coordinates.

� ψ, transmission delay. It is a function that calculates the transmission delay

(see Section 3.1.8).

� µ, propagation delay. It is a function that calculates the propagation delay (see

Section 3.1.8).

� γ, processing delay. It is a function that calculates the processing delay (see

Section 3.1.8).

� f(a, b) is a function that takes the input parameter a as the number of packets

per second, b the packet length in bytes and converts to bytes per second.

� g(a) is a function that converts a value from Mbps to bytes per second.
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Figure 3.1: Graphical representation of the notations

3.1.5 Decision Variables

� xnp, a 0-1 variable such that xnp = 1 if and only if the fog node n ∈ N is

installed at location p ∈ P ;

� yup, a 0-1 variable such that yup = 1 if and only if the edge device cluster u ∈ U
is connected to a location p ∈ P ;

� vuc, a 0-1 variable such that vuc = 1 if and only if the edge device cluster u ∈ U
is connected to the cloud;

� bpl, a 0-1 variable such that bpl = 1 if and only if the fog node installed at

location p ∈ P is connected to the cloud with a link of type l ∈ L;
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Figure 3.1 is a graphical representation of the network showing the notations de-

scribed earlier. The figure illustrates a three-tier “edge device-fog-cloud” architecture,

with links between each network elements. It can be seen that, depending upon the

load (and/or the type of application/service), an edge device cluster can either be

connected to a fog node or to the cloud. Moreover, when a fog node is installed at a

possible location, it must be connected to the cloud.

3.1.6 Objective Function

As shown in Equation 3.1, the objective function of the FPP, is to minimize the

total delay of the network and the amount of traffic sent to the cloud.

Minimize(Dtotal, T raffic) (3.1)

As shown in equations 3.2 to 3.5, the total delay (Dtotal) is the sum of the trans-

mission delay (Dt), propagation delay (Dn) and processing delay (Dp) in the whole

network. On the other side, Equation 3.6 represents the total traffic going to the

cloud which is the sum of the traffic from all edge devices connected to the cloud plus

the traffic coming from the various fog nodes.

Dtotal = Dt +Dn +Dp (3.2)

Dt =
∑
u∈U

∑
p∈P

yupψ +
∑
u∈U

vucψ (3.3)

Dn =
∑
u∈U

∑
p∈P

yupµ+
∑
u∈U

vucµ (3.4)

Dp =
∑
u∈U

∑
p∈P

yupγ +
∑
u∈U

vucγ (3.5)

Traffic =
∑
u∈U

∑
l∈L

vucθ
u +

∑
p∈P

∑
l∈L

bplθ
ur (3.6)

3.1.7 Formulation of the Constraints

The model aims to minimize the network delay as well as the traffic entering the

cloud. The set of constraints explained below restricts the minimization function.
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� Uniqueness constraints: Uniqueness constraints enforce that at most one fog

node is installed at a given location. In other words, we cannot install two or

more fog nodes at the same location.

∑
n∈N

xnp ≤ 1 (p ∈ P ) (3.7)

� Edge device assignment constraints: The assignment constraints are used to

make sure that each device is assigned to exactly one location (i.e., the fog or

the cloud).

∑
p∈P

yup + vuc = 1 (u ∈ U) (3.8)

� Node assignment constraints: The assignment constraints enforce that each

installed fog node is connected to cloud.

∑
n∈N

xnp =
∑
l∈L

bpl (p ∈ P ) (3.9)

� Node capacity (vCPU) constraints: The capacity constraints for vCPU at the

node level make sure that the number of vCPU required by the edge devices

does not exceed the capacity of the fog node.

∑
u∈U

yupa
u ≤

∑
n∈N

xnpa
n (p ∈ P ) (3.10)

� Node capacity (memory) constraints: The capacity constraints for memory at

the node level make sure that the total amount of memory required by the edge

devices does not exceed the capacity of the fog node.

∑
u∈U

yupλ
u ≤

∑
n∈N

xnpλ
n (p ∈ P ) (3.11)

� Network Interface Capacity (NIC) constraints: The capacity constraints at the

node interface level ensure that the total inbound bandwidth required by the

edge devices does not exceed the fog node capacity.
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∑
u∈U

yupf(θu, σ) ≤
∑
n∈N

xnpg(θn) (p ∈ P ) (3.12)

� Link capacity constraints: The capacity constraints at the cloud interface level

ensure that the total inbound bandwidth from the fog nodes to the cloud does

not exceed the link capacity.

∑
u∈U

yupf(θu, σ)r ≤
∑
l∈L

bplg(ωl) (p ∈ P ) (3.13)

� Inventory constraints: Inventory capacity constraints of the fog nodes make

sure that we do not use more than what we have in inventory for a fog type.

∑
p∈P

xnp ≤ βn (n ∈ N) (3.14)

� Budget constraint: The budget constraint makes sure that the total cost of the

network does not exceed the maximum allowed budget.

∑
n∈N

xnpφ
n +

∑
l∈L

bpldist(p, c)ξ
l ≤ τ (p ∈ P ) (3.15)

� Integrality constraints: States that the domain of the following decision vari-

ables is a set of binary numbers.

xnp ∈B (n ∈ N, p ∈ P ) (3.16)

yup ∈B (u ∈ U, p ∈ P ) (3.17)

vuc ∈B (u ∈ U, l ∈ L) (3.18)

bpl ∈ B (p ∈ P, l ∈ L) (3.19)

3.1.8 Delay Computation

The latencies for the network are computed using the transmission, propagation

and processing delays. It would also be interesting to consider the queuing delay but
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as this keeps changing over time, a static model like the one presented in this chapter

does not allow to include it.

The transmission delay is the time taken for a process to send the information

to the wire. This depends on the link speed that is used and the packet size that

is to be sent to the edge device from the fog or cloud. The formula to calculate the

transmission delay is shown below where σ is the amount of data (bytes) and wl

represents the link speed (bytes/sec).

Transmission delay (ψ) =
σ

wl
(3.20)

The propagation delay is the time taken to transmit a signal from a source to

a destination. This depends on the medium used and the distance between the

source and the destination. The propagation delay is calculated as distance divided

by the speed at which the signal propagates in the medium. Depending on the

medium that is used, the propagation speed varies. The propagation speed of wireless

communications is the speed of light. For copper wires, the speed varies from 0.59t

to 0.77t [66]. In the proposed model, we use 0.59t for the speed of copper wire which

can be also be used in premises where fiber or other medium cannot be deployed [67].

Propagation delay (µ) =
Distance(a, b)

0.59 ∗ t
(3.21)

Each router or switch in the data path adds a finite amount of delay as the packet

is received, processed, and then forwarded. This includes the time taken at each layer

of the TCP/IP down until the bit level layer. Using features that are supported with

hardware assistance can greatly reduce the processing delay. Typically, the processing

delay with a hardware-assisted switch will be in the 4-to-20 microseconds range [68].

In the worst case scenario, even when using a software assistance, the most reasonable

processing delay that can be expected in practice should be 25 microseconds per hop

(h), which has been used in our calculation.

Processing delay (γ) = k ∗ h (3.22)
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3.2 Model with Pareto Optimality

Since the formulation of the problem is a multiobjective optimization model, we

need to simultaneously minimize the two objective functions expressed in equations

3.2 and 3.6. Sometimes, the minimum network delay will increase the traffic in the

cloud and vice versa. Therefore, to ensure the fairness of the network delay and the

traffic in the cloud, we need to find the Pareto optimal solution. In this section, we

present three different methods that we used to find solutions to our problem.

3.2.1 Weighted Sum Optimization

The weighted sum strategy converts the multiobjective problem of optimizing the

main objective function into a scalar problem by building a weighted sum of all the

objectives [69]. Therefore, the proposed objective function can be rewritten as:

Minimize (w1D
norm
total +w2Traffic

norm) (3.23)

where w1 and w2 are weighted coefficient and Dnorm
total and Trafficnorm are the nor-

malized objective functions as they have different scales. Equations 3.24 and 3.25 are

used to normalize the objective functions.

Dnorm
total =

Dmax
total −Dtotal

Dmax
total −Dmin

total

(3.24)

Trafficnorm =
Trafficmax − Traffic

Trafficmax − Trafficmin
(3.25)

The weighted coefficients define the contribution of each objective function in the

modified model. Even with a proper knowledge of the problem, it is not easy to

specifically select the weight of the coefficients in the modified objective function.

Therefore, an additional constraint 3.26 is added which states that the sum of the

weighted coefficients w1 and w2 should be 1.

w1 + w2 = 1 (3.26)

During simulations, both weighted coefficients are varied in steps of 0.1 with respect

to the added constraint to obtain a Pareto front.
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3.2.2 Hierarchical Optimization

Hierarchical optimization is generally solved by the sequential optimization

method. Here, the objective functions are ranked in order of importance. From

the literature review, it can be assumed that the fog nodes will be used extensively

for latency sensitive applications [31,33–35]. Hence, the model is solved using Traffic

as the lone objective function with an additional constraint that do not allow the value

of the delay function to exceed a set of prescribed fractions of its optimal value [70].

In other words, we try to improve the less important criteria through minimal loss of

the most important criterion.

Minimize Dtotal (3.27)

In the first step, we solve Equation 3.27 with respect to constraints 3.7-3.19. In

the second step, we solve Equation 3.28 with the additional constraint 3.29.

Minimize Traffic (3.28)

Dtotal ≤ Dmin
total ∗ δ (3.29)

where δ is the added value for delay. We vary the δ with a set of values to obtain a

Pareto optimal front.

3.2.3 Trade-Off Method

This method involves optimizing a primary objective, and expressing the other

objectives in the form of inequality constraints [71]. In our proposed trade-off model,

we consider Dtotal as the primary objective function due to the reason explained before

and Traffic as an inequality constraint with specified values of traffic in the cloud.

We solve the objective function show in Equation 3.27 subject to:

Traffic ≤ ε (3.30)

and all other constraints 3.7-3.19. However, it is not easy to find the precise ε value

for the optimal solution. For this, the range of Trafficmax and Trafficmin is divided

into ten equal intervals and we use the eleven values as the varying ε value to obtain

an optimal Pareto set curve [72].
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3.3 Determining the Best Compromise Solution

From each method of the multiobjective model, we obtain a set of non-dominated

solutions forming a Pareto front. Since there can be an uncertainty in decision makers

preference, it can be assumed there is a fuzziness in the goal of each objective function.

The membership functions define this fuzziness by representing the degree of fuzziness

in some fuzzy sets using values in the range [0, 1].

In this thesis, we adapt a fuzzy-based mechanism [73] which is used to find out

a compromised solution on the Pareto front of each problem. The fuzzy mechanism

looks at the way the solutions are contributing to each objective and assigns a fuzzy

variable. When the solutions in a Pareto front are very close together, the mechanism

shows a possible way of finding the best compromise solution. In this mechanism,

a membership value for the ith objective of the jth solution in the Pareto front is

calculated using the membership function as:

µj
i =


1 if Fi ≤ Fmin

i

Fmax
i −Fi

Fmax
i −Fmin

i
if Fmin

i < Fi < Fmax
i

0 if Fi ≥ Fmax
i

(3.31)

µj
i indicates how well the jth solution is able to satisfy the ith objective in a Pareto

optimal set. The sum of the membership value of all objectives of the jth solution

suggests how well it satisfies all the objectives. Given N solutions in a Pareto front

and M objective functions for each solution, the achievement of each solution with

respect to all the N solutions can be calculated by:

µj =

M∑
i=1

µj
i

N∑
j=1

M∑
i=1

µj
i

(3.32)

The solution with a maximum value of µj is a compromise solution that can be

accepted by the decision maker.
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3.4 The Hypervolume Indicator

The Hypervolume (HV) indicator was first proposed in [74]. In recent years,

the hypervolume indicator has been widely used in multiobjective optimization to

evaluate various search algorithms.

If an objective space contains solution that are considered as points, the n-

dimensional space that is contained by a solution set is called hypervolume. In other

words, the hypervolume is the n-dimensional volume of the set relative to some ref-

erence point. The reference point usually refers to the worst possible point in the

solution set. The hypervolume of a set is the total dominated space of the solutions

in the set. The single unary value of HV gives a measure of the spread of the solutions

along the Pareto front. A set with large HV is always desirable as it presents a better

set of trade-offs as it covers a larger area in the solution space.

Given a non-dominated set of solutions S, for each solution i ε S there is a hyper-

cube vi with a reference point r where the solution i is the diagonal corners of the

hypercube. With the union of all the hypercubes, the hypervolume can be calculated

by:

HV = ∪|S|i=1vi (3.33)

Figure 3.2 shows an example of HV for a 2-dimensional minimization problem

with a set of non-dominated solution S = {a1, a2, a3, a4} and reference point r. As

we can see from the figure, the yellow area is the hypervolume contributed by the

four non-dominated solutions with respect to the reference point.

3.5 Chapter Summary

In this chapter, we formulated an exact mathematical model for the planning and

design of fog networks. The objective of the model is twofold: 1) minimize the delay

experienced by the users and 2) minimize the amount of traffic that must go to the

cloud, subject to a set of realistic constraints. Since we formulated the problem as a

multiobjective mathematical model, we reviewed three different methods and modi-

fied our model with additional constraints to obtain Pareto optimal solutions. Finally,

two different methods and functions fuzzy-based mechanism and HV indicator were
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Figure 3.2: HV enclosed by non-dominated solution a1, a2, a3 and a4 [75]

introduced and explained in the last two sections of the chapter. The aforementioned

methods are used to analyze and better understand the results. In the next chap-

ter, we analyze the results and performance of the proposed methods with different

inputs.



Chapter 4

Results and Analysis

In this chapter, we solve the planning problem modeled in Chapter 3 with different

input. Then we do a complete analysis of the obtained results to better understand

the performance of the planning model. More precisely, the chapter begins with a

summary of the steps involved when solving the FPP. In the next section, we solve a

detailed example to understand how each of the constraints work in the model. Then,

we analyze the results from small scale to large scale problems followed by a study

of the impact of increasing the number of possible placement locations. Finally, we

summarize the chapter in the last section.

4.1 Framework for the Fog Planning Problem

There are many steps that need to be taken to find the optimal solution for

FPP. Figure 4.1 summarizes the steps that we used for each problem in our planning

model. First, the input information is generated and the problem is solved with the

planning model in Chapter 3. The problem is solved for both single and multiobjective

functions. For the multiobjective optimization, three different methods are used to

generate a Pareto front. Next, the fuzzy-based mechanism described in Section 3.3 is

used in determining the best compromise result from the Pareto set. The hypervolume

of the Pareto front is calculated using Equation 3.33. Finally, the results obtained

from all the steps are analyzed for better understanding of the FPP.

Figure 4.2 shows the flowchart for solving the FPP using the weighted sum method.

In the first step, we generate the input for the planning problem. Initially, the value

for w1 is set to 1 and w2 is set to 0. Then the modified model from Section 3.2.1 is

40
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Input 

Edge Device Information  

Fog Node Information 

Link Type Information 

Minimize Delay 
Realistic 

Constraints 
Minimize Traffic 

Multiobjective Optimization: 

Weighted Sum Method 
(see Figure 4.2) 

Hierarchical Method 
(see Figure 4.3) 

Trade-off Method 
(see Figure 4.4) 

 

Single Objective 

Delay Optimization 

Single Objective 

Traffic Optimization 

Pareto Front 

Best Compromised 

Result 
Hypervolume 

Figure 4.1: Steps to solve the FPP
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Figure 4.2: Steps to solve the FPP with the weighted sum method
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solved and the returned objective function values are stored in the Pareto set. Then

the terminating condition is checked and if it is not satisfied, the model is solved one

more time with updated weighted coefficient values and the new solution being stored

in the Pareto set. This step is repeated until the terminating condition is satisfied.

Once the terminating condition is satisfied, a Pareto optimal set is obtained from the

stored objective function values. The fuzzy-based mechanism described in Section 3.3

is used to extract the best compromised result from the Pareto optimal set, which is

used as the final result for analysis. The procedure outlined in the flowchart is used

each time we solve a fog planning problem with the weighted sum method.

The steps for solving the hierarchical method are shown in Figure 4.3. Initially, the

inputs for the FPP are randomly generated. In the next steps, the value of δ is set to

1.0001 and the modified hierarchical model presented in Section 3.2.2 is solved. The

solution results are stored in the Pareto optimal set. Next, the terminating condition

is checked and if not satisfied, the δ value is updated with δ‘, where δ‘ equals to 0.0001

and the problem is solved one more time with the updated δ value and the results

are stored in the Pareto set. This process is repeated until the terminating condition

is satisfied, which is δ equal to 1.0008. When the terminating condition is satisfied, a

Pareto optmal set is obtained from all the solutions from Pareto set. Finally, the best

compromised result is obtained from the Pareto optimal set using the fuzzy decision

approach. This procedure is used when solving all the problem in FPP.
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Figure 4.3: Steps to solve the FPP with the hierarchical method
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Figure 4.4: Steps to solve the FPP with the trade-off method

The flowchart to solve the FPP using the trade-off method is illustrated in Figure

4.4. The method uses the same randomly generated inputs used for the previous

two multiobjective optimization methods. The ε value is set to 1 and the modified

trade-off model in Section 3.2.3 is executed. The optimal solutions from the model
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are stored in the Pareto optimal set. In the next step, the terminating condition is

checked and if it is not satisfied, the problem is solved with a new ε value, which

is a specified value of traffic in the cloud. The model is repeatedly solved until the

terminating condition is satisfied. When the terminating condition is checked out,

an optimal Pareto front is obtained. Finally, the fuzzy-based mechanism is used to

obtain the best compromised result for the trade-off method.

4.2 Detailed Example

The simple example presented in this section is used to explain and show how

the mathematical model works. In this example, we want to plan and design a

brand new fog network in order to accommodate 10 edge device clusters by finding

the optimal number and location for the fog node(s) while considering the nodes

processing capacity, the bandwidth requirements of the edge device clusters and link

and nodes inventory. Once the result is obtained, it will be analyzed and the final

conclusion is made by showing the total network delay and traffic in the cloud with

the optimal placement variables.

Figure 4.5 shows the area to be planed. As it can be seen, there are 10 edge device

clusters that need to be connected to either a fog node or the cloud depending upon

their request with 5 possible fog node placement locations. As we assume, that the

cloud is located in a remote location, is not shown in the figure.

In this simple scenario, we have two types of fog nodes. The characteristics of

both types are given in Table 4.1. Similarly, as shown in Table 4.2, there are two

types of link with a bandwidth of 10 Mbps and 100 Mbps respectively. Table 4.3

shows the optimization input parameters with randomly generated edge device and

fog node locations over an area of 100 km2. The size of each requested packet is 1250

bytes and there are only three fog nodes available (two of type a and one of type b).

The parameters of each cluster are given as input to the model and are listed in Table

4.4. The first column shows the edge device cluster index. Columns 2 and 3 show the

location of the edge device cluster in the planned area, whereas columns 3-6 show the

profile of each edge device cluster which includes the requested memory and vCPU,
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Figure 4.5: Edge device locations and potential locations of fog nodes

Table 4.1: Fog type features for the planning example

Fog Types a b

vCPU (αn) 5 10

Memory (λn) 15 30

NIC (θn) 45 100

# of Nodes (βn ) 2 1

Cost (φn) 1000 2000
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Table 4.2: Link type features for the planning example

Link Types a b

Bandwidth (ωl ) 10 Mbps 100 Mbps

Cost/metre (ξl ) $0.05 $0.25

Table 4.3: Topology and optimization input parameters for the example

Simulation area 10x10 km

Number of edge device clusters 10 (random)

Maximum Placements 5 (random)

Packet size (σ) 1250 Bytes

Table 4.4: Edge device input parameters for each cluster

Edge device cluster index
Location(m) Requested

Network Access Bandwidth (Mbps)
x y Memory vCPU Traffic (Mbps)

1 5470 9294 6 2 12 10

2 2964 7757 5 1 16 21

3 7447 4868 9 4 13 14

4 1890 4359 3 12 16 17

5 6868 4468 10 3 33 28

6 1836 3064 18 1 26 8

7 3685 5085 6 3 41 11

8 6257 5108 5 3 11 22

9 7803 8176 35 2 23 14

10 812 7948 13 8 44 9
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as well as the traffic and the network access bandwidth.

To solve the problem, we used CPLEX 12.7 [76]. All the parameters in the opti-

mizer were set to default except that we set a Time Limit (TL) of 1.5 hours. This

means that if the optimal solution is not found after 1.5 hours of computation, CPLEX

will simply return the best solution obtained so far. We run the simulation on a PC

with an Intel i5 processor running at 3.00 GHz with a total memory of 12 GB.

The goal of the model is to select the best locations to install the fog nodes such

that all constraints are satisfied with minimum delay in the network and minimum

amount of traffic going to the cloud. As it is a small problem, the solution search

space is also small resulting in obtaining the same solution for every iterations for

the three multiobjective methods. The optimal solution obtained from CPLEX has

a total delay of 0.00702 second and traffic of 117.19 Mbps. From Figure 4.6, we can

see that 6 edge device clusters are connected to fog nodes installed at 3 different

locations. In the figure, the solid black lines show the connections between the edge

device clusters and the fog nodes, the dash line shows the connection between the edge

device clusters and the cloud and the dash-dot line presents the connection between

the installed fog nodes and the cloud. The fog nodes that were not part of the optimal

solutions (i.e. locations 1 and 4) were not connected as seen in the figure.

By visual observation from Figure 4.6, we can see that edge device cluster 3 is

close to location 3 with 922 meters where a fog of type a is installed. Although edge

device cluster 1 is close to location 1 (978 meters), installing a fog node there will be

far for edge device cluster 2 increasing the overall network delay. So, a fog of type

a is installed in location 2 connecting both edge device cluster 1 and 2. Placement

location 5 is used to install a fog of type b as it is connected to three edge device

clusters which are closer. All of the installed fog nodes are connected to the cloud

which is approximately 90,000 meters away from each of the fog nodes.

Capacity Constraints

Constraints 3.10-3.12 state that the capacity of a fog node should be greater or

equal to the sum of all edge device requirements that are connected to it. For example,

edge device cluster 9 is closer to location 1, but it requests 35 MB of memory which

is above the capacity of both fog types. Hence, it is connected to the cloud. The fog

node installed at location 5 can accommodate edge device cluster 4 in terms of all
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Figure 4.6: Optimal solution found by Cplex
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the constraints except Equation 3.10. Therefore, edge device cluster 4 is connected

to the cloud.

Inventory and Budget Constraints

Equation 3.14 limits the number of each fog node type that can be installed. In

the final solution, the solver will make sure that each fog node type is not used more

than the maximum number of nodes available as indicated in the fog nodes input

information in Table 4.1. In this case, two fog nodes of type a and one fog node of

type b are installed in the network. Constraint 3.15 restricts the solver to go over

budget. For an ideal situation, there can be a fog node installed in every location,

but as we have restricted the budget to 40% of the maximum cost, a limited number

of fog node can be installed.

Link Bandwidth between Fog Nodes and Cloud

Equation 3.9 ensures that there is a connection between all installed fog node and

the cloud. Links from Table 4.2 are in Mbps and need to be converted to bytes per

second. Function g(ωl) converts between the two units for link type (l ∈ L). In this

simple example, we assume that only 1% of the traffic coming to a fog node is sent to

the cloud for further processing. Since, we do not want to go over budget, the lowest

link type is used.

Optimal Solution

In summary, the decision variables selected are:

� Fog node placement (xnp): x12, x13, x25

� Edge device and fog node connection (yup): y12, y22, y33, y65, y75, y85

� Edge device and cloud connection (vuc): v41, v51, v91, v101

� Fog node and cloud connectivity (bnl): b21, b31, b51
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Table 4.5: Delay formulation of the planning example

Transmission Delay (ψ) Propagation Delay (µ) Processing (γ)

0.000125y12 9.98192E-06y12 0.000125y12

5.95238E-05y22 7.32655E-06y22 0.000125y22

8.92857E-05y33 5.20565E-06y33 0.000125y33

7.35294E-05y65 1.84593E-05y65 0.000125y65

4.46429E-05y75 4.54915E-06y75 0.000125y75

0.00015625y85 1.61175E-05y85 0.000125y85

0.000113636v41 0.000564972v41 0.00075v41

5.68182E-05v51 0.000564972v51 0.00075v51

8.92857E-05v91 0.000564972v91 0.00075v91

0.000138889v101 0.000564972v101 0.00075v101

Total Delay = 0.00702 sec

Table 4.6: Traffic formulation of the planning example

Edge Device Traffic (vuc) Fog Node Traffic (bnl)

0v11 0b11

0v21 0.28b21

0v31 0.13b31

16v41 0b41

33v51 0.78b51

0v61

0v71

0v81

23v91

44v101

Total Traffic = 117.19 Mbps
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The solutions returned by the solver for the three methods was validated by solving

the problem manually. Tables 4.5 and 4.6 were used to verify the results of the

optimizer.

Since this is a small example, we are able to show partial delay function and traffic

function which is exactly equal to the results obtained by the solver.

4.3 Results Analysis

The output of the problem is a direct reflection of the input. In the FPP, we are

interested in analyzing the effect of increasing the number of edge device clusters and

possible fog node placement locations. Typically, with the increase of input size, there

will be more delay in the network and more traffic will go towards the cloud. There are

different methods of measuring the quality of the solution of an optimization problem.

The most common way to measure is to keep track of the objective functions and

time taken by the solver to reach the optimal solution.

4.3.1 Input Parameters

In this section, we first present the different features of the fog nodes as well as the

characteristics of the edge device traffic. All the planning problems are solved with

respect to the input specified. Each fog node has a maximum capacity that cannot

be crossed. In other words, if one of the requested parameters like memory is greater

than the nodes capacity, then the capacity should be increased by using a different

fog type or send the edge device cluster request to the cloud. The specification of

each fog node depends on the service providers and there are many companies like

IBM, Rackspace, Amazon AWS, etc. providing cloud services. Table 4.7 shows the

four types of fog nodes that can be used by the solver.

The specifications of the different link types used to connect the fog node(s) to

the cloud are shown in Table 4.8. The price of the links depends on their capacity

and material which can be obtained from network sales website [77,78].

The input parameters for the edge device clusters and each edge device within

the cluster are tabulated in the tables 4.9 and 4.10 respectively. The simulation

area is chosen to be 100 km by 100 km. This larger area is chosen because we
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Table 4.7: Characteristics of the different fog types

Fog Type # of CPU Memory (GB) NIC (Mbps) Cost ($) Inventory

a 90 480 360 67200 20

b 180 800 1024 120000 15

c 360 1600 1024 170000 10

d 720 3200 10240 250000 4

Table 4.8: Characteristics of the different link types

Link Type Bandwidth Cost/meter ($)

a 100 Mbps 0.25

b 1 Gbps 2

c 10 Gbps 200

envision the fog network to be spanning over a city and beyond. Moreover, some

point of the simulation there will be 200 edge device clusters which will be hard to

accommodate in a smaller area for visual representation. The locations (i.e. the x

and y coordinates) of the edge device clusters and the possible locations are randomly

generated within the simulation area. The location cost to install a fog node is set

to be $1000. The maximum budget of the planning problem was set to 40% of the

maximum cost the fog network can incur. Instead of a fixed value for the budget,

we used a percentage of the maximum cost because with the increase of network size

(possible placement locations) the maximum cost increases and the budget should

also be increased proportionally instead of biasing the small scale problem with a

large budget. The cost of a fog network includes the fog node cost, the location cost

and the link cost between fog nodes and the cloud (i.e. the hardware cost). The

maximum cost includes the installation of highest capacity of fog node(s) in all the

optimal locations as well as connecting the fog node(s) and the cloud with the most

expensive link type which has the highest speed. The location cost for a fog node

depends on many factors. For example, the cost of renting or leasing a location in a

commercial area is probably higher than the cost in a residential area. It also depends
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Table 4.9: The edge device cluster input parameters

Simulation area 100x100 km

Packet size 1500 Bytes

# of edge device in a cluster U(10,200)

Table 4.10: The edge device input parameters for each edge device in a cluster

# of CPU core U(1,4)

Memory U(1,40) GB

# of Packets sent per second U(1,64)

Network access bandwidth U(20,70) Mbps

upon the size and expandibility. To reduce complexity the same cost was used for all

the possible fog node placement locations.

Two different sets of problems were solved using three different multiobjective

optimization methods. The first set consists of small scale problems and the second

set has larger scale problems. For each set, different problem sizes were generated,

and for each size, four different instances of the problem were generated. In total, for

each mulltiobjective optimization method, we optimized 32 different problem sizes

over 4 instances resulting in solving 128 optimization problems. In order to obtain

the Pareto front, the weighted sum and the trade-off methods were solved with 11

iterations for each problem (as shown in Figures 4.2 and 4.4), whereas the hierarchical

method was solved with eight iterations for each problem (as explained in Figure 4.3).

A time limit of 1.5 hours was set for each iteration. This means that if the optimal

solution is not found after 1.5 hours of computation, CPLEX will simply return the

best solution obtained so far for that iteration. For each problem, the membership

functions 3.31 and 3.32 are used to evaluate each member of the Pareto front and

the member with the highest membership function value is extracted as the best

compromise result.
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4.3.2 Small Scale Problems

In the first set of problems, the number of edge device clusters is varied between

10 and 200 with 5 possible placement locations. 21 different problem sizes (as shown

in Table 4.11) are solved over the 4 different instances for a total of 84 problems. The

results presented in Table 4.12 are the averages over the 4 different instances (refer

to Appendix A for the results of each instance) and includes the best compromised

total delay in the network, total traffic to the cloud and the solution time for each

multiobjective optimization method. The same CPLEX and hardware configuration

was used as described in Section 4.2.

The first column in Table 4.12 represents the problem number corresponding to

the problem size presented in Table 4.11. The second, third and fourth columns

represent respectively the total delay in the network, the total traffic going to the

cloud and the solution time for the weighted sum optimization method; whereas the

fifth, sixth and seventh columns represent respectively the total delay in the network,

the total traffic going to the cloud and the solution time for the hierarchical method.

Finally, columns 8, 9 and 10 show respectively the total delay in the network, the

total traffic going to the cloud and the solution time for the trade-off method.

For the small scale problems, the lowest delay obtained was 0.111 seconds using

the hierarchical method and the lowest traffic was 97 Mbps achieved by the weighted

sum method.

The delay, traffic and solution time comparisons of the three methods are graph-

ically represented in figures 4.7, 4.8 and 4.9 respectively. For our FPP, we used 95%

Confidence Interval (CI) to examine the reliability of the results obtained. In figures

4.7 and 4.8, the vertical bars along the graphs show the CI. As it can be seen from

the figures, there is a small difference between the three methods in terms of total

network delay and traffic towards the cloud. However, the hierarchical method at-

tains less delay and more traffic than the other two methods. This is because the

hierarchical optimization is bounded by the delay constraint and we do not allow the

objective function to go beyond a reasonable delay in the network which compromises

the optimal traffic. With the increase of problem size, the objective functions also

increase for all the three methods. This is because more edge device clusters are



CHAPTER 4. RESULTS AND ANALYSIS 57

Table 4.11: Problem size for the small scale FPP

Problem # of edge device clusters # of possible placement locations

1 10 5

2 15 5

3 20 5

4 25 5

5 30 5

6 35 5

7 40 5

8 45 5

9 50 5

10 55 5

11 60 5

12 65 5

13 70 5

14 75 5

15 80 5

16 85 5

17 90 5

18 95 5

19 100 5

20 150 5

21 200 5
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Table 4.12: Results obtained from the solver for small scale problems (average over 4
instances)

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

1 0.113 97 2 0.111 110 3 0.113 122 2

2 0.193 175 2 0.191 175 4 0.193 175 3

3 0.266 401 3 0.265 416 5 0.266 401 3

4 0.343 391 3 0.34 408 7 0.343 391 4

5 0.419 604 3 0.414 635 8 0.42 599 4

6 0.576 919 4 0.573 949 12 0.576 919 6

7 0.572 898 7 0.573 906 16 0.572 903 14

8 0.669 1112 4 0.655 1168 19 0.659 1126 20

9 0.701 1234 7 0.694 1283 21 0.702 1231 26

10 0.822 1373 35 0.817 1419 29 0.822 1374 81

11 0.941 1533 24 0.931 1608 35 0.939 1543 73

12 0.999 1666 44 0.988 1743 38 0.998 1672 50

13 1.067 1777 907 1.078 1782 42 1.067 1786 998

14 1.169 1959 149 1.16 2030 68 1.171 1956 173

15 1.21 2021 18 1.203 2084 56 1.217 1991 776

16 1.332 2269 148 1.321 2338 61 1.331 2277 448

17 1.169 2242 706 1.356 2283 62 1.361 2262 242

18 1.359 2700 1010 1.354 2736 76 1.36 2704 438

19 1.617 3017 25 1.602 3102 74 1.613 3033 139

20 2.398 4015 513 2.392 4059 211 2.401 4001 365

21 3.22 5670 3789 3.213 5706 505 3.221 5672 3779
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Figure 4.7: Delay comparison with 95% CI for small scale problems (average over 4
instances)

Figure 4.8: Traffic comparison with 95% CI for small scale problems (average over 4
instances)
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Figure 4.9: Solution time comparison for small scale problems (average over 4 in-
stances)

introduced in the network resulting in more traffic requests from the fog nodes but

the number of possible fog node placement location is the same. Hence, many of

the edge device clusters are connected to the cloud. The weighted sum method and

the trade-off method return similar results for delay and traffic due to the use of the

maximum and minimum value of the objective functions as formulated in equations

3.25 and 3.30.

In general, with the increase of input size, the time taken to obtain an optimal

solution must increase as the model must consider a lot of combinations of where to

install the fog nodes, what type of fog node needs to be installed and which edge

device cluster should be connected to it. From Figure 4.9, it can be seen that the

solution time increases in a non linear pattern. This is due to the use of the Branch

and Bound (B&B) algorithm [79] used by the solver [76]. In B&B, at first the search

space is recursively split into smaller search spaces called branching and tries to find

the minimum objective function in the smaller search space. To avoid the brute-force

search and testing all the candidate solutions, the algorithm uses heuristic to keep

track of bounds on the minimum that it is trying to find and these bounds are used

to cut back the search space by eliminating the candidate solutions which cannot give
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optimal solution. To add with that, for the same problem, different multiobjective

optimization methods generate different search spaces. For instance, from problem

seven onward, the hierarchical method takes a lot less time compared to at least one of

the methods and in some cases both methods. The reason it takes less time is because

the objective function is traffic towards the cloud which according to Equation 3.6

has less variables and constraint 3.29 provides a strong feasible initial solution for the

particular method compared to the other two optimization methods. Moreover, for

each problem, the hierarchical method runs for 8 iterations which is 3 less than the

other two methods. Although the CI for the average solution time was calculated, it

could not be represented in the figure because of the semi-log scale used in the plot.

Comparison to the Best

Table 4.13 show the comparison of the results among the three multiobjective op-

timization methods for small scale problems. The first column represents the problem

number. The second and third columns illustrate the percentage gap for the delay

and traffic between the weighted sum method and the minimum value obtained from

all three methods. Similarly, columns 4 and 5 show the percentage gap for the delay

and traffic between the hierarchical method and the minimum value achieved from all

three methods. Finally, columns 6 and 7 represent the delay and traffic percentage

difference between the trade-off method and the minimum objective function value re-

turned by all three methods. A 0% implies that the delay or traffic value obtained by

that method for the particular problem is the minimum among all the three methods,

hence, there is no percentage difference. The mean percentage gap for the weighted

sum method for the delay and traffic is 0.73% and 0.15% respectively. The mean

of the delay gap for the hierarchical method is 0.82% and the traffic is 3.49%. For

the trade-off method, the mean of the delay gap obtained was 1.46%, whereas, the

mean of the traffic difference was 1.51%. From the results, it can be concluded that,

for small scale problems, the weighted sum method returns the best optimal results

among the three methods.
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Table 4.13: Solutions comparison among the three methods over 4 instances

Weighted Sum Hierarchical Trade-off

Problem
Delay Gap

(%)
Traffic Gap

(%)
Delay Gap

(%)
Traffic Gap

(%)
Delay Gap

(%)
Traffic Gap

(%)

1 1.5 0 0 13 1.4 26

2 1 0.2 0 0 1 0.2

3 0.65 0 0 3.8 0.65 0

4 0.89 0 0 4.2 0.89 0

5 1.1 0.81 0 6 1.5 0

6 0.53 0 0 3.3 0.53 0.058

7 0.022 0 0.061 0.82 0 0.57

8 2.1 0 0 5.1 0.68 1.3

9 0.9 0.22 0 4.2 1.1 0

10 0.53 0 0 3.4 0.53 0.092

11 1 0 0 4.9 0.84 0.66

12 1.1 0 0 4.7 0.95 0.36

13 0.033 0 1.1 0.28 0 0.48

14 0.8 0.12 0 3.8 0.92 0

15 0.54 1.5 0 4.7 1.2 0

16 0.8 0 0 3 0.78 0.38

17 0 0 16 1.9 16 0.92

18 0.34 0 0 1.3 0.41 0.16

19 0.92 0 0 2.8 0.73 0.52

20 0.25 0.35 0 1.4 0.38 0

21 0.22 0 0 0.62 0.25 0.035

Mean 0.73 0.15 0.82 3.49 1.46 1.51
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Table 4.14: Solutions comparison between single objective and multiobjective (over
4 instances)

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

1 0.111 95 1.8 2.1 0 16 1.8 28

2 0.191 163 1 7.4 0 7.4 1 7.4

3 0.265 390 0.38 2.8 0 6.7 0.38 2.8

4 0.34 370 0.88 5.7 0 10 0.88 5.7

5 0.414 570 1.2 6 0 11 1.4 5.1

6 0.573 899 0.52 2.2 0 5.6 0.52 2.2

7 0.566 851 1.1 5.5 1.2 6.5 1.1 6.1

8 0.655 1070 2.1 3.9 0 9.2 0.61 5.2

9 0.694 1197 1 3.1 0 7.2 1.2 2.8

10 0.817 1322 0.61 3.9 0 7.3 0.61 3.9

11 0.931 1484 1.1 3.3 0 8.4 0.86 4

12 0.988 1619 1.1 2.9 0 7.7 1 3.3

13 1.058 1712 0.85 3.8 1.9 4.1 0.85 4.3

14 1.158 1903 0.95 2.9 0.17 6.7 1.1 2.8

15 1.199 1936 0.92 4.4 0.33 7.6 1.5 2.8

16 1.319 2184 0.99 3.9 0.15 7.1 0.91 4.3

17 1.158 2174 0.95 3.1 17 5 18 4

18 1.351 2647 0.59 2 0.22 3.4 0.67 2.2

19 1.596 2962 1.3 1.9 0.38 4.7 1.1 2.4

20 2.383 3919 0.63 2.4 0.38 3.6 0.76 2.1

21 3.2 5592 0.63 1.4 0.41 2 0.66 1.4

Mean 0.98 3.55 2.21 7 1.76 4.90
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Comparison to Single Objective Function for Small Scale Problems

Until now, we compared the optimal solutions and the time taken in obtaining the

solution for different small scale problems but this does not explain the reliability of

the methods and their Pareto front. There are different ways to measure the reliability

of multiobjective optimization models. One of the ways is to optimize each objective

function individually in order to study the diversity characteristics of the trade-off

surface in a Pareto front. Table 4.14 represents a comparison between the results of

single objective optimization and multiobjective optimization for 21 problems over

the 4 different instances (refer to Appendix C for the results of each instance). The

first column in the table represents the problem number. The optimal delay and

traffic for each problem when optimized individually are given in columns 2 and 3.

Columns 4, 5, 6, 7, 8 and 9 represent the percentage difference between the individual

single objective optimal result and the compromised optimal values obtained using the

three multiobjective optimization methods shown in Table 4.12. The mean difference

in optimal delay for the weighted sum method is 0.98% and the traffic is 3.55%. For

the hierarchical method, the mean difference in delay and traffic for all the small

scale problems is 2.21% and 7% respectively. Whereas, the trade-off method attained

a mean difference of 1.76% for optimal delay and 4.9% for optimal traffic compared

to individual optimization. For half of the problems, the optimal delay obtained by

the hierarchical method is exactly the same as the individually optimized delay but

the difference in traffic is high compare to the other two methods. This is due to the

tight delay constraint which ensures minimal sacrifice of optimal delay in the network.

Overall, the difference in each of the result is not more than 7%, which shows that

for small scale problems, all of the three methods are able to solve multiobjective

functions, returning nearly the same result as the single objective optimization for

each objective function.

The Hypervolume Indicator

The hypervolume indicator is another widely used performance metric for mul-

tiobjective optimization. Figure 4.10 shows the HV comparison between the three

methods for the small scale problems. For different problem sizes we obtain different

HV ranging from a lowest value of 0.274 to a highest value of 0.783. From the figure,

it can be observed that the hierarchical method results in smaller HV compared to

the other two methods. This is due to the lack of non-dominated member in the
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Figure 4.10: Average HV indicator for small scale problems

Pareto front, as the hierarchical method can at most generate only eight points or

less in the Pareto front. Moreover, the delay constraint does not allow to explore as

many combinations as the other two methods can do. The weighted sum method and

the trade-off method have similar HV for its respective Pareto front for each problem.

However, the trade-off method outperforms the weighted sum method by a slight mar-

gin proving that it has more diverse non-dominated solutions and better convergence

towards the true approximated Pareto front among all the three methods.

The following section explores the effect of increasing the problem size to a larger

scale.

4.3.3 Large scale problems

The second set of problems shows how the three methods behave when the num-

ber of possible placement locations is increased. The number of possible placement

locations is increased from 5 to 10 for a range between 10 to 60 edge device clusters

(see Table 4.15). The number of edge device cluster is stopped at 60 because after

45 edge device clusters, optimal solutions were not guaranteed as several iterations
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Table 4.15: Problem size for the large scale FPP

Problem # of edge device clusters # of possible placement locations

22 10 10

23 15 10

24 20 10

25 25 10

26 30 10

27 35 10

28 40 10

29 45 10

30 50 10

31 55 10

32 60 10

where not returning the optimal solution within the time limit. A total of 44 prob-

lems were solved with 11 different problem sizes and the average of each problem size

was used for the analysis of the problem set (refer to Appendix B for the results of

all instances). We used the same CPLEX and hardware environment as defined for

the example problem.

The first column in Table 4.16 represents the problem number with respect to the

problem size presented in Table 4.15. The second, third and fourth columns represent

respectively the total delay in the network, the total traffic going to the cloud and

the solution time for the weighted sum optimization method; whereas the fifth, sixth

and seventh columns represent respectively the total delay in the network, the total

traffic going to the cloud and the solution time for the hierarchical method. Finally,

columns 8, 9 and 10 show respectively the total delay in the network, the total traffic

going to the cloud and the solution time for the trade-off method. It is important

to note that some of the iterations could not find the optimal value within the time

limit. Although these solutions are not optimal, they were still included in the Pareto

front. The fuzzy-based mechanism which was used to find the best compromise result

always returned the membership value which has been solved within the time limit.
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Table 4.16: Results obtained from the solver for large scale problems (average over 4
instances)

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

22 0.119 127 2 0.119 127 5 0.119 129 2

23 0.197 157 19 0.196 164 13 0.197 166 6

24 0.261 226 258 0.259 235 124 0.261 237 2700

25 0.341 355 6020 0.34 371 807 0.343 344 10445

26 0.449 607 1230 0.444 630 320 0.447 613 936

27 0.492 576 1187 0.494 627 2504 0.495 612 801

28 0.589 713 2110 0.579 785 1753 0.585 731 946

29 0.691 840 4612 0.687 908 4383 0.691 845 6414

30 0.666 897 2001 0.66 972 2837 0.664 924 1615

31 0.783 944 6063 0.769 1058 3359 0.783 950 6080

32 0.876 1195 12054 0.856 1254 9009 0.864 1210 8370

As it is for a small number of problems, we cannot make sure that this will always

be the case.

All the three methods returned a lowest delay value of 0.119 seconds, whereas the

weiighted sum method and the hierarchical method attained the lowest traffic value

of 127 Mbps.

Figure 4.11 graphically represents the delay comparison between the three meth-

ods for large scale problems over four different instances with a 95% CI. As it can

be noticed from the figure, as the problem size increases, the delay in the network

also increases. We can observe a linearity in the increment of delay for problems 22

to 29, but the pattern is disrupted by problem 30 for which the delay in the network

is less than the previous problem size. The pattern continues for problem 31 and

32. However, we believe that, if we run each problem for more than four instances, a

more linear pattern can be seen without any interruption.

The traffic comparison between the three methods for the four different instances

of the second problem set is illustrated in Figure 4.12. The vertical bars on the

columns show a 95% CI for each problem. The traffic obtained from the weighted

sum and trade-off are very similar, whereas the hierarchical method attains a slightly

higher traffic for every problem. This is because, in the FPP, the hierarchical method
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Figure 4.11: Delay comparison with 95% CI for large scale problems (average over 4
instances)

was proposed with respect to a delay sensitive network. It can be clearly observed

from the figure, that the traffic in the cloud increases linearly with the problem size

for first 5 problems. However, problem 27 interrupts the pattern. The pattern again

continues for the last 5 problems. If the number of instances is increased a smoother

pattern can be observed.

The average solution times are illustrated in Figure 4.13 for the three methods over

four instances. As the vertical axis in the figure is in logarithmic scale, the calculated

CI could not be illustrated. The figure shows that there is a non linear increasing

pattern for the average solution time for all the problems. The randomness in the

solution time relates to the theory that the combinational space are shortened by the

solver using heuristics. As the figure depicts, for the same problem size there is a

visible difference in solution time for the three methods. For example, to solve problem

25, the weighted sum method takes 6020 seconds, the hierarchical method solves in

807 seconds and the trade-off method takes 10445 seconds. Each method generates

a different search space for the same problem, hence solving the same problem size
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Figure 4.12: Traffic comparison with 95% CI for large scale problems (average over 4
instances)

Figure 4.13: Solution time comparison for large scale problems (average over 4 in-
stances)
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Table 4.17: Average solution comparison among the three methods over 4 instances
for large scale problems

Weighted Sum Hierarchical Trade-off

Problem
Delay Gap

(%)
Traffic Gap

(%)
Delay Gap

(%)
Traffic Gap

(%)
Delay Gap

(%)
Traffic Gap

(%)

22 0.013 0 0.019 0 0 1.2

23 0.74 0 0 4.3 0.67 5.7

24 0.55 0 0 4.1 0.44 5

25 0.56 3.3 0 7.7 0.96 0

26 1 0 0 3.7 0.68 1

27 0 0 0.22 8.7 0.57 6.2

28 1.6 0 0 10 1.1 2.6

29 0.67 0 0 8.1 0.63 0.56

30 0.94 0 0 8.3 0.65 3

31 1.9 0 0 12 1.9 0.65

32 2.3 0 0 4.9 0.94 1.2

Mean 0.93 0.3 0.022 6.53 0.78 2.46

with different solution time.

Comparison to the Best

Table 4.17 represents the comparison of results among the three multiobjective

optimization methods for large scale problems. Column 1 in the table shows the

problem number. The second and third columns show the percentage difference for

the average delay and traffic between the weighted sum method and the minimum

value obtained from all three methods. Columns 4 and 5 represent the percentage gap

for the average delay and traffic between the hierarchical method and the minimum

value achieved from all three methods. Whereas, columns 6 and 7 illustrate the

average delay and traffic percentage difference between the trade-off method and the

minimum objective function value returned by all three methods. Although, the

hierarchical method returns the best results for the delay value in the network, the

weighted sum method performs the best when both objectives are considered, with a

lowest mean percentage difference of 1.23 % when both objectives are combined.
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Table 4.18: Solutions comparison between single objective and multiobjective over 4
instances for large scale problems

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

22 0.119 127 0 0 0 0 0 1.6

23 0.196 154 0.51 1.9 0 6.5 0.51 7.8

24 0.259 224 0.77 0.89 0 4.9 0.77 5.8

25 0.339 316 0.59 12 0.29 17 1.2 8.9

26 0.444 582 1.1 4.3 0 8.2 0.68 5.3

27 0.493 552 0.2 4.3 0.2 14 0.41 11

28 0.579 679 1.7 5 0 16 1 7.7

29 0.686 784 0.73 7.1 0.15 16 0.73 7.8

30 0.659 836 1.1 7.3 0.15 16 0.76 11

31 0.768 874 2 8 0.13 21 2 8.7

32 0.853 1144 2.7 4.5 0.35 9.6 1.3 5.8

Mean 1.14 5.53 0.21 12.92 0.94 7.4

Comparison to Single Objective Function for Large Scale Problems

To understand the reliability of the three methods for large scale problems, the

two objective functions were optimized individually. The average results over the 4

different instances (refer to Appendix C for the results of each instance) are tabulated

in Table 4.18 and compared with the multiobjective optimization results. In the table,

column 1 represents the problem number referring to the the problem size from Table

4.15. The delay and traffic for each individually optimized problem is given in columns

2 and 3 respectively. Columns 4 and 5 show the delay and traffic gap between the

weighted sum method and the single objective. The delay and traffic gap for the

hierarchical method are given in columns 6 and 7. Finally, the eighth and ninth

columns show the gap obtained from the trade-off method.

The weighted sum method returns a combined lowest percentage gap of 6.67%

among the three methods. Overall, the percentage gap are very reasonable considering

the trade-off, summarizing that for large scale FPP, the proposed methods can return

multiobjective optimized solution as the near optimal solution of single objective

functions.
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Figure 4.14: Average HV indicator for large scale problems

The Hypervolume Indicator

Figure 4.14 portrays the average HV for large scale FPP for the three methods.

The highest HV of 0.9396 was achieved by the hierarchical method, whereas the trade-

off method gives the lowest HV of 0.2993. It can be observed that the hierarchical

and the trade-off method show an opposite pattern with the increase of problem size.

For the first problem, the hierarchical method gives the best Pareto front but keeps

on getting worse as the problem size increases and it is the opposite for the trade-

off method. Compared to the other two methods, the weighted sum gives a more

consistent set of non-dominated solutions for all the problem sizes. Hence, it can be

deduced that the weighted sum generates the best dominated space of the solutions

in a Pareto front.

4.3.4 Impact of the Number of Possible Placement Location

In the previous two sections, we analyzed the results obtained for different number

of edge device clusters with a fixed number of placement locations i.e., 5 and 10. In

this section, we investigate the effect of the two different number of possible placement

locations when the number of edge device clusters is set to 10, 15, 20, 25, 30, 35, 40,
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Figure 4.15: Delay comparison for different number of possible locations using the
weighted sum method

45, 50, 55 and 60.

Figure 4.16: Delay comparison for different number of possible locations using the
hierarchical method

Figure 4.17: Delay comparison for different number of possible locations using the
trade-off method

Figures 4.15 to 4.23 represent the results for each set of edge device clusters
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Figure 4.18: Traffic comparison for different number of possible locations using the
weighted sum method

Figure 4.19: Traffic comparison for different number of possible locations using the
hierarchical method

grouped by the number of maximum possible placement locations for the three meth-

ods respectively. From the figures, it can be seen that as the number of edge device

clusters increases, the delay gap for the two different number of placement location

is also increasing for all the three methods. To be exact, the delay is higher when

only 5 possible placement locations are used. As more possible placement locations

are added and for the same number of edge device clusters, more fog nodes can be

installed in the network and better locations can be selected resulting in a decrease

of the total network delay. Moreover, as the number of possible placement location

is increasing, the budget is also increasing. In terms of the average traffic, a similar

pattern can be observed. With the availability of more fog locations, less traffic is
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Figure 4.20: Traffic comparison for different number of possible locations using the
trade-off method

Figure 4.21: Solution time comparison for different number of possible locations using
the weighted sum method

Figure 4.22: Solution time comparison for different number of possible locations using
the hierarchical method
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Figure 4.23: Solution time comparison for different number of possible locations using
the trade-off method

sent to the cloud as most of the requests are processed at the fog layer.

Unlike the objective functions, the solution time plotted in figures 4.21 to 4.23

show more randomness. Moreover, a larger gap in the solution time can be observed

for all the three methods. For example, the solution time for 60 edge device clusters

and 5 possible placement locations is 24 seconds for the weighted sum, 35 seconds

for the hierarchical and 73 seconds for the trade-off method. Whereas, for the same

number of edge device cluster and 10 maximum placement locations, the solution

time is 12054 seconds for the weighted sum, 9009 seconds for the hierarchical and

8370 seconds for the trade-off method. The larger gap is because the FPP is an

integer linear programming problem which is NP-Hard [80].

4.4 Chapter Summary

Planning a fog network is a complex problem. Some of the difficult aspects of

FPP include the finding of information about the input parameters, fog node features,

finding the location to deploy fog nodes, the assignment of the edge device clusters,

etc. In this chapter, we identified the features and characteristics of the proposed

FPP based on the optimization results for different topologies. The results for the

three multiobjective optimization methods were obtained in terms of total delay in

the network, traffic in the cloud and solution time. The detailed example returned

exactly the same result as the manually derived, helping in understanding the model.

To evaluate the FPP model, two different sets of problem sizes were generated. 21
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different problem sizes were solved for the small scale problems and 11 different prob-

lem sizes were solved for the large scale problems. With the increase of problem size,

delay, traffic and solution time also increases. The objective functions had a linear

pattern in the increment, whereas the solution time increased in a non linear form.

This illustrates that the FPP is a NP-hard problem and further increase in problem

size will increase the solution time exponentially. Furthermore, the three methods

were compared, in terms of the objective functions for all the problems. For most of

the problem sizes, the hierarchical method was able to return good solutions for the

delay in the network at the expense of traffic. This makes the hierarchical method

the best method for a delay sensitive network. Whereas, the weighted sum method

achieved the best compromised result among the three multiobjective optimization

methods while considering the trade-off between the objective functions which should

be used for delay-traffic aware networks.

The performance of the methods used for the model was also analyzed showing

that the multiobjective methods are able to give similar results compared to the

single objective optimization. Moreover, the HV value indicates that the weighted

sum and trade-off methods are able to generate satisfactory Pareto fronts. Finally,

we compared the results for two different numbers of possible fog node placement

locations. It was seen that with the same number of edge device cluster, if we increase

the maximum possible placement locations, the delay in the network and the traffic

in the cloud decreases but the solution time increases significantly.

The next chapter summarizes the thesis and describes the different improvements

that can be done as future work.



Chapter 5

Conclusions and Future Work

Since, fog networks are designed to be closer to the edge devices, it is very im-

portant to develop efficient network planning tools for the best service. This thesis

studies the planning and design of a brand new fog networks by simultaneously find-

ing the optimal location, number, capacity and the type of the fog nodes, as well as

the interconnection between the fog nodes and the cloud. The optimization model

minimizes the network delay and the traffic in the cloud which are two of the most

important parameters when dealing with the fog networks. To obtain the optimal

solutions, the memory, vCPU and the link speed of the edge devices were considered.

The FPP is an integer linear problem that ensures the minimization of the objective

functions with respect to uniqueness, capacity, assignment, budget and integrality

constraints.

Before solving the planning model, different sizes of problems were generated

with different edge device input parameters and randomized locations for edge device

clusters and the possible fog node placements. A detailed example was solved to

better understand the planning model. As the FPP contains two objective functions,

three multiobjective methods were used to obtain optimal solutions. More precisely,

the weighted sum, the hierarchical and the trade-off methods were used in solving the

FPP and a fuzzy-based mechanism was used to obtain the best compromised results.

Some general trends can be observed for the delay in the network, the traffic in the

cloud and the solution time for the different topologies. As the input size increases,

the objective functions and the solution time for each multiobjective optimization

method also increases. However, for the same number of edge device clusters and

a higher number of possible fog node placement locations, the objective functions

decrease but the solution time increases. For example, the planning problem with 50

78



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 79

edge device clusters and 5 possible placement locations results in a minimum delay

of 0.694 seconds and a minimum traffic of 1231 Mbps with a lowest solution time of

7 seconds. Whereas, for the same number of edge device clusters and 10 possible fog

node placement locations the optimal solution for delay is 0.66 seconds and the traffic

is 897 Mbps with a lowest solution time of 897 seconds.

In term of the methods, the weighted sum method was able to return the best

trade-off results for the delay and the traffic. The hierarchical method was able to

achieve better delay but the traffic was worse compared to the other two methods. For

small scale problems, the trade-off method generated the best set of non-dominated

solutions. It shows that, for small scale problems, the trade-off method can be used

for situations were the decision maker can make their own choice of best result from

the set of non-dominated solutions, instead of using the fuzzy-based approach. The

weighted sum method generated the best Pareto optimal set for the large scale prob-

lems.

5.1 Future Works

To the extent of our knowledge, research in planning and design of fog networks

is a very new topic. Hence, the work in this study can be extended to many possible

directions. Some of them are as follows:

� We have restricted our delay equation to transmission, propagation and process-

ing delays. For a better approximation of the end-to-end delay, the addition

of queuing delay could be a major improvement. For the FPP, the budget is

limited to a fixed percentage of the maximum cost, in the future the model can

be analyzed by varying the budget percentage.

� One of the problems with the weighted sum method is that it is impossible to

obtain points on non-convex region of the Pareto front in the criterion space [81].

The exponential weighted criterion method can be used to obtain the points on

the non-convex region of the Pareto optimal set [82]. The hierarchical and

the trade-off methods are modified according to a delay sensitive network, but

sometimes it is hard for the decision makers to articulate a preference. In that

case, different global criterion methods can be used to obtain a better trade-off

between the objective functions.
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� The solution time for the exact algorithm is very high. To decrease the solu-

tion time, we can run many problems and test different parameter settings in

CPLEX for each problem. As the FPP is a NP-hard problem and the solution

time increases exponentially with the increase of input size, obtaining the best

parameters for the solver will provide a negligible improvement. A viable im-

provement can be the use of multiobjective heuristic algorithms like Strength

Pareto Evolutionary Algorithm (SPEA) or Non-dominated Sorting Genetic Al-

gorithm II (NSGA-II). Although the solutions obtained will not be optimal, a

significant improvement can be achieved in terms of solution time.

� After deploying the fog network, the next step is to manage the resource and

the workload. In a dynamic network where the edge device location and density

is changing, efficient algorithms need to be developed to assign the edge devices

to appropriate fog nodes. The SDN architecture can be used for enhancement

of performance and betterment of traffic and fog node management.

� Another future direction can be the expansion of fog networks. Once the fog

network is planed and implemented, over time, more edge device clusters may

be added to the network. The proposed model can be extended to an expansion

model, where new fog nodes can be added (or replaced) without changing the

whole network infrastructure.
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Appendix A

Results for Small Scale Problem

A.1 Instance 1

Table A.1: Result obtained from the solver for small scale problem: Instance 1

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

1 0.104 67 1 0.098 110 3 0.104 78 2

2 0.177 116 2 0.177 116 3 0.177 116 2

3 0.277 448 2 0.27 474 4 0.277 448 2

4 0.354 554 3 0.348 595 7 0.354 554 6

5 0.387 631 3 0.387 631 8 0.387 631 3

6 0.582 815 3 0.576 857 10 0.582 815 3

7 0.651 1130 16 0.651 1130 24 0.651 1130 31

8 0.664 953 2 0.62 1064 18 0.626 1011 11

9 0.671 1246 15 0.665 1319 20 0.671 1256 56

10 0.792 1224 119 0.786 1292 45 0.792 1224 265

11 0.996 1576 14 0.984 1643 33 0.99 1607 27

12 1.118 1853 10 1.106 1917 36 1.119 1850 44

13 1.06 1825 8 1.054 1914 37 1.06 1825 110

14 1.113 1879 10 1.107 1908 94 1.113 1879 232

15 1.305 2099 11 1.305 2102 46 1.304 2102 106

16 1.265 2269 8 1.254 2395 65 1.265 2298 76

17 1.479 2628 2801 1.479 2628 66 1.479 2630 693

18 1.401 2561 279 1.389 2643 83 1.401 2561 1375

19 1.538 2732 29 1.539 2732 74 1.538 2740 44

20 2.42 4504 83 2.415 4533 186 2.426 4481 130

21 3.13 5356 1548 3.124 5385 1107 3.135 5348 9019
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A.2 Instance 2

Table A.2: Result obtained from the solver for small scale problem: Instance 2

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

1 0.068 11 1 0.068 11 2 0.068 101 2

2 0.225 277 1 0.225 277 3 0.225 277 2

3 0.269 420 2 0.269 420 4 0.269 420 2

4 0.4 435 3 0.4 435 6 0.4 435 2

5 0.444 491 3 0.444 491 8 0.45 469 5

6 0.549 910 4 0.543 990 14 0.549 910 14

7 0.634 937 3 0.629 961 12 0.64 925 5

8 0.584 987 3 0.578 1061 21 0.584 987 46

9 0.702 1247 5 0.695 1279 19 0.702 1248 9

10 0.817 1302 8 0.811 1374 22 0.817 1302 27

11 0.822 1312 14 0.816 1442 28 0.822 1309 164

12 0.916 1460 134 0.909 1511 44 0.916 1460 75

13 1.16 1995 91 1.153 2052 56 1.16 1995 178

14 1.177 2050 5 1.158 2215 67 1.177 2050 48

15 1.199 2212 24 1.192 2253 52 1.205 2189 2435

16 1.315 2044 557 1.309 2087 69 1.315 2044 221

17 1.277 1713 8 1.264 1778 57 1.276 1725 79

18 1.629 3007 207 1.624 3034 69 1.629 3007 118

19 1.55 3268 9 1.526 3340 74 1.543 3294 23

20 2.384 3939 149 2.374 4013 186 2.384 3942 759

21 3.318 5682 5484 3.311 5725 286 3.324 5665 1759
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A.3 Instance 3

Table A.3: Result obtained from the solver for small scale problem: Instance 3

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

1 0.167 255 2 0.167 255 2 0.167 255 1

2 0.178 155 2 0.178 155 4 0.178 155 3

3 0.287 352 3 0.287 352 5 0.287 352 2

4 0.261 241 3 0.255 268 6 0.261 241 3

5 0.44 644 2 0.433 697 8 0.44 644 4

6 0.554 798 4 0.554 798 11 0.554 800 3

7 0.531 613 4 0.518 676 13 0.524 646 7

8 0.736 1306 6 0.736 1306 16 0.736 1306 12

9 0.733 1175 3 0.726 1211 24 0.733 1175 10

10 0.926 1633 4 0.921 1679 23 0.926 1633 10

11 1.016 1660 4 1.003 1738 28 1.016 1660 11

12 0.959 1450 9 0.952 1533 36 0.959 1433 36

13 0.995 1608 3502 1.026 1515 36 0.994 1633 3152

14 1.269 2031 472 1.269 2031 52 1.275 2013 99

15 1.182 1889 25 1.175 1967 68 1.182 1889 492

16 1.385 2715 16 1.385 2715 55 1.385 2715 1471

17 0.905 2128 6 1.279 2188 62 1.284 2155 159

18 0.996 2624 5 0.995 2660 68 0.994 2684 10

19 1.592 2958 49 1.581 3037 75 1.592 2958 411

20 2.354 3559 183 2.35 3572 178 2.354 3559 50

21 3.257 6026 7094 3.252 6046 298 3.25 6046 3075
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A.4 Instance 4

Table A.4: Result obtained from the solver for small scale problem: Instance 4

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

1 0.111 56 1 0.111 64 2 0.111 56 1

2 0.192 153 2 0.184 152 3 0.192 153 2

3 0.232 384 4 0.232 420 5 0.232 384 3

4 0.358 334 3 0.358 334 6 0.358 334 5

5 0.405 648 3 0.393 719 8 0.405 651 3

6 0.62 1152 2 0.62 1152 13 0.62 1152 3

7 0.474 913 4 0.493 855 12 0.474 913 13

8 0.691 1200 3 0.685 1240 18 0.691 1200 8

9 0.697 1267 3 0.691 1321 20 0.703 1245 28

10 0.751 1332 8 0.751 1332 26 0.751 1337 20

11 0.929 1584 63 0.922 1612 51 0.928 1596 89

12 1.004 1900 20 0.985 2011 34 0.997 1943 45

13 1.053 1680 24 1.078 1646 38 1.053 1689 550

14 1.119 1875 106 1.106 1966 57 1.119 1883 312

15 1.154 1882 9 1.142 2014 57 1.179 1782 69

16 1.361 2046 9 1.336 2154 53 1.361 2052 22

17 1.014 2498 6 1.403 2539 61 1.403 2539 35

18 1.41 2607 3547 1.41 2607 81 1.416 2564 249

19 1.787 3111 12 1.762 3300 73 1.781 3140 75

20 2.433 4060 1634 2.428 4117 291 2.439 4023 521

21 3.175 5617 1029 3.164 5667 327 3.174 5630 1263



Appendix B

Results for Large Scale Problem

B.1 Instance 1

Table B.1: Result obtained from the solver for large scale problem: Instance 1

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

22 0.131 199 2 0.131 199 4 0.131 201 2

23 0.223 104 11 0.223 104 13 0.223 104 4

24 0.241 316 3 0.241 316 13 0.241 316 4

25 0.345 310 140 0.338 336 18 0.345 310 71

26 0.501 694 346 0.502 694 314 0.501 694 369

27 0.495 680 456 0.494 711 3215 0.495 690 851

28 0.548 648 404 0.529 783 1963 0.535 719 755

29 0.69 764 553 0.684 877 2501 0.69 771 2369

30 0.675 871 5258 0.675 880 4758 0.674 880 2781

31 0.726 1135 14804 0.714 1249 1144 0.726 1135 1514

32 0.833 893 30324 0.841 881 7023 0.845 853 6973
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B.2 Instance 2

Table B.2: Result obtained from the solver for large scale problem: Instance 2

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

22 0.09 149 2 0.09 149 4 0.09 149 2

23 0.209 151 3 0.204 164 7 0.209 151 2

24 0.243 160 726 0.237 197 412 0.242 170 10754

25 0.294 479 7314 0.294 479 286 0.294 479 13442

26 0.404 594 63 0.392 650 25 0.398 618 62

27 0.54 545 3886 0.533 622 6190 0.533 622 1051

28 0.605 834 2172 0.6 883 648 0.605 834 1111

29 0.761 901 5401 0.755 943 2204 0.761 908 11549

30 0.71 1052 1216 0.71 1052 205 0.71 1052 679

31 0.841 1092 694 0.834 1178 7555 0.841 1092 6368

32 0.993 1350 8233 0.943 1425 11234 0.942 1425 23316
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B.3 Instance 3

Table B.3: Result obtained from the solver for large scale problem: Instance 3

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

22 0.16 116 2 0.16 116 4 0.16 116 2

23 0.138 208 3 0.138 217 11 0.137 223 3

24 0.261 206 301 0.262 206 59 0.261 206 34

25 0.372 467 131 0.372 467 227 0.377 422 523

26 0.432 687 4450 0.432 687 379 0.432 687 3255

27 0.467 540 183 0.461 577 51 0.467 540 150

28 0.592 648 272 0.585 718 796 0.592 648 351

29 0.692 880 259 0.692 902 4250 0.692 880 504

30 0.637 738 93 0.624 923 353 0.636 785 275

31 0.782 552 1378 0.763 695 2297 0.776 587 9774

32 0.84 1302 2463 0.811 1405 1340 0.833 1326 1492
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B.4 Instance 4

Table B.4: Result obtained from the solver for large scale problem: Instance 4

Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

Delay
(s)

Traffic
(Mbps)

Solution Time
(s)

22 0.094 45 2 0.094 45 6 0.094 48 2

23 0.22 165 57 0.22 170 19 0.22 185 13

24 0.298 222 2 0.298 222 12 0.298 257 6

25 0.355 166 16494 0.354 201 2694 0.355 166 27744

26 0.458 455 59 0.452 490 560 0.458 455 57

27 0.467 540 222 0.486 596 559 0.486 596 1152

28 0.61 721 5592 0.603 755 3602 0.61 723 1565

29 0.622 816 12234 0.616 908 8575 0.622 820 11233

30 0.642 928 1434 0.63 1031 6029 0.636 978 2723

31 0.784 998 7373 0.764 1111 2440 0.79 987 6664

32 0.837 1236 7195 0.831 1305 16439 0.837 1236 1698



Appendix C

Results for Single and Multiobjective

C.1 Instance 1

Table C.1: Result for single objective and multiobjective: Instance 1

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

1 0.098 67 6.3 0 0 65 6.2 16

2 0.177 111 0.29 4.9 0.34 4.9 0.29 4.9

3 0.27 443 2.5 1.1 0.0072 6.9 2.5 1.1

4 0.347 542 1.9 2.2 0.097 9.7 1.9 2.2

5 0.386 564 0.08 12 0.08 12 0.08 12

6 0.576 806 1.1 1.2 0.00034 6.3 1.1 1.2

7 0.65 1073 0.14 5.2 0.14 5.2 0.14 5.2

8 0.62 953 7.1 0 0.07 12 1 6

9 0.665 1191 0.96 4.7 0.049 11 0.92 5.5

10 0.785 1172 0.81 4.5 0.082 10 0.81 4.5

11 0.983 1523 1.4 3.5 0.097 7.9 0.74 5.6

12 1.106 1845 1.1 0.44 0.0091 3.9 1.2 0.29

13 1.054 1765 0.65 3.4 0.025 8.5 0.65 3.4

14 1.1 1826 1.1 2.9 0.61 4.5 1.1 2.9

15 1.298 2038 0.51 3 0.5 3.1 0.46 3.1

16 1.253 2165 1 4.8 0.13 11 0.99 6.1

17 1.472 2482 0.47 5.9 0.49 5.9 0.47 6

18 1.388 2518 0.96 1.7 0.08 5 0.96 1.7

19 1.531 2674 0.42 2.2 0.48 2.2 0.42 2.5

20 2.407 4383 0.54 2.7 0.35 3.4 0.81 2.2

21 3.11 5263 0.65 1.8 0.47 2.3 0.82 1.6

22 0.131 199 0.098 0 0.098 0 0.057 1.3

23 0.223 93 0.051 12 0.066 12 0.051 12

24 0.241 316 0.038 0 0.038 0 0.038 0

25 0.338 300 2 3.4 0.0091 12 2 3.4

26 0.501 672 0.068 3.3 0.088 3.3 0.068 3.3

27 0.494 647 0.2 5.2 0.089 10 0.2 6.7

28 0.529 622 3.6 4.1 0.099 26 1.3 16

29 0.684 705 0.84 8.4 0.083 25 0.83 9.4

30 0.673 807 0.26 8 0.19 9.1 0.17 9.1

31 0.713 1066 1.8 6.4 0.096 17 1.8 6.4

32 0.833 796 0.07 12 1 11 1.5 7.1
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C.2 Instance 2

Table C.2: Result for single objective and multiobjective: Instance 2

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

1 0.068 11 0 0 0 0 0 0

2 0.224 250 0.1 11 0.1 11 0.1 11

3 0.269 412 0.038 2 0.038 2 0.038 2

4 0.4 406 0.048 7.1 0.048 7.1 0.048 7.1

5 0.444 447 0.046 10 0.046 10 1.4 5.1

6 0.543 894 1.2 1.8 0.022 11 1.2 1.8

7 0.628 888 0.98 5.6 0.088 8.3 1.9 4.2

8 0.578 932 1.1 0 0.04 14 1.1 5.8

9 0.695 1225 0.97 1.8 0.043 4.4 0.95 1.9

10 0.811 1223 0.77 6.5 0 12 0.77 6.5

11 0.816 1253 0.79 4.7 0 15 0.79 4.4

12 0.909 1414 0.75 3.2 0.049 6.9 0.75 3.2

13 1.153 1921 0.61 3.9 0.054 6.8 0.61 3.9

14 1.158 2000 1.6 2.5 0.02 11 1.6 2.5

15 1.186 2132 1 3.8 0.49 5.7 1.6 2.7

16 1.308 1968 0.5 3.9 0.046 6 0.5 3.9

17 1.258 1655 1.5 3.5 0.48 7.4 1.5 4.2

18 1.616 2972 0.79 1.2 0.49 2.1 0.79 1.2

19 1.519 3232 2.1 1.1 0.45 3.4 1.6 1.9

20 2.365 3880 0.82 1.5 0.41 3.4 0.82 1.6

21 3.305 5599 0.4 1.5 0.2 2.3 0.59 1.2

22 0.09 149 0 0 0.0068 0 0 0

23 0.204 151 2.8 0 0.0014 8.5 2.8 0

24 0.237 160 2.5 0 0 0 2 0

25 0.294 427 0.13 12 0.13 12 0.13 12

26 0.391 580 3.3 2.4 0.096 12 1.7 6.6

27 0.533 481 1.5 13 0.13 29 0.11 29

28 0.599 788 1 5.8 0.15 12 1 5.8

29 0.754 866 0.96 4 0.077 8.9 0.87 4.9

30 0.709 957 0.12 9.9 0.14 9.9 0.12 9.9

31 0.834 985 0.86 11 0.039 20 0.86 11

32 0.941 1350 5.5 0.000027 0.16 5.6 0.13 5.6
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C.3 Instance 3

Table C.3: Result for single objective and multiobjective: Instance 3

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

1 0.167 255 0.075 0.0000079 0.075 0 0.039 0.0000079

2 0.177 145 0.39 7.1 0.43 7.1 0.39 7.1

3 0.287 341 0.074 3.2 0.074 3.2 0.074 3.2

4 0.255 226 2.4 6.8 0.026 18 2.4 6.8

5 0.433 630 1.6 2.2 0.057 11 1.6 2.2

6 0.554 766 0.077 4.3 0.095 4.3 0.062 4.5

7 0.518 586 2.4 4.6 0.018 15 1.2 10

8 0.736 1267 0.067 3 0.089 3 0.067 3

9 0.726 1154 0.9 1.8 0.028 4.9 0.9 1.8

10 0.92 1599 0.68 2.1 0.085 5 0.68 2.1

11 1.002 1637 1.3 1.4 0.038 6.2 1.3 1.4

12 0.952 1393 0.77 4.1 0.028 10 0.77 2.9

13 0.987 1515 0.79 6.1 3.9 0 0.66 7.8

14 1.268 1957 0.053 3.8 0.073 3.8 0.51 2.9

15 1.169 1824 1.1 3.6 0.5 7.8 1.1 3.6

16 1.379 2580 0.44 5.2 0.49 5.2 0.44 5.2

17 0.899 2076 0.69 2.5 42 5.4 43 3.8

18 0.993 2592 0.32 1.2 0.19 2.6 0.12 3.5

19 1.573 2901 1.2 1.9 0.49 4.7 1.2 1.9

20 2.342 3501 0.54 1.6 0.34 2 0.54 1.6

21 3.237 5940 0.6 1.4 0.46 1.8 0.4 1.8

22 0.16 116 0 0 0 0 0 0

23 0.137 208 0.52 0 0.5 4.5 0.33 7.4

24 0.261 198 0.07 3.7 0.097 3.7 0.07 3.7

25 0.372 384 0.1 22 0.1 22 1.6 9.8

26 0.431 671 0.11 2.2 0.14 2.2 0.11 2.2

27 0.461 538 1.4 0.44 0.0087 7.4 1.4 0.44

28 0.584 617 1.2 5.2 0.086 16 1.2 5.2

29 0.691 849 0.15 3.7 0.096 6.3 0.15 3.7

30 0.624 733 2.1 0.74 0.085 26 2 7.1

31 0.761 512 2.6 7.9 0.14 36 1.9 15

32 0.807 1272 4.1 2.4 0.47 10 3.2 4.3
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C.4 Instance 4

Table C.4: Result for single objective and multiobjective: Instance 4

Single Objective Weighted Sum Hierarchical Trade-off

Problem
Delay

(s)
Traffic
(Mbps)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

Delay Gap
(%)

Traffic Gap
(%)

1 0.111 46 0.39 23 0.13 40 0.39 23

2 0.185 146 3.4 4.5 0 3.6 3.4 4.5

3 0.232 365 0.16 5.2 0.1 15 0.16 5.2

4 0.358 304 0.16 10 0.18 10 0.16 10

5 0.393 638 3.1 1.5 0 13 3.1 2

6 0.619 1131 0.053 1.9 0.056 1.9 0.053 1.9

7 0.467 855 1.4 6.8 5.5 0 1.4 6.8

8 0.685 1126 0.97 6.6 0.097 10 0.97 6.6

9 0.691 1217 0.94 4.1 0.031 8.6 1.8 2.3

10 0.751 1294 0.032 2.9 0.036 2.9 0.016 3.3

11 0.922 1523 0.75 4 0.058 5.8 0.7 4.8

12 0.984 1824 2 4.1 0.088 10 1.3 6.5

13 1.04 1646 1.2 2 3.7 0 1.2 2.6

14 1.106 1830 1.2 2.5 0.022 7.5 1.2 2.9

15 1.142 1750 1.1 7.6 0.013 15 3.3 1.8

16 1.336 2022 1.9 1.2 0.017 6.5 1.9 1.5

17 1.004 2485 1 0.53 40 2.2 40 2.2

18 1.409 2505 0.06 4.1 0.066 4.1 0.5 2.4

19 1.762 3041 1.4 2.3 0.019 8.5 1.1 3.3

20 2.419 3912 0.58 3.8 0.36 5.3 0.82 2.8

21 3.149 5567 0.82 0.91 0.47 1.8 0.79 1.1

22 0.094 45 0.025 0 0.05 0 0.016 8.1

23 0.22 165 0.22 0 0.18 3.1 0.091 12

24 0.298 222 0.057 0 0.079 0 0 16

25 0.354 155 0.41 7.1 0.17 30 0.41 7.1

26 0.452 406 1.5 12 0.14 21 1.5 12

27 0.485 545 3.8 8.2 0.097 9.4 0.097 9.4

28 0.603 690 1.1 4.6 0.017 9.5 1.1 4.9

29 0.615 719 1.1 14 0.14 26 1.1 14

30 0.629 847 2.1 9.5 0.2 22 1.1 15

31 0.763 933 2.7 6.9 0.13 19 3.5 5.7

32 0.829 1160 0.88 6.6 0.15 13 0.88 6.6
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