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Abstract

Complex Event Processing (CEP) on sensor-based systems often uses a mobile gateway

agent to forward raw sensor data streams to a remote back-end server. Complex events

that are triggered by multiple raw events are then detected at the back-end server. This

approach relies on a persistent network connection between the back-end server and the

mobile device.

This thesis proposes an edge computing-based mobile CEP technique in which CEP is

performed on the mobile edge device using an embedded CEP engine and the detected

complex events are sent to the back-end server for further processing. A proof-of-concept

prototype for this system has been built using a Siddhi CEP engine and a WSO2 server.

A thorough performance analysis is performed for comparing the proposed system with

the back-end server-based system. The proposed system can handle intermittent network

disconnections and leads to reduced user cost and energy consumption for the mobile

device.
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Chapter 1

Introduction

Stream processing on sensor-based systems deals with processing the sensor data streams

in a near real-time fashion using various stream processing engines to perform streaming

analytics [1]. Complex Event Processing (CEP) is a technique which ingests raw events

from one or more sensor data streams in order to detect various complex events using

Continuous Query Language (CQL). CQL is a declarative query language built on top of

Structured Query Language (SQL) with some additional query constructs such as time

windows and length windows which can be sliding or tumbling in nature depending

upon the window expiration policy [2]. A window provides a temporal bound on an

unbounded data stream that flows continuously. This enables the processing of the un-

bounded data steam over the window length. Generally, a Complex Event (CE) corre-

sponds to the occurrence of multiple raw events each of which may correspond to the

crossing of a specific threshold by a sensor data for example. The major difference be-

tween general stream processing systems (such as Apache Storm [3] and Apache Spark

[4]) and CEP systems is that CEP systems are tuned for lower event processing latency

and have a smaller setup time. Nowadays, CEP is widely used in various fields such as

Business Activity Monitoring (BAM), Business Process Management (BPM), operations

management and healthcare [5]. With the increase in the use of mobile devices and the

availability of low-cost sensors, the popularity of Internet of Things (IoT) based appli-

1
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cations and services are growing rapidly. A number of example use cases of CEP for

sensor-based systems are discussed next.

1. Healthcare: The integration of health sensors with smartphones has enabled health-

care providers to offer Remote Patient Monitoring (RPM) as-a-Service. A survey by

Berg Insight (a market research firm) in 2013 found that nearly 3 million patients

use RPM [6]. Another survey in 2015 showed that 84% of the service providers use

mobile devices for remote patient monitoring [7]. The RPM technique enables ser-

vice providers to remotely monitor diseases such as sleep apnea, arrhythmia and

Congestive Heart Failure (CHF). The streaming data from wearable health sensors

is forwarded as raw data streams to a mobile device using a bluetooth or a WiFi

connection. The mobile device forwards these raw sensor data streams to a cen-

tralized hospital server where various events are co-related using CQL to generate

higher level complex events. The streaming data from various mobile-based em-

bedded sensors such as a gyroscope, accelerometer and Global Positioning System

(GPS) is also fused with data from raw health sensor streams for providing context

enrichment.

2. Smart home: CEP systems can be used in smart homes to provide enhanced security,

remote monitoring, and other home automation tasks. A smart home is a home in

which various sensor-based appliances such as motion detectors, temperature sen-

sors, a smart light system and a Heating Ventilation and Air Conditioning (HVAC)

system are installed. These devices send the sensor data streams to a gateway de-

vice such as a smartphone which forwards the sensor data streams to a back-end

server where complex events are detected and actions are performed [8].

3. Smart building: CEP systems are also used in smart buildings where various sen-
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sors installed in appliances such as elevators, lighting systems, temperature control

systems and energy consumption meters that send the sensor data streams to a cen-

tralized CEP system where complex events are detected [9].

1.1 Motivation for the Thesis
With the advent of the Internet of Things (IoT), CEP can be provided as-a-Service (CEPaaS)

for providing solutions for smart homes, smart buildings, and RPM. In this research, we

have considered RPM as a typical CEP use case. CEPaaS uses a centralized back-end

server-based approach for detection of complex events using the data streams received

from the sensors. This technique forwards all the sensor data through the edge device

that collects the sensor data and sends it to a back-end server for the detection of com-

plex events. Examples of edge devices include smartphones and wireless tablets. Such a

system has several limitations as mentioned below:

1. Persistent connection: Current RPM methodologies collect the sensor data streams

using a tablet or smartphone and forward them to a remote IoT server for complex

event detection using Complex Event Processing as-a-Service (CEPaaS). This tech-

nique necessitates the mobile edge device to remain connected to the network at all

times.

2. High bandwidth consumption and user cost: The main problem associated with

using RPM-as-a-Service is that the user cost is increased a lot, as all of the raw sensor

data streams have to be forwarded to the IoT server for processing. An interesting

alternative method to reduce cost would be to perform the CEP at the edge device

and to send only the CEP alerts to the IoT server.

3. Energy consumption: The power consumption of the mobile device is increased
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as more power is consumed in transmitting the raw sensor data streams from the

mobile device to the IoT server in comparison to processing the streams locally in

the mobile device itself.

4. Data privacy: Security is a big concern in CEPaaS as sensor stream data needs to

be encrypted and other state-of-the-art authentication and authorization measures

need to be applied for the communication between the mobile device and the IoT

server.

5. Transmission throttling: This technique can lead to a decrease in the transmission

rate due to the additional checks and measures which need to be performed for

authentication and authorization.

6. Out-of-order-delivery: Sending multiple sensor data streams to the centralized IoT

server (in parallel to one another) can result in out-of-order delivery of various raw

sensor data streams which may further result in false alarms.

7. Delivery guarantee: The sequence of the events is very crucial in event detection.

To make sure that all the events have arrived on the IoT server exactly-once and in

the exact same sequence they were generated at the sensor, various control signals

have to be sent which lead to additional overhead.

1.2 Proposed Technique
This research focuses on devising an edge-based Mobile Complex Event Processing (MCEP)

system which can effectively handle network unavailability. The system comprises sensor

devices connected to a mobile device that, in turn, is connected to an IoT back-end server.

The complex event processing is done by a CEP engine embedded within the mobile de-

vice which is used at the edge. The IoT server can be deployed in a standalone mode on
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a single server, on a High Availability (HA) cluster or a cloud. The IoT server which has

been used in prototype implementation provides support for batch, real-time, interactive

and predictive analytics. In order to compare the performance of the proposed system

with a CEPaaS system, a server CEP system, providing CEP service has also been de-

vised. In comparison to the Server CEP system, the proposed mobile CEP solution leads

to a decrease in user cost, a decrease in the energy consumption of the mobile device and

a decrease in event processing latency. The end-to-end latency is also reduced in addition

to mobile device memory usage as discussed later in Chapter 5.

1.3 Contributions of the Thesis
This research focuses on devising an edge-based mobile CEP system which can effectively

handle network unavailability, reduce user cost and device power consumption. To the

best of our knowledge, this is the first CEP system where the entire complex event pro-

cessing is done on the mobile device deployed at the edge. The key contributions of this

dissertation are as follow:

• A novel edge-computing-based CEP technique called mobile CEP which has the

ability to detect complex events and generate local notifications even when the mo-

bile device is unable to connect to the remote IoT server due to poor network con-

nectivity. This technique lead to a number of advantages that are listed:

– Connectivity: It can effectively handle temporary disconnection in the network

connecting the edge device with the back-end server

– User benefits: Reduction in the user cost, mobile device power consumption,

and various event processing latencies of the proposed system in comparison

to the state-of-the-art CEPaaS system.
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– Better data privacy: The proposed technique leads to more data privacy as the

complete sensor data processing is done at the edge and the raw sensor data is

not transmitted over the network.

– Out-of-order delivery: The proposed solution circumvents the probability of

out-of-order delivery occurrences as the sensors are connected to the edge de-

vice such as a smart phone using a local dedicated bluetooth/Wi-fi connection

instead of a remote connection used in the case of CEPaaS system.

• Prototype: A proof-of-concept prototype using an Android smartphone has been

developed to demonstrate the effectiveness of the proposed technique.

• Performance Insights: A rigorous performance analysis of the prototypes that leads

to insights into system behavior and performance is performed.

1.4 Scope of the Thesis
At the time of writing of this dissertation, the CEP support for the Siddhi CEP system [10]

used in this thesis is only available for Android and Raspberry-Pi devices and to the best

of our knowledge, no other CEP engine other than Siddhi CEP is available for embedding

within mobile devices. However, if in the future more CEP engines are ported to another

mobile Operating System (OS) such as iOS, Blackberry, Ubuntu, and Microsoft, then the

proposed system can be extended to support these devices with a modest effort. Our

technique can also be extended to achieve a novel hybrid CEP architecture [11] which

can perform stream processing at the mobile device using the embedded CEP engine

and the batch processing at the IoT server using the Spark SQL for example [4]. Also,

the proposed architecture can be used with the edge devices connected to the sensors

with a wired connection. Please note that the accuracy of detection of the complex event
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depends upon the accuracy of the sensor and the complex event detection software used

. Controlling the accuracy of the detection is the beyond the scope of this thesis.

1.5 List of Publications
The list of publications resulting from this research is presented.

• A. S. Dhillon, S. Majumdar, M. S. Hilaire, and A. E. Haraki, “A Mobile Complex

Event Processing System for Remote Patient Monitoring,” in Proceedings of the IEEE

International Conference on Internet of Things (IEEE ICIOT), pp. 1–4, 2018.

• A. S. Dhillon, S. Majumdar, M. S. Hilaire, and A. E. Haraki, “MCEP: A Mobile device

based Complex Event Processing System for Remote Healthcare,” in Proceedings of

the 11th IEEE International Conference on Internet of Things (iThings), pp. 203–210,

2018. [IEEE Best Paper Award]

• A. S. Dhillon, (Advisors: S. Majumdar, M. S. Hilaire, and A. E. Haraki), ”Complex

Event Processing in Mobile Device for Remote Patient Monitoring,” Poster, Data

Day 5.0, Ottawa, ON, Canada, June 2018. [3rd Place - Student Poster Competition]

1.6 Thesis Outline
The rest of the dissertation is organized as follows. Chapter 2 provides the background

information related to various types of big data analytics, CEP systems, Pub/Sub sys-

tems, and IoT servers. Chapter 3 presents a literature survey. Chapter 4 describes the

system prototype and discusses the architecture implementation details for server CEP

and mobile CEP architectures. Chapter 5 focuses on the performance analysis and dis-

cusses various performance metrics, system/workload parameters, and experimental re-

sults comparing the various systems investigated. Finally, Chapter 6 concludes the thesis
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and discusses possible directions for future work.



Chapter 2

Background Information

In this chapter, background information on big data analytics, complex event processing,

and various CEP system components is provided in Section 2.1, Section 2.2 and Section 2.3

respectively. State-of-the-art CEP engines such as Apache Flink and Apache Siddhi are

presented in Section 2.4. A brief discussion on Pub/Sub systems, cloud computing, and

IoT server is presented in Section 2.5, Section 2.6, and Section 2.7 respectively. Further,

an overview of the WSO2 agent used in the prototype implementation is provided in Sec-

tion 2.8. Finally, Section 2.9 discusses some essential Android concepts and Section 2.10

provides an overview of real-time dashboards.

2.1 Big Data Analytics
The systems processing streams of large volumes of data are often referred to as big data.

Various challenges associated with big data include data storage, data visualization, data

indexing, data retrieval, and data analysis. The primary goal in analyzing big data is to

extract meaningful information from the data in order to get insights for making better

decisions and devising strategies for system management. Four important characteristics

of big data [12] are shown in Figure 2.1. A brief discussion of these characteristics is

provided below.

1. Volume: The volume is related to a large amount of data to be analyzed coming from

9
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various data sources such as different server or sensors as shown in Figure 2.11. A

survey by Interactive Data Corporation (IDC) has forecasted that the global data

will reach 163 trillion GigaByte (GB) by 2025 [13].

2. Velocity: This parameter is related to data streams that are generated at a high rate

from devices such as sensors, actuators, and Radio Frequency Identification (RFID)

tags. As per the survey conducted by IBM in [12], every one minute, 72 hours of

video footage is uploaded on the YouTube and 216,000 Instagram posts are shared

(see Figure 2.1).

3. Variety: As shown in Figure 2.1, big data systems deal with data which is present in

many different forms such as audio, video, and tweets, etc.

4. Veracity: This dimension deals with the uncertainty in the truthfulness of the avail-

able data (see Figure 2.1).

Data analytics concerns the extraction of knowledge from big data. The various types of

data analytics used in big data are described next.

• Batch analytics: The batch analytics deals with the processing of large volumes of

datasets which have been collected over a period of time and persisted in a database.

The query latency used for performing batch analytics is directly proportional to

the batch size. Hadoop [14] is a well-known batch analytics platform which is built

upon the MapReduce framework developed by Google [15].

• Stream analytics: Stream analytics deals with the live streaming of data. The ob-

jective is to process streaming data as soon as it arrives on the stream analytics

platform, without persisting it to a database. Stream analytics is widely used in

networking, IoT, market analysis etc. Most of the industry standard stream analyt-

1Some of the icons used in various figures in this thesis are taken from https://www.flaticon.com/
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Figure 2.1: Four dimensions of the big data [12]

ics platforms have processing latency in the sub-second range and are able to handle

high throughput rates such as 1GBps [16]. Some of the open-source steam analytics

platforms are Apache Flink [17], Apache Storm [3], Apache Samza [18], The Infor-

mation Bus COmpany (TIBCO) stream analytics [19], and the WSO2 stream proces-

sor [20]. Some of the big data platforms support only batch or streaming analytics

while only a few of them can handle both types.

• Micro-batch Analytics: In this technique, the incoming data streams are packaged

to form small micro-batches upon which the analytics is performed. The Apache

Storm supports micro-batching using the Trident Application Programming Inter-

face (API) which is the extension of Storm developed by Twitter. Apache Spark

is another platform which supports micro-batching [4]. As shown in Figure 2.2,

Apache Spark discretizes the data streams at server 1 to form micro-batches and
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then processes them on server 2. These micro-batches are stored as Resilient Dis-

tributed Dataset (RDD) (see Figure 2.2). This technique is also known as discretized

stream processing in big data.

RDD’sDataStream
Spark

Server 1
Spark

Server 2

Figure 2.2: Spark streaming architecture [21]

• Predictive analytics: The predictive analytics uses advanced concepts of statistics,

machine learning, data modeling and Artificial Intelligence (AI) to predict the fu-

ture events based on the historical data. Various data mining techniques are used

to find patterns in historical data so as to predict the events such as threats and

opportunities that are expected to occur in the near future.

2.2 What is CEP?
Complex event processing deals with the real-time analytics component of the big data

analytics. It is useful in monitoring and analyzing one or more sensor data streams in a

real-time fashion to generate complex events representing alerts or opportunities. This is

achieved by fusing data streams from multiple sensors inside the CEP engine to match

patterns written using CQL [22].

• Data stream: As shown in Figure 2.3, a data stream consists of an unbounded num-

ber of events which arrives continuously. These data streams could be coming from

sensors and actuators such as an RFID tag, a GPS device, and a gyroscope sensor

or in the form of network packets, tweets, click-streams, and stock-ticks. All the
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events in a data stream follow a particular schema. The schema represents the set

of attributes included in an event. Some of the commonly used attributes are event

generation time-stamp, sensor value/values, sensor name and event/tuple id.

Event 1 Event 2 Event 3 Event n

Figure 2.3: A data stream

• Dataset: A dataset consists of a bounded number of events which are usually per-

sisted in a database. The size of the dataset usually varies from a GB to a TeraByte

(TB) range and hence analyzing it requires distributed processing.

• Event: An event can be modeled by using a tuple data-type or an object in most

programming languages. Thus, the term event and tuple can be used interchange-

ably. A brief description of various types of events used in CEP systems is presented

below.

– Raw Event (RE): Events generated by a sensor are called as raw events.

– Complex Event (CE): Event generated by the CEP engine as a result of a pattern

match.

– Intermediate Event (IE): Each raw event stream that is processed within the

CEP engine produces an intermediate event stream. Multiple intermediate

event streams are further processed within the CEP engine and can lead to

a complex event. The intermediate events are also named as expired events

in CEP terminology. Some advanced CEP engines such as Apache Siddhi and

Apache Flink provide a mean to handle such events.

As the stream is a continuation of the occurrence of various events, thus the terms RE
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stream, IE stream, and CE stream represent the streams consisting of the respective events.

For example, Figure 2.4 shows a query tree consisting of two RE streams, two IE streams,

and a CE stream. The CQL query is internally represented as a query tree consisting of

various CEP operators in the CEP engine which are explained later in Section 2.3.7. In

this query tree, the raw events are received by a selection operator (π) and a projection

operator (σ) to generate two intermediate event data streams. Further, these intermediate

event data streams are received by a join operator (./) to generate a complex event data

stream.

RE Stream IE Stream

IE Stream

CE Stream

RE Stream

Figure 2.4: Example of a query tree

2.2.1 DBMS vs. DSMS and SQL vs. CQL

This section discusses the differences between a Database Management System (DBMS)

and a Data Stream Management System (DSMS) system as well as the differences between

SQL and CQL. This discussion is important as DSMS and CQL are two core components

of a CEP system. These differences are enumerated next.

1. The traditional DBMS works on a persisted and finite dataset stored in a database

whereas DSMS works on unbounded data streams arriving in a continuous fashion.

2. In DBMS, the dataset is static and SQL queries are dynamic as the user can perform

rewrite query again and again over the same static dataset. However, in DSMS, the

data streams are dynamic and CQL queries are static as they are installed once and
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continue to run forever unless terminated by the user [23].

3. In DBMS, the dataset is usually large in size and SQL queries are usually small

relative to the large dataset whereas, in DSMS, the data streams are small in size

while CQL queries are relatively larger than the data streams.

4. As streams are arriving in a continuous fashion, a one-time processing model is

followed in CEP systems. In other words, the data access in DSMS is a single pass

(done in a sequential manner) while the data access in DBMS can have multiple

passes in random or sequential fashion.

5. A DBMS follows the Human Active Data Passive (HADP) model as they produce

results when queried by a user. On the other hand, DSMS systems follow the Data

Active Human Passive (DAHP) model as data arrives continuously while the user

is passive and results are continuously produced by installed CQL queries [24].

Figure 2.5(a) and Figure 2.5(b) show the DBMS and DSMS respectively. The superscript

shown in red shows the order in which the execution is performed. For DBMS, the in-

coming data streams are persisted to a storage to form a dataset. Then, SQL queries are

written to fetch the dataset into main memory and perform the required computation.

However, in DSMS the CQL queries are installed first and they wait for the data streams.

      One-time
query Processing

Main MemoryPersisted Storage

Data streams

Results
SQL query

1
Fetch3

2
4

(a)

     Continuous query
          Processing

Main Memory

Data streams

CQL

2

1

2 3Results

(b)

Figure 2.5: (a): A DBMS [25] (b): A DSMS [25]
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As soon as the data streams arrive in the system, the processing is done in-memory to

generate complex events.

Please note that CQL is the name of the query language developed at Standford Uni-

versity which was used for Aurora [23] and the Borealis system [26] they have developed.

Later on, many such query languages have been devised such as Event Processing Lan-

guage (EPL) by EsperTech [27], Siddhi query language by WSO2 [10], TESLA by Cugola

et al. [28], Oracle continuous query language and Stream-based And Shared Event pro-

cessing (SASE) developed by the University of Massachusetts [29]. Some attempts to set

the standard benchmark for CQL languages are discussed in [30] [31].

2.2.2 SP Systems vs. CEP Engines

The various real-time analytics platforms such as Apache Storm [3], Apache S4 [32], and

Apache Spark [4] are categorized as Stream Processing (SP) systems. As shown in Fig-

ure 2.6, CEP systems and SP systems share some common functionalities as both perform

real-time analytics. Some of the differences between these two types of systems are pro-

vided next.

1. The stream processing engines follow the imperative programming approach, as

they require the user to write the logic for processing nodes, such as creating bolts

in Apache Storm as shown in Figure 2.7. The spouts are used to ingest events from

data streams and the processing nodes (bolts) are pipelined to generate a topol-

ogy. The topology consists of various operators connected in a Distributed Acyclic

Graph (DAG) fashion. On the other hand, the CEP engines follow the declarative

programming approach, as they do not require the user to write logic, but instead a

CEP query which uses inbuilt CEP operators as shown in Figure 2.4.
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CEP
Engines

SP
Engines

Figure 2.6: SP and CEP systems [22]

Spout 1

Spout 2

Bolt 1

Bolt 2

Bolt 3

Figure 2.7: A storm topology [33]

2. The SP engines are designed to work in a distributed fashion whereas the CEP en-

gines tend to work in a centralized manner, as the various CEP operators share state

information.

3. As the CEP engines were initially created for stock-market analysis, they are tuned

for a nanosecond to millisecond range latency [34]. However, most of the SP systems

are built with a focus on reliable message processing and usually have close to a

second level latency.

With the advent of IoT, CEP systems are getting more attention as compared to SP systems

because of the imperative programming approach and lesser latency associated with CEP

systems.

2.3 Components of CEP Engines
Figure 2.8 shows the various components of a CEP system. Here a solid line represents

multiple data streams whereas a dashed line represents a single data stream. Initially,

multiple raw sensor data streams are ingested by using either one of the event sources

form the list of the sources shown in Figure 2.8. Further, these data streams are passed

through a source mapper which converts the event format from custom types such as

eXtensible Markup Language (XML) or JavaScript Object Notation (JSON) to the native

format used by the CEP engine. As shown in the figure, the source mapper can also persist
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Figure 2.8: Overview of the CEP architecture [35]

these data streams in an in-memory database. Please note that in-memory databases are

preferred because of the low latency requirements. If the event streams are temporarily

persisted, then the execution plan consumes the data streams from the database. If the

data streams are not persisted, then an execution plan consume data streams from the

source mapper. The CEP execution plan consists of a CEP query tree which is used to

find the complex events and sent to a sink mapper using various callback methods. The

job of a sink mapper is to convert the event format to the type which is required by the

event sink. Finally, an event sink forwards the CEP alerts to a specified destination such

as a dashboard or an email address. A brief discussion of the various CEP components is

provided in the following subsections.

2.3.1 Event Sources

An event source consumes the sensor data streams from the external sources. The vari-

ous kinds of event sources used by the CEP systems include Message Queuing Telemetry

Transport (MQTT) [36], Transmission Control Protocol (TCP) sockets, Kafka [37], Web-

Sockets, Secure WebSockets, Email, Java Message Service (JMS) queues [38], files, Rab-

bitMQ [39], etc. Please note that a CEP system may support all or a few of the aforemen-

tioned event sources. Also, various event receivers such as MQTT, JMS, and Kafka create

an event queue for each data stream which provides temporal persistence and avoids
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data loss in case the CEP engine is saturated.

2.3.2 Event Sinks

An event sink is responsible for publishing the CEP data streams to external endpoints

such as e-mail, TCP sockets, Kafka, Hypertext Transfer Protocol (HTTP) adapter and real-

time dashboard. The event publisher can further forward the streams to event receivers

so as to form a pipelined architecture.

2.3.3 Source Mappers and Sink Mappers

The source mappers are responsible for format conversion for data streams from a custom

format to a native format which is understood by the CEP engine. Similarly, the sink

mappers convert the native event type generated by the CEP engine to a custom event

type required by the event sink. The various format types that are used by events include

XML, WSO2-event, text, JSON, binary data, Plain Old Java Object (POJO), key values

pairs or Comma Separated Values (CSV). The WSO2 Siddhi CEP used in this dissertation

does processing using the WSO2-event format. The various commercial health sensors

use Health Level-7 (HL7) as the default standard to transfer data streams [40]. The latest

version of HL7 messages is 3.0 which is based upon XML encoding.

2.3.4 Blocking Queues

Queues are an important part of a CEP system, as events need to be temporarily persisted

in a queue before sending them to the CEP engine to prevent event data loss. However,

in a producer-consumer scenario, thread safety is required as both producer and con-

sumer are accessing the shared queue at the same time. The blocking queues provide

various thread safety mechanisms. Different types of blocking queues are available such

as LinkedBlockingQueue [41], ArrayBlockingQueue [42], PriorityBlockingQueue [43], and Syn-

chronousQueue [44] which are suitable for different needs. As shown in Figure 2.9, the
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producer thread keeps on en-queuing the incoming elements from the data stream to the

tail of a queue and the consumer thread keeps on de-queuing the data stream elements

from the head of the queue in a parallel fashion. In blocking queues, if the producer

thread tried to en-queue an event when the queue is full, then the producer thread is

blocked and kept in a waiting state unless there is an empty space in the queue. Also, if

the consumer thread tries to de-queue an event from an empty blocking queue, then that

thread is blocked until the producer thread en-queues an event to the queue. Circular

queues or ring buffers are also used by some of the CEP engines.

Consumer
  Thread 

Producer
  Thread 

Blocking Queue
en-queue de-queue

HeadTail

Figure 2.9: A blocking queue [45]

2.3.5 In-Memory Tables

Another option to persist the events is by using in-memory databases such as Sqlite3 and

H2 [46]. As shown in Figure 2.10, the data stream events are converted to relations before

persisting them to a database. Furthermore, the relation-to-relation modification can also

be performed using Data Manipulation Language (DML) commands. The Flink stream

processing platform provides a TableAPI [47] which is a language integrated query API

in Java and Scala. Using this API, data streams are converted to relational datasets upon

which SQL operations can be performed. This approach may lead to additional latency

due to the data-type conversion and is not preferable when low latency is required.

Data stream-to-Relation
Relation-to-Relation

Relation-to-Data stream
Data stream Relation

Figure 2.10: Data stream and relation conversion concept proposed in [2]
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2.3.6 Callbacks

Callbacks are methods which are used to receive complex events from the CEP engine.

Two types of callback methods are discussed next.

1. Stream callback: A CQL query installed in the CEP engine can generate many CE

streams. The stream callback is used to subscribe to a particular CE stream using the

stream identifier. Every time complex events are detected by the query, the stream

callback will receive those events. The CEP event detection time-stamping is done

at stream callback.

2. Query callback: It receives all the data streams which are generated by the CQL

query. It includes multiple complex event streams and intermediate event streams.

2.3.7 CEP Operators

An operator is a reserved keyword in CQL such as select, where, and→. These operators

can be classified as arithmetic, logical, and comparison operators. Further, these operators

can be divided into two categories as discussed below [48].

1. Blocking/stateful operators: These operators require the complete input data stream

before producing a result as they perform the processing based on the previous state

information of an operator. These operators save the state information of previous

tuples to compute the result. For example, the max operator needs to save the state

information of all the data stream events in the specified window to find the maxi-

mum value [24]. Aggregate, Join and Cartesian product are few more examples of

blocking operators.

2. Non-blocking/stateless operators: They do not require to save the state information

of the data stream tuples to compute the results. The results can be computed as
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soon as the element is seen by the operator. For example, the conjunction, disjunc-

tion, map, and filter operators will produce the results as the data stream arrives

[49].

Table 2.1 shows a brief description of various CEP operators.

Table 2.1: List of various CEP operators given in [29], [50], [51] and [52]

Name Symbol Description

Kleene star * Fires when zero or more events match the condition.

Kleene plus + Looks for one or more matches.

Optional ? Looks for zero or one matches.

Conjunction & Used when all the conditions should be true.

Disjunction || Used if either of the condition is true.

Join ./ Used to join two or more streams based on a key.

Union � Used to merge two or more streams without any condition.

Negation ! The event is triggered if the event does not happen.

Followed by → Represents the order in which events happen.

Every every Looks for a match for every arrival of the event.

Next next(x) Looks for immediate next occurrence of x event.

Selection π Selects the predicates based on some selection condition.

Projection σ Selects all the stream elements.

The various aggregate operators such as average, max, min, count distinct, max forever, min

forever, and standard deviation are also supported by most of the CEP engines. The selec-

tivity of an operator is defined in Equation (2.1).

γ =
Number of events emitted by an operator
Number of events received by an operator

(2.1)
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2.3.8 Windows

As data streams are unbounded and continuous in nature as compared to finite datasets,

a certain bound has to be specified in a query for performing computations. Windows

help in selecting a bounded subset of data from a continuously arriving data stream for

analysis. These windows can be sliding or batch (based on window expiration policy),

each of which can have time-based or length/count-based selection policy as shown in

Figure 2.11. An example of a time-based window is to find the average value of all Google

stock-ticks within the last 1 minute. On the other hand, finding the average of the last 100

stock-ticks is done using the length-based window of 100. The two types of expiration

policies: sliding or batch are discussed next.

Window

Sliding window Batch window

Time-based Length-based Time-based Length-based

Figure 2.11: Classification of windows [53]

• Sliding windows: The sliding window has a window size and a window slide pa-

rameter. For example, a sliding window of 2 minutes with slide parameter of 1

minute will capture all the events that happened in last the 2 minutes and will up-

date the window elements every 1 minute such that all the events in the previous

window are flushed out after processing.

• Batch windows: The batch windows are non-overlapping and processing of the

batch is done after the batch is complete. For example, a time-based batch window
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of 1 minute will start processing once 1 minute worth of data has been collected.

This is necessary as sometimes the whole data is required to perform the computa-

tion. All the aggregated operations on a data stream such as finding the max, min,

count, average, std. deviation require the batch window.

2.3.9 Query Execution Plan

The query execution plan is the internal representation of the query in the CEP engine.

CEP query can be broadly categorized as either a pattern query or a regular query, based

on the query execution plan [50] [52].

1. Regular query: For these queries, the order of arrival of events is not important.

The CEP engine executes this type of queries by using a tree-based computation.

The query execution plan for an example CQL query is shown in Figure 2.12. In this

query tree, two streams: Heart Rate (HR) and Respiration Rate (RR) are received by

the leaf operators. If the value of HR is ≥ 30 and the value of RR is ≤ 20, then a

complex event is generated.

2. Pattern query: For such a query, the order of the events is important and the order is

specified using a followed by (→) operator. A state machine-based execution model

is used within the CEP for executing the pattern queries.

CEP Stream
& 

HR

RR

30 

20 
Figure 2.12: A query tree
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As per [50], the various types of patterns contiguity are enumerated below.

• Strict contiguity: It means that an event occurs exactly after another, such that

no other event comes in between these two events. For example, a pattern

A.next(B) will be fired only if B arrives immediately after event A arrives.

• Relaxed contiguity: It means that the pattern will fire a complex event even

if another event occurs in between the occurrence of the specified events. For

example, a pattern A → B within 10 seconds will be fired if event B arrives

after the arrival of event A.

• Non-deterministic relaxed contiguity: It provides more relaxation to the match-

ing events by using operators such as ∗, + or ?. For example, a pattern A →

B → C within t seconds will match if these events arrive in the specified or-

der within t seconds as shown in Figure 2.13. Similarly, a pattern A → B∗ →

C within t seconds will result in a complex event if the first event A occurs, fol-

lowed by one or more B events, followed by C event within t seconds as shown

in Figure 2.14.

A B C
S1 S2
0 t

Figure 2.13: Automata for ABC [54]

A
B

B C
S1 S2
0 t

Figure 2.14: Automata for AB+C [54]

2.3.10 Event Time-stamping

The time-stamping is an important aspect of CEP engine. The various times associated

with an event are:
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1. Raw event generation time
(
Tg

)
: It is the local time at which the raw event is gener-

ated in the sensor and usually time-stamped by the sensor itself.

2. Raw event ingestion time
(
Ti
)
: The time at which the raw event is ingested by the

CEP engine.

3. Complex event detection time
(
Td
)
: The time at which the complex event is detected

in the CEP engine.

2.4 State-of-the-art CEP engines
A number of CEP engines are available in the market such as Apache Flink [17], Apache

Siddhi [10], Drools Fusion [55], Esper [56], and Microsoft StreamInsight [57]. In this sec-

tion, the two most widely used CEP engines are briefly discussed.

2.4.1 Apache Flink

Apache Flink provides both batch processing and stream processing capabilities by using

the dataset and data stream API. The CEP library has been built on top of the data stream

API using Java and Scala. At the time of writing this thesis, there is no CQL support

available in Flink. However, the pattern API is written using lambda expressions using

an imperative programming approach. Unfortunately, Apache Flink cannot be used in

this research as it has not been ported to any mobile device yet.

2.4.2 Apache Siddhi

Siddhi is an open-source and lightweight CEP engine (less than 2 MB) which provides

a Siddhi query language for writing CQL queries [10]. It is used by many fortune 500

companies including UBER to process 20 billion events/day (300,000 events per second)

for fraud analytics [58]. It has been recently ported to Android and Raspberry-Pi devices.

As shown in the Figure 2.15, the Siddhi CEP engine can receive sensor data streams from
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various types of event sources and also publish the detected complex event stream using

various types of event sinks such as RabbitMQ, Kafka, ActiveMQ and TCP sockets. Also,

the sensor data streams can be in various different formats such as JSON, binary, XML or

key-value pairs as shown in the Figure 2.15. The support for various types of SQL and

NoSQL databases such as Cassandra [59], H2 [46], and MongoDB [60] is also available for

the temporal persistence of sensor data streams.

Siddhi CEP Engine

MQTT
TCP
HTTP
RabbitMQ
ActiveMQ
JMS
Kafka
File
E-mail

Data Format
Binary
JSON
Text

XML
Key-Value

Data Format
Binary
JSON
Text

XML
Key-Value

Event Source
Event Sink

Database

Sensor streams CEP Alerts

In-Memory
MongoDB
Cassandra
RDBMS
H2
Solr
HBase

MQTT
TCP
HTTP
RabbitMQ
ActiveMQ
JMS
Kafka
File
E-mail
Dashboard

Figure 2.15: Siddhi CEP architecture [58]

2.5 Pub-Sub Systems
Publish/Subscribe messaging systems are often referred to as Pub-Sub systems. Pub-

Sub systems are widely used in the context of CEP as event sources and event sinks.

This system has been developed as an alternative to the client-server messaging model

in which a client can communicate directly with the server. In Pub-Sub systems, the

publishers and subscribers are agnostic of one another as messages as forwarded by a

third-party broker. As shown in the Figure 2.16, the publishers and subscribers are both
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connected to a broker and are subscribed to a given topic in the broker. The messages

are sent by the publishers to a particular topic in the broker. The broker forwards these

messages to all the subscribers which have subscribed to that topic.

Sub Z

Pub 1

Pub X

BrokerPublishers Subscribers

Sub1Topic 1

Topic Y

Figure 2.16: Example of a Pub-Sub system [61]

Some of the advantages of using the Pub-Sub systems are:

1. Scalability: The broker can be massively parallelized so as to increase scalability

[62].

2. Space decoupling: The publishers and subscribers are space decoupled as they do

not need to know the Internet Protocol (IP) address and port number of one another

as needed in the case of the conventional client-server architecture.

3. Time decoupling: The publisher and subscribers do not need to be active at the same

time as the messages can be persisted by the broker.

A detailed description of the various components of the Pub-Sub system is presented

next.

1. Client: Both the publisher and a subscriber can be referred to as the client from

a broker’s perspective. The clients can be persistent or transient. The persistent

clients maintain the session information with the broker in the registry files whereas

the transient clients do not.
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2. Topic: It is an endpoint to which the various publishers and subscribers can connect.

It is encoded as a UTF-8 string and uses the forward-slash (/) as the delimiter.

3. Pub-Sub broker: Each topic has a queue associated with it. The broker receives the

messages from various publishers and stores them in the queues associated with

the respective topics. As the broker is the single point of failure, thus clustering the

broker is often used.

4. QoS: As shown in Figure 2.17, various message delivery guarantees are provided

by the broker using Quality of Service (QoS) parameters. The various types of QoS

supported are given next.

publish

BrokerPub

(a)

publish

pub-ack

Pub Broker

(b)

publish

pub-release

pub-ack

pub-complete BrokerPub

(c)

Figure 2.17: (a) QoS0 [63] (b) QoS1 [63] (c) QoS2 [63]

(a) QoS0: It provides at-most-once delivery of the messages as no acknowledg-

ment is sent by the subscriber to the broker (see Figure 2.17a). So two things

can happen, either the message is received by the subscriber or it is lost during

transmission.

(b) QoS1: It ensures at-least-once delivery of the message. As shown in Figure 2.17b,

if the acknowledgment (pub-ack) is sent by the subscriber before the specified

timeout, then the message is delivered once. Every message is appended with
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a unique packet identifier which is also included in the pub-ack sent by the sub-

scriber. If the pub-ack is not received within the specified timeout, the message

is sent again by the broker which leads to more than once delivery of the mes-

sage. Thus, the broker will store the copy of the original message until it has

not received pub-ack. Thus with QoS1, at least one data packet and a control

packet are sent by the broker.

(c) QoS2: It guarantees that every message is delivered exactly-once. QoS2 is the

slowest type of delivery among all other QoS types. Also, it may lead to more

data transmission and memory usage. After the broker gets the message, it

sends a pub-ack message to the publisher, as shown in Figure 2.17c. Upon re-

ceiving the pub-ack, the publisher sends another acknowledgment saying that it

has received the acknowledgment through a pub-release control message. Upon

receiving the pub-release message, the broker can delete the reference to the

packet identifier and reply with the pub-complete control message.

Some of the widely used Pub-Sub systems are MQTT [36], Kafka [37], ActiveMQ [64],

and RabbitMQ [39]. A brief discussion of the MQTT Pub-Sub system that is used in this

research is provided next.

2.5.1 MQTT

MQTT is a lightweight and bandwidth efficient machine-to-machine protocol designed

for low powered devices [36]. It was started as a joint project named EclipsePaho by IBM

and Eurotech in 2011. Today, it is very popular among the mobile devices and it has API’s

available in multiple languages such as C, C++, C#, Go, Java, Node.js, and Python. MQTT

runs on the top of TCP/IP stack. The MQTT broker is also known as a mosquito broker.
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2.6 Cloud and Edge Computing
Both cloud computing and edge computing are relevant in the context of our research as

CEP can be done at the edge or provided on the cloud as a CEP service. Both of them are

explained next.

• Cloud computing provides the resources such as software, infrastructure, storage,

analytics and many more as-a-service at low cost by using a pay-as-you-go model.

Various companies such as Amazon, Microsoft, Google and International Business

Machines Corporation (IBM) provide Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS). However, providing CEP-as-

a-service is still an ongoing research work in which the most relevant work has been

done in [65].

• Edge computing is a technique in which the computation is done at the edge of the

network and even on devices such as mobile devices, Arduino micro-controller [66]

and Raspberry-Pi [67]. In this manner, the computational power of the edge devices

is used which results in a number of benefits such as a reduction in the communica-

tion bandwidth between the edge device and the cloud data-center, providing near

real-time data analytics as edge devices are in proximity to data sources.

2.7 IoT Server
The IoT servers are used for different purposes such as administration, monitoring, data

gathering and analysis [68]. They are modular, based on open-source enterprise platforms

that provide the capabilities that are needed for the server-side of the IoT architecture, to

connect to the edge devices. The data that is transmitted through the server gateway is

processed and stored securely and analyzed using big data analytics. Examples of the IoT
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servers include Amazon Web Services (AWS) IoT Platform [69], IBM Watson IoT Platform

[70], WSO2 IoT server and Google Cloud Platform (GCP).

2.7.1 WSO2 IoT Server

The WSO2 IoT server can run on a workstation, a cluster or can be deployed on a cloud

[68]. This server is an open-source Apache 2.0 licensed server. It provides support for

batch analytics, real-time analytics, interactive analytics and predictive analytics. It can

provide built-in support for Windows, iOS, Blackberry and Android devices along with

support for Arduino and Raspberry-Pi devices. As shown in Figure 2.18, the IoT server

uses a three-layered architecture consisting of a broker, core, and analytics.

  Broker    Core    Analytics

MQTT

RBAC
TLS

SSL

OAuth

Device management service
Policy management service
User management service
Certificate management service
Application management service
Plugin management service
Notification management service

Batch Analytics
Stream Analytics
Predictive Analytics
Interactive Analytics

Figure 2.18: Key components of the WSO2 IoT server [71]

A brief description of each component is presented next.

1. Broker: The broker is responsible for providing authentication, authorization and

security features. Open Authorization (OAuth) and Secure Socket Layer (SSL) are

used for patient authentication while Role Based Access Control (RBAC) is used

for authorization. Mutual SSL and certificates are used to provide Transport Level

Security (TLS). The MQTT broker runs inside the IoT broker which receives the

events from various devices.

2. Core: The core provides various services as shown in Figure 2.18.
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• Device management service: It manages various sensor devices and mobile

devices with the server.

• Policy management service: Various policies such a white-listing or black-

listing applications, policies related to access control for a tenant can be en-

forced from the IoT server for enrolled devices.

• User management service: As the server is multi-tenant, thus this service pro-

vides a different level of access for each user. It lets create or delete various

users as well.

• Certificate management service: Each registered edge device has device certifi-

cates which are managed by using this service.

• Application management service: This service manages various applications

which are running on the server.

• Plugin management service: A plug-in is an Open Service Gateway Initiative

(OSGi) extension which a user can write to have custom functionality. The

OSGi is a Java framework for developing the services. It facilitates the creation

of the services/plugins which are compatible with the IoT server and various

mobile devices.

• Notification management service: It uses the Apple Push Notification Service

(APNS) [72], Firebase Cloud Messaging (FCM) [73], and Windows Notification

Service (WNS) [74] for providing notifications.

3. Analytics: This layer provides the batch, stream, predictive and interactive analytics

functionalities.
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2.8 WSO2 Agent
It is the application which helps in the communication between the various mobile edge

devices such as Android and iOS-based devices with the WSO2 IoT server. In other

words, it provides the device management features like device enrollment, device au-

thentication, and authorization. After the successful registration of the edge device with

the IoT server, the agent application running on the edge device periodically communi-

cates with the server.

2.9 Android Essentials
As we have designed a mobile device-based CEP system, thus some of the essential An-

droid concepts are presented next.

1. Gradle: It is the build tool which can install and compile various dependencies in

an Android system [75].

2. API version: Each Android release comes with a new API version [76]. The latest

API version is 27 (codename Oreo) at the time of writing this thesis. The support

for Java 8 has been added from API version 24 (codename Nougat) onwards. This

is an important feature as most of the big data API’s (such as those associated with

Apache Flink and Apache Siddhi) are written in Java 8 using lambda expressions

[50] [52]. As shown in Figure 2.19, Java 8 support is provided by using the desugar

tool to perform bytecode transformations to generate a .dex file from a .java file. The

.dex file represents an Android executable file similar to .class files in Java. Android

application is represented by an Android Package Kit (APK) file (similar to the jar

file in Java) which can consist of one or multiple .dex files.
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javac.java .class .dex.class(desugared)desugar dex

Figure 2.19: Java 8 language feature support [77]

3. Activity: An activity is the Graphical User Interface (GUI) based component in An-

droid which represents a single screen [78]. When the user goes from one activity

to another, the data in the previous activity gets lost. An example of an activity is a

login page or a registration page.

4. Service: Service is a non-GUI-based component which can run in the background

[78]. An email service running on the mobile device is an example of an Android

service.

5. Multi-dex feature: An APK file represents an application in Android. The Android

compiler has a 64K limit which means that an APK file can contain a maximum

of 65,536 methods [79]. But when we import multiple dependencies, the number

of methods exceeds 64K. The multi-dex feature overcomes this issue by creating

multiple .dex files for an application (represented by an APK file).

6. Android Debug Bridge (ADB) shell: Android is a Linux-based system with each

application representing a different user in the Linux system [80]. The ADB shell

provides the root level access similar to a terminal in Linux and Macintosh systems.

2.10 Real-Time Dashboards
Monitoring is a crucial step in real-time analytics as it provides insights into the system

behavior and performance. A real-time dashboard is tuned for low latency and high-

performance needs. It automatically refreshes the visualizations in the form of charts,

graphs, and tables after some refresh interval period. The WSO2 IoT server provides the

various built-in dashboard plugins which are easy to configure and deploy. However, for
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larger systems, some of the enterprise scale real-time dashboards such as ElasticCompute

Logstash Kibana (ELK) stack [81], Ganglia [82], Graphite [83], and Datadog [84] can also

be configured with the WSO2 IoT server.
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Related Work

This survey of related work is divided into three sections. Section 3.1 provides insights

into different CEP engines and their key features. Section 3.2 discusses the related work in

the context of smart buildings and homes. Section 3.3 describes the work related to RPM

domain which is the main use case discussed in the thesis. Finally, Section 3.4 provides

the concluding remarks for this chapter.

3.1 CEP and Stream Processing systems
The term CEP has its roots in discrete event systems and active databases [85]. In contrast

to a passive database which can store, retrieve and update the persisted data, an active

database system can respond automatically to the continuous events arriving on the sys-

tem using Event Condition Action (ECA) rules. An ECA rule performs the desired action

when a certain logical condition is met as raw events arrive on an active database sys-

tem. Such ECA rules are suitable for simple business process management as well as big

data management scenarios [86]. Ode [87], Samos [88] and Snoop [89] are a few examples

of active database systems. A study conducted in [85] discusses the various limitations

of active databases in comparison to CEP systems, such as lack of standardization, diffi-

culty in optimizing the large applications and difficulty in performing various distributed

and parallel operations. For addressing these limitations, a CEP system was required for

37
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handling complex scenarios.

The initial work on CEP was done by David Lukham in the early 1990’s during the

development of the Rapide project [90]. The Rapide project is an event-driven simulation

language which can be used to model a multi-layered event architecture. During this

work, Lukham coined the term CEP in his book entitled ‘The Power of Events’ [22]. Another

set of work related to CEP was done during the Stream project at the Standford University

in the late 1990’s [91] [92]. This work was further continued by a collaborative project at

Brandeis University, Brown University and Massachusetts Institute of Technology (MIT)

during the early 2000’s which led to the development of the Aurora system discussed

later in this chapter. In recapitulation, as a repercussion of the aforementioned research

works, various CEP and SP systems were devised, which are shown in a time-series order

in Figure 3.1. During the earlier development of these systems, not much distinction

was made between SP and CEP systems. As the development nurtured, the distinction

between the two systems became more apparent. A summarized overview of the various

open-source, enterprise and cloud-based CEP/SP systems is presented in the following

subsections. The open-source CEP engines are discussed first and the Commercial off-

the-shelf (COTS) CEP engines are discussed next.

3.1.1 Open-Source CEP engines

In 2003, the TelegraphCQ project introduced a general purpose CQL named StreaQuel [93].

The StreaQuel inherited all the SQL constructs and supports continuous stream process-

ing by using a WindowIs operator to provide various window specific features. Later, this

work was followed by the development of a NiagaraCQ engine which can receive data

from various distributed active databases over the Internet [94]. In other words, Nia-

garaCQ is an extension of an active database system with an additional functionality of

distributing the information sources over a wide geographical area. Due to this feature,
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Figure 3.1: Evolution of CEP systems [5]

the TelegraphCQ system is more scalable than a regular active database system.

Another set of works led to the development of the Aurora system which was the first

SP system to have DSMS capabilities [23]. The authors of Aurora have also introduced

an imperative CQL language called Stream Query Algebra (SQuAl). SQuAl uses a box-

and-arrow approach to connect various CQL operators. The authors also introduced a

mechanism to persist various data streams into an intermediate storage, so that different
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ad-hoc queries can be executed on the persisted data streams. An ad-hoc query is cre-

ated on-the-fly whereas a continuous query needs to be installed before the CEP system

starts ingesting the sensor data streams. In this paper, the support for specifying various

types of QoS requirements for each operator was also provided. Such a QoS parameter

is used by the query scheduler to optimize the query processing. The Aurora system

was further evolved as the Medusa system which provided support to scale the stream

processing over multiple nodes leading to its high-availability features [95]. On top of

Medusa and Aurora, Borealis was built to provide a distributed stream processing engine

having load shedding and fault tolerance capabilities [26]. It also avails some of the ad-

vanced features such as a graphical query editor and a stream visualizer. Later on, the

Gigascope system was built to focus on the networking type applications involving high

data transfer rates [96]. In this paper, the authors have also proposed a CQL language

named GQSL.

The Stream project introduced a well-defined CQL consisting of three different types of

operators: stream-to-relation, relation-to-relation, and relation-to-stream [97]. The stream-

to-relation operator is responsible for converting a data stream to a relational table by

using various time-based and count-based windows each having either sliding or tum-

bling/batch expiration policy. The relation-to-relation operator uses various SQL con-

structs for performing the data transformation operations on the relational tables. Fur-

thermore, various relation-to-stream operators such as IStream, DStream, and RStream

are used to generate a data stream from a relational table. The various load shedding

techniques were also devised to handle the data streams arriving at higher arrival rates.

In [98], Demers et al. have proposed a Cayuga CEP engine which uses the Cayuga

Event Language (CEL) for expressing CEP patterns. CEL is based on the Cayuga query

algebra. The Cayuga engine receives various data streams using event receivers running
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on separate threads. The incoming data streams are first deserialized; this was followed

by event arrival time-stamping and then enqueued to a priority queue. A single threaded

Cayuga CEP engine dequeues the data stream events to detect complex events. The de-

tected complex events are then forwarded to a client notifier thread which publishes the

complex events to the client. Another work was done by Daniel et al. in [29] proposes

a SASE CEP system which is primarily focused on processing RFID data. The prototype

system simulated a retail-store shoplifting scenario using CQL queries. A new CQL lan-

guage SASE is also proposed in this paper. The SASE query language uses a tree-based

approach to perform complex event processing. The SASE language provides support

for the sequence operators using Non-deterministic Finite Automata (NFA) constructs. In

conclusion, this system laid a foundation upon which various other systems were built.

The SASE system was further extended in SASE+ which allows the user to define various

event selection policies [54]. An important contribution of this paper is that it provided

the methodology to compare the query complexity of SASE+ with other CQL languages

such as CEL. However, this comparison model is not applicable to a wide range of CQL’s

available today [24].

Esper is the most widely used CEP engine written in Java, C#, and .NET (NEsper) [56].

The Esper engine is also used as a core in the Oracle CEP. It provides a declarative CQL

called EPL. The support for the clustered deployment using Esper HA mode is also avail-

able. A major limitation of Esper is that it is a centralized CEP system. However, it has

been integrated with Apache Storm to provide distributed CEP capabilities by some re-

searchers [99]. JBoss Drools Fusion [55] is an extension of the Drools rules engine having

additional event processing capabilities. It supports two modes: cloud mode (default

mode) and stream mode. In the cloud mode, there is no notion of flow of time, which

means the engine is not able to determine the age of an event. Due to this reason, there is
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no support for sliding windows and event ordering in this mode. The stream mode, on

the other hand, requires the data stream to be time-ordered. In this mode, the engine uses

a session clock to force the synchronization among different data streams.

Apache Flink is a recent real-time stream processing engine developed by DataArti-

sans which provide exactly-once processing [17]. The CEP library is written on top of

the DataStream API as discussed in Section 2.4.1. It supports the cluster deployment

and the HA mode. The support for Amazon Elastic MapReduce (EMR), Docker [100],

YARN [14], Mesos [101] and Google Compute Engine (GCE) [102] is also available. Var-

ious patterns can be deployed using various data stream API lambda expressions. It

introduced a mechanism to tackle out-of-order events by using time-stamps and water-

marks. The various time-stamps such as event time, ingestion time and processing time

are used by the engine. The watermarks are the time-stamps which are emitted at the

sources in the Flink topology. These watermarks are sent to the operators which are then

forwarded to other downstream operators. The operator only processes the events which

have a greater time-stamp than the watermark time-stamp. The streams and transfor-

mations are basic elements in Flink. Additionally, savepoints can be added to help in

resuming the execution of a cluster from a previously saved state. The savepoints take

a snapshot of the Flink program and save it to a state back-end. Also, the back-pressure

handling mechanism is supported by the Flink CEP which lets the Flink CEP to gracefully

deal with the load spike such as high arrival rates. Every operator in the CEP system has

a queue to receive events. The back-pressure mechanism lets the predecessor operators

know that the queue in the successor operators of the query tree is full. Apache Siddhi

CEP is an advanced and lightweight CEP engine which supports a large number of CEP

operators. More details about Siddhi CEP are given in Section 2.4.2.
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3.1.2 Commercial off-the-shelf (COTS) CEP engines

As shown in Figure 3.1, in addition to open source engines, various COTS engines have

been devised. COTS CEP engines are not discussed in detail as the open-source systems

are more preferable in the current research scenario due to the high usage cost of COTS

CEP engines. A survey conducted by Gartner in 2009 reported that COTS CEP costs

between $100,000 and $250,000 [34]. However, the methodology proposed in this dis-

sertation is extensible such that it can be extended to support COTS/enterprise engines

with a modest effort. Some of the COTS engines have their roots in open-source products.

For example, the Aurora system has been commercialized as the TIBCO StreamBase CEP

(see Figure 3.1) which is nowadays used in algorithmic trading, foreign exchange trading,

real-time patient monitoring, airline industry, etc. [103] [19]. The Esper CEP engine has

been commercialized by Oracle with an addition of the Oracle CQL support to form Ora-

cle CEP [104]. The Truviso was founded by a UC Berkley Professor who was involved in

the development of the TelegraphCQ system. This company is known to provide various

business intelligence and algorithmic trading solutions using CEP. Other COTS CEP sys-

tems such as Microsoft SteamInsight CEP [57] and IBM InfoSphere Streams [105] are also

available in the market. The Stream project has been extended to form the Coral8 CEP

which was later merged with Aleri CEP. The Coral8 system also provides a graphical en-

vironment for developing CEP applications using the Coral8 Studio. Both the Coral8 and

Aleri CEP support centralized as well as clustered deployment. The Apama CEP [106]

has been ranked as the best CEP in a 25 criteria (such as architecture, stream handling,

pricing and market presence) survey conducted by Forrester Wave [107].

Table 3.1 shows various CEP operators which are supported by some of the systems

that have been discussed earlier. This table reuses some of the results presented by Cu-

gola et al. in [24]. Please note that this table does not include all the available operators
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supported by the CEP systems. The 3 symbol indicates that the respective operator sup-

port is present while the 7 symbol indicates that the operator support is absent. From this

table, it is evident that Apache Flink and Apache Siddhi support the most type of CEP

operators.

3.1.3 CEP, Cloud, and IoT

In 2016, Higashino proposed the idea of CEP-as-a-Service (CEPaaS) in his Ph.D. dis-

sertation [112]. The goal is to leverage the advantages of SaaS to provide CEPaaS so

that there is no-upfront charges and maintenance cost is low. He proposed Attributed

Graph Rewriting for Complex Event Processing (AGeCEP) as a language agnostic tech-

nique to model the CQL queries. To support his proposition for CEPaaS, Higashino de-

signed a simulator called CEPSim that runs on top of the CloudSim simulator [113] [114].

CloudSim is a popular cloud simulator written in Java which can effectively model a pub-

lic, private or hybrid cloud. It allows the users to create a data-center, cloudlet, and broker

in addition to defining different policies as shown in Figure 3.2. The CEPSim module cre-
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Figure 3.2: The architecture of CEPSim [111]
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Table 3.1: Type of operators supported in various systems
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TelegraphCQ [93] 3 3 3 7 7 7 7 3 3 3 3 3

Ode [87] 3 7 7 3 3 3 3 7 7 7 7 7

Samos [88] 3 7 7 3 3 3 3 7 7 7 7 7

Snoop [89] 3 7 7 3 3 7 3 7 7 7 7 7

Stream [97] 3 3 3 7 7 7 7 3 3 7 7 3

Aurora [23] 3 3 7 7 7 7 7 3 3 3 3 7

Gigascope [96] 3 7 7 7 7 7 7 7 3 3 3 7

Cayuga [98] 3 3 3 3 3 7 3 7 7 7 7 7

Amit [108] 3 7 7 3 3 3 3 3 7 3 7 7

SASE [29] 3 7 7 3 3 3 3 3 7 7 7 7

SASE+ [54] 3 7 7 3 3 3 3 3 7 7 7 7

TESLA [109] 3 7 7 7 7 3 3 3 7 7 7 7

Aleri [106] 3 3 3 3 3 3 3 3 3 7 7 7

StreamBase [110] 3 3 3 3 3 3 3 3 3 3 3 3

Oracle CEP [104] 3 3 3 3 7 7 3 3 7 3 3 3

Esper [56] 3 3 3 3 3 3 3 3 3 3 3 7

TIBCO BE [19] 3 7 7 3 3 3 3 3 7 3 3 7

Flink [17] 3 3 3 3 3 3 3 3 3 3 3 3

Siddhi [10] 3 3 3 3 3 3 3 3 3 3 3 3
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ates a query model and supports the operator placement and the operator scheduling

for performing the CEP simulation. It also provides the mechanism to compute various

CEP specific metrics for the performance evaluation. A major limitation of CEPSim is

that it does not have single and multiple query optimization mechanisms and assumes

that a submitted query is already optimized. Another limitation is that it only supports

the scenarios in which the query does not fail at runtime. It is important to mention that

our work compares the performance of the edge-based mobile CEP with state-of-the-art

CEPaaS system considered as a baseline system.

A few cloud providers have begun to provide support for complex event processing

as-a-service. However, multiple systems need to be combined with one another to achieve

this service. For example, the Amazon Kinesis [115] can be used to collect the health sen-

sor data streams, which can be forwarded to Amazon Lambda [11] and can be processed

using Apache Flink CEP deployed on the cloud [17]. Recently, IBM has also started to

provide a CEP service on the cloud using IBM Watson IoT Server [70] using IBM Bluemix

IoT server [116]. The CEP toolkit can be used by IBM InfoSphere [105] or the Node-RED

CEP [117] running on top of IBM Bluemix. Node-RED CEP is designed using the Node-

RED platform which is a programming tool having a browser-based editor to create flows.

The Node-RED is built using Node.js and it is used by IBM Bluemix as a boilerplate appli-

cation. Many cloud-based SP platforms such as TimeStream [118] and StreamCloud [119]

are also being considered for the CEP services. To the best of our knowledge, the WSO2

IoT server (discussed earlier in Section 2.7.1) is the only open-source IoT platform which

provides an out-of-the-box support for CEPaaS [68]. For this reason, we have used the

WSO2 IoT server in our prototype system implementation.

The Mobile Edge Computing (MEC) concept leverage the mobile edge device to pro-

vide the cloud computing capabilities [120]. Similar to the cloudlet [121], the resources
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on the edge device such as computing, networking, and storage are used to perform the

delay sensitive tasks on mobile edge and the heavyweight tasks on the back-end server

[122]. The proposed edge based CEP technique is similar to the mobile edge computing

methodology.

3.2 CEP for Smart Buildings and Smart Homes
Complex Event Processing is often used in sensor-based smart buildings and homes. A

representative set of existing work is presented. Chandrashekar et al. [123] have used

a CEP engine to detect complex events for a smart home. The proposed architecture

consists of various smart home sensors, a web interface, and a centralized CEP engine.

Only the general architecture is given in this paper and no prototype implementation has

been reported. Juan et al. [8] have integrated Service Oriented Architecture (SOA), IoT

platform and CEP engine to provide a smart home solution. As shown in Figure 3.3,

the system architecture consists of various sensors installed at home, an IoT server, an

Enterprise Service Bus (ESB), a CEP adapter and an Esper CEP engine [56].

Smart Home
Sensors

IoT Server ESB CEP Adaptor CEP Engine Email Server Subscriber

Figure 3.3: The architecture of a smart home system as proposed in [111]

The authors have used Xively [124] as an IoT server and Mule [125] as an ESB. As

shown in Figure 3.3, various sensors in a smart home send the data streams to the Xively

IoT server which forwards them to a Mule ESB using HTTP. The ESB normalizes the

sensor data streams to a common format used by the CEP engine. Then, these events are

forwarded to an Esper CEP engine where complex events are detected using various CEP
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patterns written using Esper EPL. As soon as the complex events are detected, alerts are

sent to an event receiver (such as an email server) which sends the alert to all subscribers.

The various use cases such as Fire Pattern, Irresponsible Stove, Power Failure and Irresponsible

Television are considered. Each of these use cases has a pattern query intended for finding

a complex event.

3.3 CEP for Remote Patient Monitoring
A remote patient monitoring system is a smart health care solution the popularity of

which is growing rapidly. It provides an economical solution for patient monitoring by

attaching sensors to a remote patient and processing the sensor data to determine im-

pending health problems and informing the healthcare professionals. A representative

set of existing research on remote patient monitoring is presented in this section. Kamel

and George have proposed a Remote Patient Tracking and Monitoring (RPTM) system

in [126]. In their system, medical sensors send health sensor data streams to an Android-

based mobile device, which are then encrypted using the Advanced Encryption Standard

(AES) mechanism and forwarded to a General Packet Radio Services (GPRS) server for

detecting complex events. The health signals are sent periodically to the server. The mo-

bile device and the hospital server communicate with one another using a third party.

The various vital signs of the patient are persisted in an SQLite database in an Android

device. The major disadvantage of this method is that it does not work in a real-time

fashion, as initially the data streams are persisted to an SQLite database and then SQL

queries are applied to find the anomalies. Stipkovic et al. [127] developed a mobile CEP

prototype system using an unofficial port of the Esper CEP engine on Android called

Esper-Android [128]. Their system consists of 3 layers: an event source layer, an event

handling layer and an event processing layer. The event source layer receives various
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health data streams and forwards them to an event processing layer where the events are

pre-processed, filtered and co-related to generate complex events. The detected complex

events are forwarded to the event handling layer for visualization. Unfortunately, the

project is incomplete as support for Esper-Android has been discontinued due to third-

party library dependencies not supported by Android [128]. Banos et al. have built a

ubiquitous RPM system called PhysioDroid [129]. Their system consists of wearable mon-

itoring devices, a mobile device such as a smartphone and a remote persistent storage

system for analytics. The mobile device acts as an edge gateway to collect and upload

sensor data to the remote persistent storage. The authors used a static interval-based ap-

proach which works on interval bounds for each physiological parameter. No CEP engine

or any other real-time analytic approach is used for detection of various health alerts. This

paper also lacks a performance analysis for the proposed approach.

Vaidehi et al. in [131] and [132] have described a CEP-based Remote Health Monitor-

ing System (CRHMS), that can receive various biological parameters such as heart rate,

respiration rate, and blood pressure using Zephyr Bio Harness sensors. The location of the

patient is accessed by using the GPS sensor. These sensor data streams are sent to an An-

droid phone which forwards them to the hospital CEP server which consists of a JBoss

Drools Fusion CEP Engine [55] for complex event detection. The proposed system has

been tested using synthetic data at an arrival rate of 25 events/second which is not inline

Figure 3.4: System architecture for RPM system [130]
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which the most of health sensors. Kakria et al. [130] have developed a server-based RPM

system for monitoring cardiac issues such as Tachycardia and Bradycardia. As shown

in Figure 3.4, the authors have used a 3-tier architecture consisting of physiological sen-

sors, an Android mobile device, and a web portal. An event forwarding gateway appli-

cation runs on the Android device, which receives sensor data using the Bluetooth Low

Energy (BLE) technology. This data is then transferred to a web server using the Extensi-

ble Messaging and Presence Protocol (XMPP) and alerts are predicted using fuzzy logic.

No complex event processing system is used in this research and the various alerts are

generated using the threshold-based approach in which the upper and lower thresholds

for various physiological parameters are defined.

Lam and Haugen, in [133], have designed a state-machine-based CEP model using the

ThingML modeling language. They reported that a CEP model built using the ThingML

[134] requires a small memory and could be efficient for embedded devices like Arduino

and Raspberry-Pi. However, the proposed model was only tested on a computer worksta-

tion having a large resource pool. Also, during experimentation, it was revealed that the

model built using ThingML does not outperform other well-known CEP engines. How-

ever, the authors claim that the proposed model is expressive in writing state machine-

based CQL queries. As the CEP system requires a full-fledged DSMS and CQL support,

much work needs to be done for this model in order to be considered appropriate as an

embedded CEP for mobile devices.

In 2018, Rodriguez et al. have made a Complex Event Processing for Heart Failure Pre-

diction (CEP4HFP) system which uses predictive analytics on patient’s historical database

for predicting a possible heart stroke [135]. As shown in Figure 3.5, the authors used a 3-

tier architecture consisting of monitoring, analysis, and visualization module. The health

sensor data streams are collected using MySignals wearable sensors [136] and are sent to
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an Arduino mega micro-controller. These health sensor data streams are then forwarded

to a Raspberry-Pi device where data is formatted to a common format used at the server.

The Raspberry-Pi device forwards the formatted health sensor data streams to a Mon-

goDB NoSQL database [60] and to a Siddhi CEP engine running inside a WSO2 Data An-

alytics Server (DAS) [68] employed on the server-side. Triggered alarms are sent to cardi-

ologists using a web-based console and to caregivers using a mobile-based visualization

module. It is important to mention here that WSO2 DAS is another solution provided by

WSO2 which provides data analytics capabilities. In this research, we have used a WSO2

IoT server which also contains a DAS server as the analytics tier as explained in Chapter 2.

Their system can be considered as a CEPaaS system as the complex event processing is

done on the server side as the Raspberry-Pi device is used as a gateway agent. This ap-

proach does not involve the patient’s device enrollment which is required to uniquely

Figure 3.5: System architecture for RPM system [135]
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identify the device at the server side for security purposes. Also, no authentication and

authorization protocols have been followed to ensure the safety of the patient’s personal

data. Another common criticism is the fact that patients would have to carry two extra

devices i.e. an Arduino board and a Raspberry-Pi for using this service. However, our

approach involves a single mobile device which is relatively easy to carry by the patient

and does not require any wired connections.

In another work done by Mohammed et al. in [137], the authors have proposed an

RPM system by building an Android-based Electrocardiogram (ECG) monitoring appli-

cation which uses an IOIO-OTG micro-controller [138] to collect the ECG signals and

upload them on the cloud using a Filezilla server [139]. The system architecture consist of

three layers: hardware layer, application layer, and cloud layer. The hardware layer con-

tains IOIO micro-controller and various health sensors to collect the sensor data streams.

Further, these sensor data streams are sent to the application layer on the Android device.

The authors have used sensor sampling methods to minimize the power consumption of

the mobile device. This application is made using Model View Controller (MVC) design

pattern [140]. In the proposed methodology, the data is not sent in a real-time fashion as

the sensor data streams are first stored into a Secure Digital (SD) card and then uploaded

to a cloud server. Also, the signal processing of the ECG signal is done on the hospital

server side to find the impending health issues. However, for the edge computing-based

proposed system described in this dissertation the complex event processing is performed

continuously and the complex event signaling an impending health problem for an RPM

system is immediately detected and sent to the back-end hospital server.

In [141] and [142], Kharel et al. have proposed a smart healthcare monitoring sys-

tem using the fog computing technique. As shown in Figure 3.6, the system architecture

consists of three layers: an edge layer, a fog layer, and a cloud layer. The edge layer fur-
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ther consists of multiple health sensor devices connected to a Raspberry-Pi board using

a ZigBee, bluetooth, or 2G/3G connection. Further, the Raspberry-Pi board is connected

to a Long Range Wide Area Network (LoRaWAN) [143] gateway which is connected to

another LoRaWAN gateway at the fog layer.

Raspberry-Pi
LoRaWAN
 Gateway 2

LoRaWAN
 Gateway 1

Fog layer Edge layer 

Health Center
(Primary Server)

Hospital
(Secondary Server)

Cloud
Datacenter

Cloud Layer

Sensors

HR

Figure 3.6: A simplified view of a system architecture used in [141]

The authors have leveraged a hierarchal fog layer approach in which the health center

is considered as a primary fog server and the hospital is considered as a secondary fog

server as shown in Figure 3.6. Hence, from the edge device’s perspective, the health center

can be considered as a fog node, albeit the hospital server can be considered as a fog node

form the health center’s perspective. The advantage of this approach is that the Internet

connectivity is not required for remote patient monitoring, as the data transfer is done

by the local LoRaWAN gateway. The authors have conducted various experiments for

both indoor and outdoor scenarios to test the effectiveness of their prototype. Figure 3.7

shows the Google map view of the buildings involved in the outdoor experiment. The

health sensors send the sensor data streams to the Raspberry-Pi present in first building

which is 2 Km away from the LoRaWAN gateway deployed in the second building. It

was found that the health sensor data was transferred at a Signal to Noise Ratio (SNR) of

-13.9 Decibel milliwatts (dBm) in this case. Thus, the prototype system can be deployed

in remote areas where the Internet connectivity is not available. However, this approach

restrains the patient to stay within the LoRaWAN connectivity zone of 2 Km, which is
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Figure 3.7: An outdoor experiment conducted in [141]

a major limitation. The approach proposed in this thesis does not have this issue, as the

complete CEP is performed in the mobile device and the data transfer from health sensors

is done by a local bluetooth connection.

Another work reported in [144] describes a pulse monitoring system which also used

the Android application as an edge gateway and sends data to a web portal for analysis

and visualization. A similar approach is described in [145] which uses an Android device

as a gateway agent. Another research in [146] and [147] employed an IoT-based approach

to process the health sensor data streams on the cloud. The authors have used an Intel

Galileo Gen 2 IoT agent to collect the sensor data streams from the mobile device and

forward these to an IoT server deployed on the cloud. However, the authors have not

used any real-time analytics system as the computation is done by a batch processing

based Hadoop system. Further, no performance analysis is done in any of these two

papers to demonstrate the effectiveness of the technique.

Woodbridge et al. have proposed an RPM system for congestive heart failure named

as Wanda [148]. The Wanda has a three-tier architecture in which the first tier consists
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of various health sensors that transmit the health sensor data streams to the second tier

consisting of a web server. The third tier uses database servers to persist the health sensor

data streams and perform the analysis using linear regression. Further, this system is not

a real-time system and does not involve any CEP engine. However, as the authors are

predicting a heart stroke, performing batch analysis seems to be appropriate. In 2017,

Naddeo el. al [149] have proposed a real-time m-health monitoring system. Their system

consists of an Android application which receives various physiological sensors using the

Zephyr Bioharness BH3 sensor and performs noise filtering using various high-pass and

low-pass filters. This filtered data is sent by an Android application to a remote Personal

Health Record (PHR) server for analysis and visualization. A major shortcoming of this

paper is that it does not describe the real-time analysis technique required for this system.

Another similar work is reported in [150] where the authors proposed to integrate the

CEP engine and the IoT server for smart healthcare. This paper is primarily focused on

the key benefits of using CEP on the cloud. However, no actual system is designed and

no performance analysis is done.

In 2018, Chisanga et al. proposed a telemonitoring system for remotely monitoring

cardiac patients in his Ph.D. dissertation [151]. As shown in Figure 3.8 the proposed

system consists of 5 modules: health sensors, mobile application, Machine-to-Machine

(M2M) gateway, M2M server and Electronic Health Record (EHR) [152]. Initially, the

Mobile Device M2M ServerM2M Gateway EHR

HR

Sensors

Figure 3.8: System architecture used in [151] and [152]
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health sensor data streams are collected using the Zephyr HxM Heart Rate Monitor and sent

to an Android smartphone using bluetooth. The mobile device has a gateway application

built using Android API version 15 (Ice-Cream Sandwich). The M2M mobile application

forwards the health sensor data streams to the M2M gateway which are then forwarded

to the M2M server. Both the M2M gateway and the M2M server are separate instances of

the OpenMTC platform [153], which provides the distributed middle-ware capabilities.

The EHR consists of a web-based application built using PHP and a MySQL database for

persisting the records. The patient enrollment is required to use this system and RBAC

is used to provide the authorization. The disadvantage of the proposed approach is that

no real-time monitoring technique is used and the complete event detection is done on a

remote server using various SQL queries.

3.4 Concluding Remarks
The major limitation of the aforementioned techniques described in Section 3.2 and Sec-

tion 3.3 is that the mobile device is simply used as a forwarding agent while CEP is done

on a remote server and thus the techniques rely on the availability of network connectiv-

ity at all times.

In smart home and smart buildings, none of the existing works performs any alert

generation on an embedded device using the CEP technique. In the case of RPM, none of

these existing works can raise an alarm notifying a health problem for the patient when

the network becomes unavailable. This problem is effectively addressed by the method-

ology and system proposed in Chapter 4.
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System Architecture and Prototype

This chapter discusses the two different system architectures used for performing CEP for

the remote patient monitoring use case. These system architectures are Server Complex

Event Processing (SCEP) and MCEP which are discussed in Section 4.1 and Section 4.2

respectively. Section 4.3 provides the system prototype implementation and experimental

setup details. Then Section 4.4 and Section 4.5 discuss the implementation details for the

sensor simulator and the timekeeper respectively.

4.1 Server CEP System
As shown in Figure 4.1, the SCEP system architecture is three-tiered consisting of multi-

ple sensors, a Mobile Device (MD), and an IoT Hospital Server (IHS). The mobile device

along with the sensors comprise the edge system that communicates with the centralized

back-end server. Multiple bluetooth and WiFi enabled wireless sensors can be used by

the sensor-based system which can forward the sensor data to an Android or iOS device.

For example, in a remote patient monitoring system, the sensors can be wearable health

sensors worn by the patient. Such cheap and efficient sensors are provided by Cooking

Hacks [136]. Some other commercial health monitoring sensors can be used such as Zeo

Sleep Monitor [154] which monitors sleep disorders and ViSiMobile [155] which can mea-

sure ECG, HR, Arterial Oxygen Saturation (SpO2), skin temperature, etc. As shown in

57
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Figure 4.1: Server CEP system architecture

Figure 4.1, the multiple sensors send the sensor data streams to a mobile device which

consists of a SCEP Application (SCEPA) and a WSO2 agent gateway application. The

server complex event processing application forwards the health sensor data streams to

the IHS. Communication between the sensors and the mobile device is done using blue-

tooth or WiFi whereas data transmission between the mobile device and the IHS is per-

formed using either a cellular or a WiFi connection. The architecture shown in Figure 4.1

can be used in other use cases such as smart buildings and smart homes. In the smart

building use case, the wearable health sensors can be replaced by wired/wireless sensors

deployed in a smart building such as room temperature sensors and light intensity sen-

sors. In such a case, the mobile device can be replaced by a local server or a Raspberry-Pi

board depending upon the workload.

4.1.1 Interaction Among Various Components

Figure 4.2 shows a high-level sequence diagram for various components in the SCEP sys-

tem. As shown in the strict fragment, initially the mobile device is registered with the

IoT server using the WSO2 agent application. Once device registration is successful, a
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Figure 4.2: Sequence diagram showing a high-level interaction of the components in the

SCEP system

device management service is started on the IHS core and the WSO2 agent application.

This service is responsible for various functions such as authenticating the device peri-

odically, managing phone calls, sharing device information, sharing device location and

sending the collected information to the IHS in an encrypted manner. The MQTT broker

is started on the IHS broker so that RE data streams can be sent from the SCEPA run-

ning on MD (publisher) to CEPaaS running on the hospital server (subscriber). The Event

Listening Service (ELS) that starts running inside the IHS analytics tier subscribes to a

topic: Ti where i represents a unique patient id in an RPM system. Device registration

is a one-time process. If the device is rebooted, it will be authenticated using device cre-

dential certificates on the server consisting of device information such as International

Mobile Equipment Identity (IMEI) number. After this one-time setup is complete (as

shown in the strict fragment), the SCEP application starts the MQTT service. Further,

SCEPA opens an input TCP sockets (one for each sensor) to receive sensor data streams.
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Multiple worker threads running in parallel append the received sensor data streams to a

thread-safe linked-blocking queue [41] from which sensor data streams are published to

an MQTT broker in a particular topic: Ti. These sensor data streams are received by the

CEPaaS running at the IHS analytics tier and the detected complex events are updated to

the dashboard using a Java Management eXtensions (JMX) agent [156] to notify the hospi-

tal staff. These complex events can also be persisted on a database for long-term historical

analytics. The device enrollment which is an initial step for mobile device and IoT server

communication (as shown in the strict fragment of Figure 4.2) is discussed next.

4.1.2 Device Enrollment/Registration Process

A mobile device has to be first registered with the back-end server in order to use CEPaaS.

For a successful registration, the IoT server deployed at the back-end should be up and

running and the server’s IP and all relevant port numbers need to be known apriori. Fig-

ure 4.3(a) shows the registration page where the user enters his/her organization name,

username, and password for the login process. Figure 4.3(b) shows a retrieved policy

agreement from the IoT server and Figure 4.3(c) shows the user PIN code setup screen

which is used to secure the user from critical remote operations performed by the IoT

server administrator. After successful enrollment, the initial login is done to use the ser-

vice which is discussed next.

4.1.3 An Initial Login into SCEP Application

After successful enrollment, an agent (on the mobile device) periodically communicates

with the IoT server in the background. In our case, as the IP of the IoT server is not static,

thus a login functionality has been added to the server CEP application. After the login

is done, the user can start using the SCEP application (on the mobile device) which will

further use CEPaaS running on the IoT server. The essential components of the SCEP and
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(a) (b) (c)

Figure 4.3: (a) Registration page (b) Accepting policy agreement (c) Setting secure PIN

CEPaaS applications are discussed in Section 4.1.4 and Section 4.1.6 respectively.

4.1.4 Components of the SCEP Application

Figure 4.4 shows the components of SCEPA which is used to forward the raw sensor data

streams from the mobile device to the IoT server. The various components that are stacked

over one another represent multiple parallel instances of that component and a solid line

represents multiple parallel sensor data streams. The various data streams are received by

the TCP socket objects (one socket for each sensor) and appended to a thread-safe linked-

blocking queue by a producer thread (Worker 1). A dedicated thread-safe queue is used

for each sensor data stream. Further, the dequeue worker (Worker 2) retrieves the sensor

data stream from a queue and sends it to the IHS using the MQTT service running on the
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Figure 4.4: Various components of the SCEP application

mobile device. This MQTT service forwards the sensor data streams to the back-end IoT

server as per the selected QoS. Please note that the MQTT service also has its own queues

for enabling the persistent session, and if the QoS ≥ 1 is selected, the sensor data stream

tuples are temporarily persisted in case the back-end server goes offline.

4.1.5 IoT Hospital Server

The hospital server consists of three components as shown in Figure 4.5.

  Broker    Core    Analytics

MQTT

RBAC
TLS

SSL

OAuth

Device management service
Policy management service
User management service
Certificate management service
Application management service
Plugin management service
Notification management service

CEPaaS
AMPQ
JMX

Figure 4.5: Key components of IHS

1. Broker: The broker is responsible for providing authorization, authentication, and

security features as discussed in Section 2.7.1.

2. Core: The core provides various services (see Figure 4.5) which have already been

discussed in Section 2.7.1.
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3. Analytics: CEPaaS runs inside the analytics tier and detects the complex events. Ac-

tiveMQ is used as the JMS queue for queuing the raw sensor events before sending

them to the CEP engine [64]. The JMX agent [156] is responsible to publish various

system specific and CEP specific metrics on the JConsole [157].

4.1.6 Components of CEP-as-a-Service

Figure 4.6 shows the various components of CEPaaS which is running on the IoT server.

The different components have been labeled with a superscript from A to M, in the order

of event processing. A solid line represents multiple parallel sensor data streams whereas

a dashed line represents a single sensor data stream. Each component which is shown as

a box in Figure 4.6 receives an input data stream and emits an output data stream as a

result of the operation performed by that component. Thus, various output streams must

be defined before starting the service such that an output stream contains all the attributes

which have been emitted by its predecessor component. When an attribute is added or

removed from an input data stream (RE.v.1 for example) as a result of an operation done
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MQTT Publisher    CE Stream
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Figure 4.6: Components of the CEPaaS module deployed on the IoT server
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by a component (MQTT receiver in this case), then the output stream can be referred to

as a stream having a different version (RE.v.2 in this case). As shown in Figure 4.6, a raw

stream has 9 versions (RE.v.1 to RE.v.9) whereas a complex event stream has 5 versions

(CE.v.1 to CE.v.5). A brief discussion of each component is provided next in the order of

event processing.

(A) MQTT Receiver: It receives a raw sensor stream on a particular topic after validating

the content using the default/custom content validator. Multiple instances of the

MQTT receivers (one for each sensor stream) receive raw sensor data streams in

parallel.

(B) Arrival time-stamping: Multiple arrival time-stamping components run in paral-

lel. Each component receives a particular stream and appends a system generated

nanosecond precision time-stamps to indicate the arrival time.

(C) ActiveMQ publisher: An ActiveMQ [64] is used as a JMS queue [38]. The ActiveMQ

publisher is responsible for sending the messages to a particular brokered-queue

managed by an ActiveMQ broker. ActiveMQ supports both topics and brokered-

queues to transfer messages, but we are using the brokered-queue in this imple-

mentation. For setting a JMS publisher, the various adapter properties such as JMS

destination type, JMS destination name, JMS factory name, JMS provider Uniform

Resource Locator (URL), JMS Connection Factory name, Java Naming and Direc-

tory Interface (JNDI) name, a username and a password need to be defined as per

ActiveMQ server configurations which is running on the IoT server.

(D) ActiveMQ: The ApacheMQ provides support for Advanced Message Queuing Pro-

tocol (AMQP), Streaming Text Oriented Message Protocol (STOMP), MQTT, Open-

Wire [158] and other protocols. The size of each ActiveMQ queue is set to a maxi-
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mum of 2 GB (restrained by the maximum value of an integer). As shown in Fig-

ure 4.7, a web-based GUI can be used to view the list of all ActiveMQ queues, topics

and a number of messages enqueued/de-queued in each of the queue/topic.

Figure 4.7: A screen-shot of the web GUI for ActiveMQ

(E) ActiveMQ subscriber: It is used to receive the sensor data stream events from a

particular ActiveMQ queue. A subscriber subscribes to a particular queue using

a unique queue name identifier and then forward the received sensor tuples as an

output sensor data stream (RE.v.6 in this case).

(F) Ingestion time-stamping: This module is used to append the CEP engine ingestion

time-stamps using a nanosecond precision system clock, before sending the sensor

data streams to the CEP engine. Multiple ingestion time components work in par-

allel to time-stamp each sensor stream.

(G) Source mapper: A CEP system supports various events formats such as XML, JSON,

key-value pairs and HL7. The role of the source mapper is to convert the type of the

sensor data stream event to the format required by the CEP engine.

(H) Apache thrift server: it is the binary communication protocol originally developed

by Facebook [159]. It provides a Remote Procedure Call (RPC) framework to build

the cross-platform services written in different frameworks and languages [160].

WSO2 Data Analytics Server (DAS) running inside the analytics tier provides real-

time, batch and predictive analytics by using the other services such as the CEP
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engine and Apache Spark. Thus, the Apache thrift acts as a mediator to perform

RPC on the CEP engine using the data bridge agent as shown in Figure 4.8. The var-

ious events received by the thrift server are temporarily stored in a queue. Setting

a large queue size is recommended for high throughput, whereas a small queue

size is recommended for low latency. Further, the marshaling and un-marshaling

are done in batches by using the provided batch size. Data Bridging Agent (DBA)

receives data on TCP port # 7611 and uses port # 7711 for SSL. Core pool can be con-

figured to use the system cores to perform the computation. Other parameters such

as SocketTimeout, KeepAliveTimeInPool, BatchSize, and EvictionTimePeriod should be

configured appropriately as per performance requirements. The transport layer pro-

vides the abstraction to read and write to the network and the protocol layer pro-

vides a mapping of a data structure to a wire-format.

RE streams 

Data Analytics Server

Data Bridge Agent

Core PoolQueue

Apache Thrift Server Siddhi CEP Engine

RE streams 

CE stream CE stream 

Figure 4.8: Thrift server

(I) CEP engine: It receives multiple sensor data streams and finds the complex events

according to the CQL query which has been deployed. A single complex event

stream, as shown by a dashed line, is sent to the sink mapper. The complex event

detection time-stamping is done in the CEP engine.

(J) Apache thrift server: The detected complex events are sent back to the thrift server

which are then sent back to the DAS for further processing.
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(K) Sink mapper: The sink mapper converts the data type of the events in CEP stream

to the type required by the event publisher.

(L) Statistics computer: It computes various CEP specific metrics such as average CEP

latency and average CEP queuing latency by using the time-stamps taken by the IoT

server.

(M) MQTT publisher: The MQTT broker component publishes the various streams to

the event listener such as a dashboard, email, or a database.

4.1.7 Performance tuning for ActiveMQ

The WSO2 IoT server provides a web GUI-based console for core and analytics tiers.

The web console of the analytics tier can be used to configure various types of publish-

ers and subscribers with one another to generate a streaming analytics pipeline [68]. It

means that only the supported event publishers or event subscribers can be used and

we have selected the ActiveMQ as a queue. The optimal case would be to use a thread-

safe queue data structure such as a linked-blocking queue due to its broker-less nature

and less latency. Unfortunately, the broker-less queue such as ZeroMQ [161] or a queue

data-structure is not yet available in WSO2 IoT server. Both WSO2 IoT server and Ac-

tiveMQ use the OSGi framework to provide asynchronous messaging. The ActiveMQ

uses a message broker Message Oriented Middleware (MOM) to manage, host, acknowl-

edge and transfer messages. ActiveMQ has more latency compared to broker-less queues

as a broker-less queue does not employ an additional component such as a broker, but

instead uses a queue data structure to transfer messages [162]. In order to reduce the

queuing latency incurred by ActiveMQ, some performance tuning steps have been per-

formed, as explained next.
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1. By default, the ActiveMQ broker persists all the incoming messages in a file-based

database called as KahaDB [163] using a file-based cursor object which leads to ad-

ditional delays. As ActiveMQ is based on the TCP protocol, so for every message,

the acknowledgment is sent by the JMS receiver after which the message is deleted

from KahaDB. For performance optimization, the persistence mode of ActiveMQ is

turned off.

2. The in-memory storage of the messages is turned on, to reduce queuing latency.

This is achieved by using a VM cursor object in which a reference to the message

is held in-memory and passed to the dispatch queue to publish a message to the

ActiveMQ listener [64].

3. The flow control mechanism has been turned off as it leads to additional queuing

delays inside ActiveMQ.

Further, the WSO2 IoT server uses OpenWire [158] as a default wire protocol to trans-

fer data between the ActiveMQ publisher, ActiveMQ receiver and ActiveMQ broker.

In our current implementation, the ActiveMQ uses Asynchronous JavaScript and XML

(AJAX) [164] as a REpresentational State Transfer (REST) API connector [165] to send

the messages to the Jetty server [166] at a specific Uniform Resource Identifier (URI)

(tcp://0.0.0.0:61616 in this case). The JMS receiver adapter and the JMS publisher adapter

running on the IoT server read and publish data respectively from this URI.

4.1.8 Device Management Dashboard

Figure 4.9 shows the IHS dashboard where an administrator can perform various oper-

ations like calling the patient, sending a text message using Google Cloud Messaging

(GCM) [167] and viewing live location.
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Figure 4.9: Administrator dashboard for a particular user

4.1.9 Setting up an Analytics Dashboard

We have used the DataDog dashboard for visualization which is used by a number of

key companies such as Samsung, AT&T and FedEx [84]. Figure 4.10 shows the vari-

ous components which need to be configured with one another to publish the system

and CEP specific metrics to a web-based DataDog dashboard. The JMX agent [156] col-

Ddatadog

JMX JconsoleIoT Server

Collector

DogStatsD

Forwarder

System

Collect Forward

Forward

HTTPS

Figure 4.10: Dashboard setup
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lects the CEP specific metrics from the IoT server and forwards them to the JConslole

[157]. A valid API registration key is required to configure the DogStatsd agent with the

DataDog web console. The DogStatsd agent [168] running on the IoT server collects the

application-level metrics from the JConslole Managed Beans (MBeans) [169] using the .yml

configuration file (a separate file for each application). The Collector component is respon-

sible for collecting the system-level metrics such as system Central Processing Unit (CPU)

usage, system memory usage, and system network consumption. Both types of metrics

fetched by the Collector and DogStatsD components are sent to a Forwarder component us-

ing the User Datagram Protocol (UDP). The Forwarder component sends these metrics to

a web-based DataDog dashboard using the Hypertext Transfer Protocol Secure (HTTPS)

protocol. Figure 4.11 shows a screen-shot of the dashboard running on the IoT server

displaying metrics such as average CPU utilization, average memory consumption, and

average network usage. The dashboard setup process for the MCEP system is similar to

the one for the SCEP system with each system having different configurations files for

MBeans.

Figure 4.11: Screen-shot on the DataDog dashboard running at the IHS
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4.2 Mobile CEP System
The mobile CEP system has been designed to perform complex event detection on the

edge device using an embedded CEP engine that forwards the complex events to an IHS.

Although the following discussion refers to the RPM use case, the MCEP architecture can

be used in the context of other use cases as well. As shown in Figure 4.12, similar to the

SCEP architecture, the MCEP architecture also consists of three components:

1. Sensors: For the RPM use case, various wearable health sensors such as an Apple

watch, Glucometer sensor, and Pulse-oximeter are used.

2. Mobile device: The mobile device is used to perform complex event detection using

the mobile CEP application and sends the detected complex events to the back-end

hospital server.

3. IHS: An ELS running on the analytics tier receives the complex event alerts which

are further sent to a DataDog dashboard to notify the hospital staff.

Sensors

Patient

MD IHS

 Sensor data
   streams

   CE stream

 Broker

 Core

 Analytics
    (ELS)

Dashboard

MCEPA

WSO
 Agent

2

    Agent-IHS 
communication

Figure 4.12: Mobile CEP system Architecture
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The main difference between the MCEP system and the SCEP system is that all the com-

plex events are detected on the mobile device instead of processing them on a centralized

IoT server. Unlike the SCEP system, which has a CEPaaS running on the IHS, the MCEP

system has an ELS running on the hospital server which is subscribed to listen to the com-

plex events sent by the MCEP Application (MCEPA) running inside the mobile device.

The sequence diagram in Figure 4.13 shows a high-level interaction among the various

components shown in Figure 4.12. The device registration process, as shown in the strict

fragment, is the same as the one described for the SCEP system in Section 4.1.1. Once this

one-time configuration is complete, the patient can start the CEP service on his/her de-

vice which continues to run indefinitely. This service consumes raw sensor data streams

from both wearable health sensors and embedded mobile sensors. Complex events are

detected based on CQL queries programmed apriori by a health professional. As soon

as a complex event is detected by the CEP engine running inside MCEPA, it is sent to

Start
ELS

:MCEPA :Agent App :IHS Broker:Sensors :IHS Analytics:IHS Core

Publish complex
events to topic 

Sensor
data 
streams

Subscribe to a topic 

Start mosquitto 
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Start device  
management
service

Start device  
management
service

Publish CE stream 
to subscriber Update 

dashboard

Send Device Enrollment Request 

loop

Strict

Start CEP  service

[CE detected  == true]

Figure 4.13: The sequence diagram for mobile CEP system
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the MQTT broker (running inside the IHS broker) on a particular topic. The broker for-

wards the complex event stream to the subscriber: an ELS running in the IHS analytics.

The event listening service sends the CE stream to a dashboard using a JMX agent for

visualization.

4.2.1 Key Features of Mobile CEP

The key features of the proposed mobile CEP system include:

1. User enrollment and device management service: The patient can either enroll us-

ing Bring Your Own Device (BYOD) [170] or a Corporate Owned Personally En-

abled (COPE) feature [171]. In BYOD, users provide their own device to receive

the service, while COPE is an enterprise-based feature in which the enterprise (IoT

server administrator in this case) has root level access to the device. Further using

a dashboard, the IHS administrator can manage multiple mobile devices, enforce

various policies, black-list, and white-list applications, encrypt device storage, con-

figure WiFi, Virtual Private Network (VPN), and work-profile configurations.

2. Interactive GUI: Mobile CEP provides a GUI to enroll in IHS and view live data

generated by the various sensors. It also shows application statistics such as the

total number of complex events detected, average CEP latency in addition to local

alarms generated by the engine. As the CEP system runs continuously, the GUI also

provides a button to shut-down the CEP engine.

3. CEP and MQTT as Android-service: Both CEP and MQTT have been implemented

as an Android-service so that they can run in the background even if the component

that created it is destroyed. For the remote patient monitoring use case, it allows

the patient to perform other operations such as playing games, dialing/receiving
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phone calls and surfing the Internet along with the MCEP application running in

the background.

4. Multi-tenant architecture: Users having different roles such as an administrator,

doctor, or health assistant (each having different authorization level) can be added/re-

moved in the IoT server.

4.2.2 Components of the Mobile CEP Application

Figure 4.14 shows the various components of the mobile CEP application. The compo-

nents have been labeled with a superscript ranging from A to J, in the order of event

flow. A solid line represents multiple parallel sensor data streams whereas a dashed line

represents a single sensor data stream. Various components that have been shown as

stacked over one another represent multiple parallel instances. The basic functionality of

each component is explained next.

(A) Query repository: Prior to running the CEP engine, the appropriate query needs

to be selected. Each query is written by a health professional and corresponds to a
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Figure 4.14: Components of mobile CEP application
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particular disease such as CHF or Arrhythmia.

(B) Socket objects: Multiple TCP socket objects receive input data streams concurrently,

de-serialize streams and parse them as JSON tuples. Further, an event arrival time

is added to each tuple and these tuples are then appended to a thread-safe queue by

the Worker 1 thread in a First-In-First-Out (FIFO) order.

(C) Thread-safe queue: Worker 2 is another thread which continuously checks if there is

a tuple present in the queue. If so, it fetches the tuple from the head of the queue,

then appends the event ingestion time in nanosecond precision using the system

clock and sends it to the source mapper.

(D) Source mapper: The mobile CEP application can receive streams in multiple for-

mats which are mapped to a common Siddhi event format using the source mapper.

Multiple instances of the source mapper perform mapping in parallel.

(E) Input GUI handler: In Android, a handler provides communication between the

main GUI thread and the other background threads. Multiple handler instances

(one for each sensor) update live raw sensor data to the GUI in a parallel fashion.

(F) CEP execution plan: It consumes raw events from various source mappers in paral-

lel and executes the CEP query to generate complex events in Siddhi event format

which are forwarded to a sink mapper.

(G) Sink mapper: The sink mapper converts Siddhi events to JSON events which are

then forwarded to a statistic computer and a sink such as the MQTT service.

(H) MQTT service: This service publishes the JSON complex event stream on a particu-

lar topic to the MQTT broker running on the IHS broker.
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(I) Statistics computer: It computes various CEP statistics and sends them to the output

GUI handler.

(J) Output GUI handler: Multiple parallel instances of the output GUI handler update

various CEP statistics to the GUI on the mobile device.

4.2.3 Screenshot of Mobile CEP Application

Figure 4.15 is a sample screenshot of the mobile CEP application running on Google Pixel

[172]. Initially, a query is selected from a drop-down menu, after which the mobile CEP

application starts consuming the sensor data streams from 3 sensors as shown in Fig-

ure 4.15. The real world slp01a/slpdb dataset (consisting of sensors such as electrocardio-

Figure 4.15: Screenshot of mobile CEP application
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gram, electroencephalogram and blood pressure) from the MIT-BIH polysomnographic

database [173] is used in this case. Various metrics such as the number of complex events

and the average CEP latency are also shown on the mobile device GUI.

4.2.4 Mobile CEP Algorithm

Algorithm 4.1 shows a high-level logic used for devising the mobile CEP application run-

ning on the mobile device. Here, it is assumed that before Algorithm 4.1 runs, the user has

Algorithm 4.1: Mobile CEP Algorithm

1 if Network is available then
2 Login into the server using valid credentials
3 if Login is successful then
4 Start Device management service
5 Start MQTT service

6 end

7 else
8 Check network availability periodically
9 if Network is available then

10 Start MQTT service
11 Start Device management service

12 end

13 end
14 Start CEP service
15 Queryy ← selected query
16 AppRuntime← createSiddhiAppRuntime(Queryy)
17 IsAppRunning← true
18 AppRuntime.start()
19 Call sensorHandler()
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already registered his/her mobile device with the IHS. As soon as the MCEP application

is started, the availability of the wireless network on the device is checked automatically.

If the network is available (Line 1), then login to the IoT server is performed (Line 2). If

the login is successful (Line 3), then three services are started: device management service

(Line 4), MQTT service (Line 5), and CEP service (Line 14). The device management ser-

vice is responsible for authentication, authorization, and encryption of data exchanged

between the mobile device and the IoT server. The MQTT service forwards complex

events corresponding to a particular topic to the hospital server using the MQTT broker.

When the network is not available, only the CEP service is started (Line 14) and network

availability is checked periodically (Line 8) such that device management service (Line 11)

and MQTT service are started (Line 10) if the network becomes available (Line 9). Once

the CEP service is started, then the user (patient in the RPM use case) is prompted to

select a particular type of query related to his/her problem (Line 15). This query is pre-

programmed in the application and can be changed by a medical professional from the

IoT server. An application runtime is created based on the selected query (Line 16). The

selected query is responsible for detecting the complex event that depends on the condi-

tion of the patient being monitored. The CEP service is started (Line 18) after which the

sensor handler function is called (Line 19) which is explained in Algorithm 4.2. There is a

separate handler function for each sensor data stream, which is responsible to receive the

sensor data streams from the respective sensor.

4.2.5 MCEP Sensor Handler Algorithm

Algorithm 4.2 is used to receive the data streams from a single sensor and then append

them to a thread-safe queue. The same logic is used by the SCEP application. For re-

ceiving the input sensor data stream from sensory, a socket object (sockety) is created on

a new thread (Line 3). Further, an InputHandlery is created to receive a stream and to
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Algorithm 4.2: MCEP Sensor Handler Algorithm

1 while Application is running do
2 foreach Sensory do
3 Sockety ← Create socket object . start a new thread

4 InputHandlery ← GetInputHandler(‘Streamy’)
5 while IsAppRunning do
6 Tuple← Sockety.receive()
7 foreach Tuple do
8 Perform de-serialization
9 ArrivalTime← System.nanotime()

10 Append Tuple to a thread-safe FIFO queue . en-queue to a queue

11 Update GUI using InputHandlery

12 end
13 end
14 end
15 foreach Queuey do
16 while AppRunning do
17 if Queuey.isEmpty == false then
18 IngestionTime← System.nanotime()
19 InputHandlery.send() . send to CEP engine

20 Queuey.remove() . de-queue from a queue

21 end
22 end
23 end
24 foreach Complex event detected do
25 Use sink mapper to change event format
26 Send an event to statistic computer(Payload)
27 Call MQTT service(QoS, Payload, TopicName)

28 end
29 end
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send it to the CEP engine (Line 4). Various sockets receive the sensor streams in paral-

lel and perform de-serialization of stream data from binary to JSON event tuple for each

received tuple (Line 8). Event arrival time is determined using a nanosecond precision

system clock and appended to the event tuple (Line 9). Then, the tuple is en-queued

to a thread-safe linked-blocking queue following a FIFO order (Line 10) and the GUI is

updated (Line 11). A thread-safe queue is preferable in a producer-consumer scenario

as it provides concurrency control mechanisms such as mutex to avoid problems due to

race conditions. For each queue (Line 15), another thread runs in parallel which checks

whether the queue contains any tuples (Line 17) and if so, it appends the event ingestion

time (Line 18) before sending the tuple to the engine using the respective input handler:

InputHandlery (Line 19). Finally, that event is de-queued from the LinkedBlocking queue

(Line 20). As soon as the complex event is detected (Line 24), it is sent using a streaming

callback to the statistics computer which computes the necessary metrics and updates the

GUI (Line 26). Also, the detected complex event is sent to the MQTT service which for-

wards it to a Mosquito broker on a specific topic in order to forward it to the IHS (Line 27).

4.2.6 MCEP MQTT Service Algorithm

Algorithm 4.3 is responsible for enabling the MQTT pub-sub system as an Android ser-

vice. For registration of the mobile device with the MQTT broker running on the server,

the device enrollment is required (Line 1). The MQTT endpoint is required to connect

to the IoT Server (Line 3) using the device registry information stored on the mobile de-

vice (Line 1). Various other parameters are set such as the required QoS type, will topic

(Line 5), will message (Line 5) and MQTT timeout (Line 6). If all the parameters are set

(Line 7), then MQTT client object is created (Line 8) using the MQTT endpoint (Line 3) and

a client id (Line 2). The SubscribeToQueue (Line 9) and PublishToQueue (Line 14) functions

are over-ridden to enable subscribing and publishing to a particular topic in MQTT bro-
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Algorithm 4.3: MQTT Service Algorithm

1 DeviceRegistry← Get device registry from the local registry

2 ClientID← Generate the client id using the DeviceRegistry

3 MQTTEndPoint← IP address of IoT server

4 QoS← Get the selected Quality of Service

5 Set WillMessage and WillTopic

6 MQTTTimeout← Timeout to resend the packet if QoS ≥ 1

7 if ClientID, MQTTEndPoint, QoS, WillMessage and WillTopic are set then

8 MQTTClient←MqttClient(MQTTEndPoint, ClientID)

9 MQTTClient.SubscribeToQueue(QoS)

10 MQTTClient.SetDisconnectionWillForClient(QoS, WillMessage, WillTopic)

11 end

12 while Application is running do

13 MQTTClient.MessageArrived(TopicName, Payload)

14 MQTTClient.PublishToQueue(QoS, Payload, TopicName)

15 MQTTClient.DeliveryComplete()

16 end

ker deployed at the back-end server. Other methods can be over-ridden accordingly so as

to provide the last will message in case of connection error (Line 10). While the applica-

tion is running (Line 12), the processing each message on its arrival for type checking and

other actions can also be done in messageArrived method (Line 13) and then published us-

ing the PublishToQueue method (Line 14). The publisher can perform the required action

when delivery is complete by over-riding the deliveryComplete method (Line 15).
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4.2.7 MCEP Average Network Consumption

As shown in Figure 4.16, the average data rate at which the sensor data streams are re-

ceived by the mobile device is denoted by RX (expressed in MB/s). The average data rate

at which sensor data streams are sent by the mobile device to the IoT server is denoted by

TX( also in MB/s).

Sensors MD IHS

RX TX

Figure 4.16: Data sent and received by the mobile device

Assuming that a user (patient) is using bluetooth or WiFi for connecting the sensors with

the mobile device, TX can be used to compute the user cost. Here, we assume that a

patient is using the mobile network for the transfer of data between the mobile device

and the back-end IoT server. The user cost can be computed by as:

User Cost ($/hour) = TX ∗ cost per MB ∗ 3600 (4.1)

4.3 System Prototype Implementation
The system prototypes and the experimental set up (referred to simply as the system pro-

totypes in the following discussion) used for analyzing their performance are discussed

in this section. As shown in Figure 4.17, the system prototype for both the server CEP

and mobile CEP systems consist of five components: a timekeeper, a Sensor Simulator

(SS), an IoT hospital server, a mobile device, and a wireless router. Note that the time-

keeper used in the experimental setup for performance measurement is not needed in a

production system in which sensor simulator is replaced by the actual senor devices. The
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timekeeper is used to perform global time-stamping to compute the end-to-end latency.

This module is required as various components (with different un-synchronized clocks)

are involved in computing the end-to-end latency. Therefore, a timekeeper is required to

provide a global time-stamping for raw event streams (from the sensor simulator) and

the complex event stream (from IHS) using a single clock as explained later in Section 4.5.

Please note that the latency of the system can increase with the increase in the complexity

of the query and the software used for detecting the complex event. The sensor simu-

lator is used to generate the sensor workload which is further explained in Section 4.4.

The various components which are stacked over one another inside the sensor simulator

and the timekeeper represent multiple instances of that respective component running in

parallel. The solid line represents multiple parallel data streams while a dashed line rep-

resents a single sensor data stream. As shown in Figure 4.17, the data streams generated

by the sensor simulator are sent in parallel to both the mobile device and the timekeeper

(for global generation time-stamping). In the SCEP system, raw event streams are sent

from the mobile device to the IoT server whereas only a complex event stream is sent

from the mobile device to the IoT server for the MCEP system. For both architectures,

a single complex event stream is sent from the IHS to the timekeeper for global notifi-

cation time-stamping. The system configuration for the aforementioned components is

provided next.

1. Timekeeper: The timekeeper module is written in Java and deployed on a computer

workstation having 16 GB of Random Access Memory (RAM), a 2.8 GHz Intel Core

i7 processor and a 1 TB Hard Drive (HD) running on Ubuntu 14.04 Long Term Sup-

port (LTS).

2. Sensor Simulator: The Java-based sensor simulator program is running on a work-

station equipped with 8 GB of RAM, a 2.8 GHz Intel Core i7 processor and a 1 TB
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Figure 4.17: System prototype setup

HD using Ubuntu 14.04 LTS.

3. IHS: An IoT server is deployed on a system having 16 GB of RAM, a 3.5 GHz Intel

Core i7 Processor and a 1 TB Solid State Drive (SSD) running under High Sierra

MacOS. The MQTT broker and the MQTT subscriber is deployed on the broker and

the analytics tiers of the IoT server respectively. The Java Virtual Machine (JVM)

configurations for the broker, core, and analytics components of the IHS used in the

prototype are given in Table 4.1. It is useful to dedicate the CPU resources to each

component such as broker, core, and analytics. Here, -Xmx represents the maximum

size of the JVM heap (4 GB in this case) which can be allocated to the respective tier.

Table 4.1: Java Memory Configurations

Parameter Broker Core Analytics

-Xmx 4096 MB 4096 MB 4096 MB

4. Mobile Device: A Google Pixel smartphone [172] having 4 GB of RAM, 1.6 GHz

processor, 32 GB of storage, and an AArch64 quad-core processor running Android

Nougat is used as the mobile device. WSO2 IoT server version 3.0 is deployed on

IHS along with its compatible Android agent version 3.1.27 running on the mobile
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device. Both the mobile CEP and server CEP applications that are written using Java

are built on Android Studio 3.0.1 IDE using Gradle build tools version 26.0.2 [75].

For the mobile CEP application, due to the large size of the Siddhi CEP libraries, the

multidex feature has to be enabled to overcome the 64K limit of the Android Dalvik

compiler. Relevant Internet, WiFi, and network permissions must be enabled for

the MCEP and SCEP applications. The MQTT publisher is deployed on the mobile

device.

5. Router: A 5 GHz AC1750 Tp-Link dual-band wireless router with a maximum band-

width of 1350 Mbps is used to transfer data between the various components.

4.3.1 Dependencies used in Mobile CEP

This subsection lists some of the CEP specific, MQTT related and testing related depen-

dencies used in the mobile CEP application as shown in Table A.1 of Appendix A. Dif-

ferent scopes such as implementation, test implementation, compile only, annotation processor,

and android test implementation are used as per requirements [174]. It is important to note

that as the grade build system does not take care of the transitive dependencies, thus

the transitivity for some of the dependencies is excluded to make sure the duplicate and

conflicting dependencies does not create any issue.

4.4 Sensor Simulator
A multi-threaded sensor simulator program is used to simulate multiple sensors based

on a given input rate and simulation time. A nanosecond sleep time is used to generate

a constant inter-arrival rate for each sensor. As shown in Figure 4.17, the data streams

generated by the sensor simulator are sent simultaneously to the mobile device and the

timekeeper using TCP sockets. All the sensor simulator daemons send data streams con-
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currently on separate threads, where each thread generates a stream of JSON tuples. A

JSON tuple consists of both metadata and payload data as shown in Table 4.2. A detailed

description of each field is provided in Table 4.3. The metadata includes information

such as patient id, sensor id and tuple id whereas the payload data includes the respec-

tive sensor value(s) and an event generation time-stamp (Tg). In certain cases, the sensor

data stream tuple may consist of an array of data values instead of a single value, but in

our experimentation, a single value is used. Patientid is required at the IHS in order to

uniquely identify a patient when multiple patients are enrolled with the RPM service.

Table 4.2: A sample tuple generated by the sensor simulator

{ ‘ Metadata ’ : { ‘ Pa t ient Id ’ : 1500 , ‘ SensorId ’ : ‘HR’ , ‘ TupleId ’ : 1324} ,

‘ Payload ’ : { ‘ Value ’ : 66 , ‘ GenerationTime ’ : 255073580723571}}

Also, a combination of Patientid, Sensorid, and Tupleid can be used to uniquely identify an

event received at the IHS when multiple patients are enrolled.

Table 4.3: Tuple format

Field Type Description

Patientid Metadata Unique to each patient

Sensorid Metadata Unique for each sensor for a patient

Tupleid Metadata Auto-incrementing integer for each tuple

Value Payload A uniformly distributed integer between 1 and 100

Tg Payload A nanosecond precision time-stamp

The sensor simulator can generate both synthetic and real-data using synthetic and real

datasets respectively. For simulating the real-data, the sensor simulator uses sensor data

available at the slp01a/slpdb dataset from the MIT-BIH polysomnographic database [173].
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This dataset consists of 2-hour duration data of 4 health signals recorded at 250 Hz. In

a synthetic dataset, the tuple values are uniformly distributed integers ranging from 1

to 100. The real dataset is used to test the functional correctness of the proof-of-concept

prototype, whereas all the other experiments were performed using a synthetic dataset.

The synthetic dataset is preferred over a real dataset because of the ability to control the

various workload parameters including tuple values and tuple inter-arrival times.

4.4.1 Sensor Simulator Algorithm

Algorithm 4.4 shows the sensor simulator algorithm which can generate both the syn-

thetic and real-time sensor data streams (by reading the stored data from a file) for X sen-

sors. Initially, the user selects the type of architecture that is currently deployed (Line 1).

This step is required because different port numbers are used to transfer data for the two

architectures. Then, various parameters such as the timekeeper IP address (Line 2), the

mobile device IP address (Line 3), the sensor data stream arrival rates (Line 4), and the

simulation time are initialized (Line 5). With a particular architecture type selected, a port

number is set for each sensor (Line 7) and the sensor simulator is started on a new thread

Algorithm 4.4: Sensor Simulator Algorithm

1 ArchitectureType←MCEP ‖ SCEP
2 IPTK ← IP address of the timekeeper
3 IPMD ← IP address of the mobile device
4 λX ← Arrival rate for SensorX . Set for each sensor

5 RuntimeX ← Simulation runtime in seconds
6 foreach SensorX do
7 PortX ← Set port# based on selected ArchitectureType
8 Start SensorX Generator(PortX, IPTK, IPMD, λX, RuntimeX )

9 end
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by passing the various parameters to the SensorX generator function (Line 8). The sen-

sor SensorX generator algorithm used to generate data for a single sensor is discussed in

Section B.1 of Appendix B.

4.5 Timekeeper
A timekeeper daemon has been devised in order to measure the end-to-end latency of

complex events from the sensor simulator to the IoT hospital server. Since the sensor

simulator and the IHS run on separate workstations, time measurements need to be made

by a third independent machine using a single clock. A timekeeper module appends

global time-stamps to all raw event streams coming from SS and the complex event stream

coming from IHS. The generation time of a tuple at the sensor simulator (Tg) is time-

stamped as the global generation time (Tgg) and the notification time at the IHS (Tn) is

time-stamped as the global notification time at the timekeeper (Tgn).

Algorithm 4.5: Timekeeper Algorithm

1 ArchitectureType←MCEP ‖ SCEP
2 foreach SensorX do
3 Start listener for SensorX . on a new thread

4 end
5 if ArchitectureType == MCEP then
6 Start Complex event listener (MCEP) . on a new thread

7 else
8 Start Complex event listener (SCEP) . on a new thread

9 end
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4.5.1 Timekeeper Algorithm

As shown in Algorithm 4.5, initially a particular type of architecture (MCEP or SCEP)

needs to be selected (Line 1), as the sensor simulator can be used with different architec-

tures. For each SensorX, a listener daemon is started on a new thread. The sensor listener

daemon (described in Algorithm C.1) is responsible for performing the time-stamping of

the respective sensor. Once this step is done, the timekeeper opens a server socket to start

listening to raw sensor data streams generated by the sensor simulator. Depending upon

the selected type of architecture, the respective complex event listener is started on a new

thread (Line 6, Line 8). The SensorX listener algorithm which is used to receive and time-

stamp the raw event sensor stream tuples for a single sensor is discussed in Section C.1 of

Appendix C. The SensorX listener further uses DequeThreadSensorX which is discussed in

Section C.2 of Appendix C. Further, the complex event listener algorithm which is used to

receive and time-stamp the complex event stream data tuples is discussed in Section C.3

of Appendix C



Chapter 5

Performance Analysis

This chapter first describes the remote patient monitoring use case model that has been

considered in the performance analysis (see Section 5.1). The various types of event time-

stamping are discussed in Section 5.2. Section 5.3 provides the description of the work-

load and system parameters used in the experiments. Then, various performance metrics

are described in Section 5.4 followed by the discussion of a thorough performance analy-

sis of the SCEP system and the MCEP system in Section 5.5 and Section 5.6 respectively.

Finally, a comparison between the two systems is discussed in Section 5.7.

5.1 The Remote Patient Monitoring Use Case Modeling
This section focuses on the RPM use case used in fall detection for elderly people. A

survey conducted by the World Health Organization (WHO) reported that the occurrence

of fall is common among elderly people and seems to increase with age and frailty level

[175]. As per this survey, each year approximately 28-35% people more than 65 years of

age fall, whereas this number reaches 32-42% for 70 years old. Falls lead to 20-30% of mild

to severe injuries and are the underlying cause of 10-15% of all emergency department

visits. However, if a fall event is notified to hospital staff as soon as possible, the further

loss can be circumvented.

Fall detection can be monitored remotely using a CEP engine ingesting real-time sen-

90
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sor data streams from several mobile sensors and various physiological sensors. A fall

complex event can be identified with more certainty if certain events happen in a specific

order. For example, an increase in heart rate event (occurring for one or more times) fol-

lowed by an increase in the breath rate event (occurring for one or more times) within

some specific time interval may indicate that the elderly person has fallen. The complex

event may not necessarily gave rise to a critical event, but an alert is sent nevertheless to

the health services professional who can further look into weather the situation is critical.

The pattern query presented in Table 5.1 is used for the performance analysis for all the

experiments performed in this chapter. This pattern query detects the complex events

from two streams of events (Streams A and B) generated by the sensor simulator.

Table 5.1: CEP Query

Every A
[
valueA ≥ ThA

]〈
minA : maxA

〉
→ B

[
valueB ≥ ThB

]〈
minB : maxB

〉
within Twin

Note that an event from stream A and stream B is referred to as an A and B in the fol-

lowing discussion. Event A represents the heart rate and event B refers to the breath

rate. The query leads to the detection of a complex event if CountA instances of event A

with tuple values larger than or equal to ThA are followed by CountB instances of event

B with tuple values larger than equal to ThB. CountA and CountB are integers lying in

the range bounded by minA to maxA and minB to maxB respectively. Special cases such as〈
minA:

〉
and

〈
:maxA

〉
correspond to the situations in which event A must occur at least

minA times or at most maxA times respectively. The within Twin construct used at the end

of the query (as shown in Table 5.1) signifies that the computations described earlier are

made for events occurring within a time window size of Twin. Every A condition means

that a parallel state machine instance is triggered for every occurrence of A event which

waits for B event to occur until time Twin. Various parallel instances of event A will wait
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for corresponding event B. A timer is started with the occurrence of event A for that

state machine instance. A complex event that corresponds to both the heart rate and the

respiration rate going above their respective thresholds specified by ThA and ThB can be

detected by specifying the appropriate threshold values for A and B. Such a complex

event may signal an impending heart problem requiring a notification for the health ser-

vice provider. More complex queries are required for handling more complex situations

(e.g. a heart stroke occurrence) can be modeled with the help of multiple sensors [176].

5.2 Various types of Event Time-stamping
The various event times captured during the experiments for the SCEP and MCEP sys-

tems are shown in Figure 5.1 and Figure 5.2 respectively. A brief description of these

event times is provided in Table 5.2.

Table 5.2: Various times associated with an event

Time Description Time-stamped at
Tg Event generation time Sensor simulator
Tgg Event global generation time Timekeeper
Ta Event arrival time at the queue MD for MCEP & IHS for SCEP system
Ti Event ingestion time MD for MCEP & IHS for SCEP system
Td Event detection time MD for MCEP & IHS for SCEP system
Tn Event notification time IHS
Tgn Event global notification time Timekeeper

Figure 5.1 and Figure 5.2 are extended versions of Figure 4.17 which has been discussed

earlier in Section 4.3. It is important to note that Ta, Ti, and Td are time-stamped in the CEP

engine when it is running in the mobile device (for MCEP system as shown in Figure 5.1)

or in IHS (for SCEP system as shown in Figure 5.2). Tg and Tn are always time-stamped

at the sensor simulator and IHS respectively for both systems. For both MCEP and SCEP
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systems, the various sensor data stream generators in the sensor simulator also forward

the sensor data streams to the timekeeper (in addition to the mobile device) for global

time-stamping as shown in Figure 5.1 and Figure 5.2. For MCEP system (see Figure 5.1),

the multiple sensor data streams (shown by a solid line) are sent by the sensor simulator

to the mobile device where the complex events are detected and a complex event stream

is forwarded to the IHS (shown by a dashed line), which further forwards the complex

events to a timekeeper for global timestamping. For the SCEP system (see Figure 5.2), the

multiple streams are sent by the sensor simulator (shown by a solid line) to the mobile

device which acts as the gateway agent and forwards the streams to the IHS. In the IHS,

the multiple streams are ingested by a CEP engine to generate a complex event stream

which is forwarded to the timekeeper for global timestamping (shown by a dashed line).

MDIHSTimekeeper

SS

Figure 5.1: Time-stamping in MCEP

IHS

SS

Timekeeper MD

Figure 5.2: Time-stamping in SCEP

5.3 Workload and System Parameters
The various workload and system parameters are described next.

• Average raw event arrival rate (λRE): It is the average rate of the raw events gener-

ated by the sensor simulator.

• Threshold for sensor stream x (Thx): The value of the threshold parameter is used by

the selection predicate (π) to filter the sensor data streams tuples which are greater
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than Thx.

• Countx: The count is used to specify the number of times a particular event has to

occur to accept it as an intermediate event. An exact number of occurrences can also

be specified through the count parameter. We have used the
〈
min:max

〉
specifier for

Countx where
〈
min:

〉
means that an event has to happen at-least min times while no

upper bound is specified. In other words, the notation,
〈
min:max

〉
, which means

that the event should happen at-least min times but less than max times.

• Time window (Twin): The time window specifies the maximum time until which

event A will wait for event B to occur. Please note that this time will be different for

each state machine instance. The time window starts as soon as event A arrives at

the CEP system. Then a separate instance of the state machine is started and it waits

for event B for a time less than Twin.

• Number of sensors (Ns): This parameter represents the number of sensors that have

been simulated by the sensor simulator.

• Simulation runtime in minutes (Trun): It is the length of the simulation runtime

period in minutes.

• Quality of Service (QoS): It is the QoS type (0, 1 or 2) used by the MQTT publisher to

transmit the sensor data streams to the MQTT broker. These QoS parameters were

discussed earlier in Item 4 of Section 2.5.

The various values for the workload and system parameters used in the experiments are

presented in Table 5.3. Factor-at-a-time experiments were performed on the system in

which one parameter was varied in a given experiment while others were held at their

default values. The value in bold for each parameter presented in Table 5.3 corresponds

to the default value of the parameter.
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Table 5.3: Workload and system parameters

Parameter Description Units
λRE 100, 300, 500, 1000, 2000 events/second
Thx 50, 60, 70, 99 -
Countx 1, 5, 10 -
Twin 0.005, 0.035, 0.06, 0.1, 0.2, 10 seconds
Trun 5, 60 minutes
QoS 0, 1, 2 -

5.4 Performance Metrics
Let Tx

a and Tx
i be the arrival time and ingestion time respectively for the earliest arriving

event, among all the events from the different sensor data streams that led to the complex

event. Moreover, let Tx
g and Tx

gg be the generation time and global generation time respec-

tively for the earliest arriving event that corresponded to the complex event. Also, let Tx
d ,

Tx
n and Tx

gn represent the complex event detection time, complex event notification time

and complex event global notification time respectively. The various CEP specific metrics

and how they are computed from the various measured times are discussed next.

• Average CEP latency (L): A complex event is generated when a CQL pattern match

occurs by ingesting data from multiple sensor data streams. The latency of a com-

plex event is measured from the time of ingestion (Ti) for the first event (from any

sensor data stream) that leads to the complex event to the time at which the complex

event gets detected (Td). If the total number of complex events detected during an

experiment is N, then the average CEP latency is given by Equation (5.1).
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L =

N
∑

x=1
Tx

d − Tx
i

N
(5.1)

The average CEP latencies for the MCEP and SCEP systems are represented by

LMCEP, and LSCEP respectively.

• Average complex event queuing delay (Q): In the MCEP system, a raw event upon

arrival at the mobile device waits in a thread-safe FIFO queue before it gets ingested

by the CEP engine deployed on the mobile device, so both Ta and Ti are measured

at the mobile device as shown in Figure 5.1. For the SCEP system, the queuing for

raw events is done at the ActiveMQ deployed at the IoT server, so both Ta and Ti are

measured at the IoT server as shown in Figure 5.2. Q is defined as the average of the

queuing delay corresponding to all the N complex events as given by Equation (5.2).

The expression within the summation term of the numerator is the queuing delay

for the xth complex event and is determined as the difference between the ingestion

time (Tx
i ) for the earliest event that led to the xth complex event and the arrival time

(Tx
a ) for the same event.

Q =

N
∑

x=1
Tx

i − Tx
a

N
(5.2)

The average CEP queuing latencies for the MCEP and SCEP systems are represented

by QMCEP and QSCEP respectively.

• Average complex event End-to-End (E2E) latency (E): It is the average time taken by

an event (which corresponds to the earliest raw event leading to a complex event)

from the time it is generated by the sensor simulator (Tg) to the time it is notified at



Chapter 5. Performance Analysis 97

the IoT server (Tn). However, as discussed earlier, Tg and Tn are time-stamped in the

sensor simulator and the IoT server respectively using clocks that are not synchro-

nized. Thus, E is computed using Tgg and Tgn (instead of Tg and Tn) both of which

are time-stamped on the timekeeper module. E is computed using Equation (5.3),

where Tx
gg and Tx

gn represent the global generation time for the xth raw event that

corresponds to a complex event and the global notification time for the xth complex

event, both time-stamped at the timekeeper.

E =

N
∑

x=1
Tx

gn − Tx
gg

N
(5.3)

Further, the average E2E latency for the MCEP and SCEP systems is represented by

EMCEP, and ESCEP respectively. A diagram showing the relationship among CEP

specific metrics L, Q, and E is presented in Figure 5.3. In this figure, the multiple

instances of input sensor data streams (one for each sensor) are shown in parallel

such that tuples in the nth sensor data stream (where n ∈ 1 . . . y) are denoted by

Tn
a and Tn

i as arrival time and ingestion time respectively. However, as the complex

E

Q L

CEP Engine

Figure 5.3: CEP specific metrics
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event is generated from a pattern which ingests multiple sensor data events, only

one complex event is shown on the right-hand side of Figure 5.3.

• Average raw event throughput for the server CEP application (µRE−SCEPA): This pa-

rameter represents the average rate of raw events emitted by the server CEP appli-

cation to the IoT server. The µRE−SCEPA for x number of sensor data streams is calcu-

lated using Equation (5.4), where µREx represents the average raw event throughput

for xth sensor data stream.

µRE−SCEPA =
µRE1 + µRE2 + · · ·+ µREx

x
(5.4)

• Average complex event throughput (µCE): It is the rate at which complex events are

emitted by the CEP engine. µCE−SCEP and µCE−MCEP represent the average complex

event throughput for SCEP and MCEP respectively.

• Average memory usage (MU): MU is the average memory consumed by the mobile

application (in MB) during an experiment. MUSCEPA and MUMCEPA represent the

average memory usage for the SCEP application and the MCEP application respec-

tively. MUMCEPA is computed using Algorithm A.2.

• Average CPU utilization (CU): It is the average CPU utilization by the mobile appli-

cation during its experiment runtime. CUSCEPA and CUMCEPA represent the average

CPU utilization for the SCEP application and the MCEP application respectively.

The CUMCEPA is computed using Algorithm A.1. The application is un-installed

and installed again for each experiment for computing the MU and CU.

• Average CPU utilization by IHS (CUIHS): CUIHS represents the average CPU uti-

lization of the IoT server. CUIHS−SCEP and CUIHS−MCEP represent the average CPU

utilization by the IHS for the SCEP system and the MCEP system respectively.
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• Average number of bytes received per second by the mobile device (RX): RX is the

average data reception rate (bytes/second) by a mobile device application. RXSCEPA

and RXMCEPA represent RX for the SCEP application and the MCEP application

respectively.

• Average number of bytes transmitted per second from a mobile device (TX): TX is

the average data transmission rate (bytes/second) sent by a mobile device applica-

tion to the IoT server. TXSCEPA and TXMCEPA represent TX for the SCEP application

and the MCEP application respectively.

• User cost (UC): The UC is the average cost (in $/hour) paid by the user for using

the CEP service as discussed in Section 4.2.7. UCSCEP and UCMCEP represent the

user cost for using the SCEP service and the MCEP service respectively.

• Remaining Battery Life (RBL): It is the amount of battery power remaining (in %)

on the mobile device during an experiment. It is an important metric representing

the power consumption of an application. The different types of RBL used in the

experimentation are provided next.

– RBLSCEPA−FG and RBLMCEPA−FG represent the battery usage for the server

CEP and mobile CEP applications respectively when these applications are

running in the foreground on the mobile device and no other service is run-

ning in the background.

– RBLSCEPA−BG and RBLMCEPA−BG represent the battery usage for the server

CEP and mobile CEP applications respectively when these applications are

running on the background of the mobile device and no other application is

running on the foreground.

– RBLYouTube−FG+SCEPA−BG represent the battery usage when a YouTube 720P
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video is played on the mobile device in the foreground and the SCEP applica-

tion is running in the background on the mobile device.

– RBLYouTube−FG+MCEPA−BG represent the battery usage when a YouTube 720P

video is played on the mobile device in the foreground and the MCEP applica-

tion is running in the background on the mobile device.

Application profilers such as Trepn, Power Tutor or Intel Performance Viewer can be used

to perform system-level and application-level performance profiling in a mobile device

[177]. However, the accuracy of these applications is a concern, thus these applications

are not used to profile the mobile device in our experimentation. To solve this issue, the

various application metrics such as CU and MU have been calculated using a bash script

which reads dumpsys information using ADB shell. As shown in Algorithm A.1 and

Algorithm A.2, the script reads various application and system specific metrics and parses

this information using a combination of various grep commands, regular expressions, awk

scripts and sed expressions.

A synthetic workload comprising two streams A and B is used in the performance

analysis. Each experiment for the SCEP system and the MCEP system was repeated 3

times and the resulting values of a given performance metric were found to be close to one

another. The values of the various performance metrics used for generating the graphs are

averages over the three runs and are provided in a table beside the respective graph. The

results of the experiments that capture the relationship between the system/workload

parameters and various performance metrics for the SCEP system and the MCEP system

are discussed in Section 5.5 and Section 5.6 respectively. A performance comparison of

the two systems is done in Section 5.7.
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5.5 Experiments for Server CEP system
This section describes all the experiments that were performed on the server CEP system.

5.5.1 Impact of Trun on RBLSCEP

The experiment was performed for 60 minutes with an initial battery power of 100%. Dur-

ing the length of the experiment, the value of the battery level on the mobile device was

noted every 20-minute interval, as shown by Trun in Figure 5.4. The battery consump-

tion for the SCEP application was computed in three scenarios. (1) the SCEP application

running in the Foreground (FG) and no other application running in the background; (2)

the SCEP application running in the Background (BG) with no other application running

in the FG on the mobile device; and (3) the SCEP application running in the background

and the YouTube application running in the foreground playing the video at 720P (HD

resolution). As shown in Figure 5.4, RBL decreases with an increase in Trun in each of
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Figure 5.4: Impact of application usage time on the battery consumption in SCEP system
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the three scenarios. For any given Trun, the highest drop of 28% in battery power is ob-

served in the case of the SCEP gateway application running in the foreground (scenario

1). The least battery consumption was reported in the case of the SCEP gateway appli-

cation running in the background (scenario 2) while no other application was running in

the foreground. This led to a 22% drop in batter in power at the end of an hour. This

is because when an application is running in the background, the Android OS does not

refresh the user interface leading to lesser power usage. Scenario 3 (that corresponds to

the SCEP gateway application running on the mobile device as an android-service and

the YouTube application running in the foreground) gave rise to a drop in battery power

that lies in between the drops in battery powers achieved in the two other scenarios for

any given Trun. Overall, the drops in RBL observed for all the three scenarios are within

6% of one another.

5.5.2 Impact of Twin on LSCEP

The impact of the size of the time window (Twin) on the average CEP latency in the SCEP

system is presented in Figure 5.5. With an increase in the time window length, LSCEP

increases as a larger Twin means that A events can wait longer for B events. Thus, a

higher number of B events arriving late within the Twin duration that lead to a complex

event result in a larger value of LSCEP.

5.5.3 Impact of λRE on LSCEP

As shown in Figure 5.6, the average CEP latency decreases with an increase in the average

raw event arrival rate. This is because, with an increase in λRE, the inter-arrival time of

the event B is reduced. This led to a decrease in the waiting time of the A events in the

CEP engine, resulting in the lower values of LSCEP.
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Figure 5.5: Impact of time window length on the average CEP latency in SCEP system
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5.5.4 Impact of λRE on QSCEP

As shown in Figure 5.7, as λRE is increased, the average complex event queuing latency

at the IoT server increases. This is because, as more raw events are waiting in the CEP

system due to an increase in the arrival rate.
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Figure 5.7: Impact of λRE on the average complex event queuing delay in SCEP system

5.5.5 Impact of λRE on ESCEP

The end-to-end latency depends upon various factors such as the sum of various trans-

mission times, queuing delays and event processing latencies. As shown in Figure 5.8, as

λRE is increased, more complex events are detected per unit time. This seems to increase

the resource contention resulting in an increase in the transmission delay (as more com-

plex events will be sent to the timekeeper) and the queuing delay (see Figure 5.8) leading

to an increase in the average end-to-end delay.
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Figure 5.8: Impact of λRE on the average end-to-end delay in SCEP system

5.6 Experiments for Mobile CEP system
This section shows all the experiments that were performed on the mobile CEP system.

5.6.1 Impact of Trun on RBLMCEP

The battery consumption for the MCEP system was computed with the same three sce-

narios as described in Section 5.5.1. As shown in Figure 5.9, for the MCEP system, it is ob-

served that with the passage of time (shown by Trun), the largest battery drop of 26% was

observed when the MCEP application was running in the foreground. However, when

the MCEP application was running in the background (as an android-service) and the

user was watching a 720P video with the YouTube application running in the foreground,

a 23% battery drop within an hour was observed. The least battery consumption of 20%

was found when the MCEP application was running as-a-service in the background while

no other application was running in the foreground.
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Figure 5.9: Impact of experiment runtime on the battery power in MCEP system

5.6.2 Impact of Twin on LMCEP

The impact of the size of the time window on the average CEP latency in the MCEP sys-

tem is captured in Figure 5.10. Please note that, as soon as a time window expires, the

events accumulated in the previous time window are flushed out and the CEP engine

starts looking for complex events using the new raw events arriving on the MCEP ap-

plication. With an initial increase in the size of the time window up to 100 ms, LMCEP is

observed to increase. Increasing the size of Twin allows complex events with higher laten-

cies to occur on the MCEP application. Hence, with an increase in Twin, a larger number

of complex events with higher latencies seem to occur on the MCEP application resulting

in higher values of LMCEP. Further increase in the time window greater than 100 ms led

to a small increase in LMCEP due to temporal queuing of incoming events outside the CEP

engine, as the Android OS dynamically allocates more memory to the application which

takes some time.
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Figure 5.10: Impact of time window on the average CEP latency in MCEP system

5.6.3 Impact of CountB and ThB on LMCEP

The effect of the threshold for event B on the average CEP latency is presented in Fig-

ure 5.11. Note that in the graph legend, the minimum and maximum values of CountA

and CountB are presented. Given a specific value of CountB, LMCEP is observed to increase

with an increase in ThB. In the synthetic workload, the sensor data values corresponding

to the stream B are uniformly distributed between 1 and 100. Thus, as ThB increases, the

time it takes to receive tuples with values higher than or equal to ThB increases as a result

of which LMCEP increases. For a given value of ThB, LMCEP increases with an increase

in the value of CountB. This is because, as CountB increases, it takes more time for the

complex event to occur as a result of which LMCEP increases.
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Figure 5.11: Impact of ThB and CountB on average CEP latency in MCEP system

5.6.4 Impact of λRE on µCE−MCEP

As shown in Figure 5.12, with an increase in λRE, the number of complex events detected

per second by the MCEP application (µCE−MCEP) increases. This is because as a higher

λRE means that more possible combinations of event A can be followed by event B result-

ing in a larger complex event throughput.

5.6.5 Impact of λRE on LMCEP

As shown in Figure 5.13, the variation in LMCEP with respect to λRE displays a non-

monotonic behavior. There seem to be two counteracting factors that determine the value

of LMCEP. The first factor is the time for the required number of tuples that can trigger a

complex event to arrive in the system and the second is the queuing delay experienced by

the tuples before they can be processed by the CEP engine in the mobile device. At low

values of λRE (λRE ≤ 1000 events/second), there is very little queuing and the first factor
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Figure 5.12: Impact of raw event arrival rate on µCE−MCEP

dominates the system performance. Thus, as λRE increases, the complex events are de-

tected faster and LMCEP decreases. At higher values of λRE (λRE ≥ 1000 events/second),
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Figure 5.13: Impact of raw event arrival rate on average CEP latency in MCEP system
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the system contention increases and more and more queuing starts occurring in the sys-

tem. In this case, the second factor starts dominating the system performance and LMCEP

starts increasing with respect to λRE.

5.6.6 Impact of λRE on QMCEP

Figure 5.14 shows the effect of the raw event arrival rate on the average complex event

queuing delay. As λRE increases, system contention increases and as a result, incoming

events need to wait for a longer period of time in the queue leading to higher QMCEP.
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Figure 5.14: Impact of raw event arrival rate on average queuing latency in MCEP system

5.6.7 Impact of λRE on EMCEP

Figure 5.15 shows the effect of the raw event arrival rate on the average complex event

end-to-end delay. The end-to-end latency depends upon delays occurred due to various

types of queuing delays (in CEP engine and MQTT broker), CEP latency and other trans-

mission delays. With the increase of λRE, EMCEP is observed to increase. This is due to an
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Figure 5.15: Impact of λRE on average end-to-end latency in MCEP system

increase in LMCEP (see Figure 5.14) and QMCEP (see Figure 5.13) with an increase in λRE.

5.7 Performance Comparison of SCEP and MCEP Systems
In this section, the performance comparison between the MCEP and SCEP systems is

presented.

5.7.1 Comparison of RBLSCEP and RBLMCEP when Trun is increased

The impact of the Trun on the power consumption of the MCEP and SCEP applications is

presented in Figure 5.16. The experiment was performed for 60 minutes with an initial

battery level of 100%. During the experiment, the values of the battery level on the mo-

bile device were noted every 20-minute interval, as shown by Trun in Figure 5.16. Recall

that scenario 1 corresponds to the SCEP/MCEP application running in the FG and no

other application running in the background. In scenario 2, the SCEP/MCEP application

is running in the BG with no other application running in FG on the mobile device. It is
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Figure 5.16: Impact of runtime on battery usage in MCEP and SCEP systems

found that the battery usage of an application for scenario 1 is always lower in compari-

son to scenario 2. Also, for a given scenario the battery usage for the MCEP application

is lower than that for the SCEP. This is due to the fact that only complex events are trans-

ferred to the IoT server when the MCEP application is used. On the other side, all the

raw events (from multiple sensors) are forwarded to the IoT server when the SCEP ap-

plication is used, causing an increase in the battery consumption. This experiment shows

that the proposed MCEP system provides 2% power savings (both in background and

foreground), in comparison to the SCEP system.

5.7.2 Comparison of LMCEP and LSCEP

As shown in Figure 5.17, for a particular λRE, the average CEP latency for the SCEP sys-

tem is higher than the average CEP latency for the MCEP system. This is because, in the

case of server CEP, the data analytics server uses Apache thrift as a middle-ware to send

the requests to the CEP engine using remote method invocations, causing the additional
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Figure 5.17: Comparison of average CEP latency in SCEP and MCEP systems

delays. This results in a higher CEP latency for SCEP in comparison to the MCEP system

which does not use a middleware system. This leads to the important conclusion that

there is a trade-off between security and latency for the SCEP system. Although enabling

additional features in the IoT server provides more security, it also leads to an increase in

CEP processing latency.

5.7.3 Comparison of QMCEP and QSCEP

As shown in Figure 5.18, for a given λRE, the average complex event queuing latency is

more for the SCEP system, as a brokered queue (ActiveMQ) is used instead of a thread-

safe queue employed in the case of the MCEP application. This is because the ActiveMQ

system is a computationally heavy system (relative to the thread-safe queue based MCEP

system) which comprises of three sub-components: ActiveMQ publisher, ActiveMQ re-

ceiver, and ActiveMQ broker. The ActiveMQ broker acknowledges every received senor

stream tuple sent by the ActiveMQ publisher so as to remove it from memory when it
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Figure 5.18: Impact of average raw event arrival rate on QMCEP and QSCEP

has been received by an ActiveMQ receiver. However, this acknowledgment is not sent

in the case of a thread-safe queue is implemented in the mobile CEP system. For the

server CEP, the various performance tuning configurations have been experimented with

for reducing the overhead caused due to the several reasons explained in Section 4.1.7. If

a broker-less queue such a ZeroMQ is available in the future for IoT server, the queuing

latency can be further reduced [161]. It is interesting to note that for higher values of

λRE, the queuing latency in the MCEP increases more sharply in comparison to the server

CEP queuing latency which is increasing at a much smaller rate (see Figure 5.14). This is

due to the large dedicated memory pool available in the server CEP that is not present

in the mobile CEP. From this experiment, we can conclude that even if the server CEP

system is powerful, yet it leads to queuing delay due to various overheads due to content

validation and other features.
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5.7.4 Comparison of EMCEP and ESCEP

For a particular value of λRE, the end-to-end delay for the SCEP system is higher than

the one for the MCEP system, as all the raw sensors streams are forwarded to the IoT

server leading to larger transmission delays. From Figure 5.19, we can conclude that, in

spite of using the large time window of 10 seconds (default time window) that leads to

additional queuing delays on the mobile device (due to a lower memory availability),

EMCEP achieved on MCEP system with a given λRE is less than ESCEP achieved on the

SCEP system.
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Figure 5.19: Impact of average raw event arrival rate on EMCEP and ESCEP

5.7.5 Comparison of CUIHS−MCEP and CUIHS−SCEP

Figure 5.20 shows the impact of λRE on the CPU utilization of the IoT server in for the

MCEP system (CUIHS−MCEP) and SCEP system (CUIHS−SCEP). For a particular value of

λRE, CUIHS−MCEP is lower than CUIHS−SCEP. This is because, in the case of the SCEP
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Figure 5.20: Impact of average raw event arrival rate on the IHS CPU utilization

system, all the raw sensor data streams are received, parsed, type converted, enqueued,

dequeued and processed in the IoT server and then complex events are forwarded to the

timekeeper by using the MQTT broker and metrics are sent to the DataDog dashboard by

the JMX agent. However, in the case of the MCEP system, only CEP alerts are received

by the IoT server and no further processing has to be done which leads to lower CPU

utilization. From this graph, we can conclude that the MCEP system leads to a smaller

load on the IoT server, which is one of the advantages of the MCEP system.

5.7.6 Comparison of CUSCEPA and CUMCEPA

Figure 5.21 shows the CPU utilization observed for the MCEP application and the SCEP

gateway application. In case of the MCEP application, CUMCEPA seems to increase lin-

early with the increase of λRE as more processing is done inside the CEP engine for the

higher raw event arrival rates. However, in the case of the SCEP gateway application,

CUSCEPA increases at a much smaller rate as the events have to be forwarded to the IoT
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Figure 5.21: Impact of average raw event arrival rate on CUSCEPA and CUMCEPA

server. Also, it is interesting to note that the CPU utilization of the MCEP application is

41.01% when 2 sensors are sending data streams at 1000 Hz, which is lower in comparison

to the 45.40% CPU utilization reported in the case of SCEP application.

5.7.7 Comparison of MUSCEPA and MUMCEPA

Please note that both the MCEP and SCEP applications are running on the mobile device.

As shown in Figure 5.22, for λRE of 1000 events/second, the memory used by MCEP

application (146 MB) is lower than that the memory used by the SCEP application (154

MB). This is due to the fact that the memory usage is dependent upon the number of

events which are received by the mobile device as well as the number of events sent by

the mobile device. In the case of the SCEP application, all the incoming raw events need

to be enqueued into an MQTT queue before sending them to the IoT server which leads

to the higher memory usage. An important conclusion from this experiment is that for

the sensors clocked at a higher sampling rate of 1000 events/second, the SCEP system
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Figure 5.22: Impact of average raw event arrival rate on MUSCEPA and MUMCEPA

needs more memory which can be a limiting factor for such a system. This is because

the Android OS has an upper bound on the amount of memory that can be used by

an application which is dependent on factors such as the Android API version and the

mobile device configuration. Thus, the proposed mobile CEP system seems to a better

option for the mobile devices having a constrained memory.

5.7.8 Comparison of UCSCEP and UCMCEP

As shown in Figure 5.23, for any value of raw event arrival rate, the amount of data trans-

ferred per second (TX) is more for the server CEP in comparison to the mobile CEP. This

is because the SCEP application forwards all the raw events to IoT server. Equation (4.1)

(which was discussed in Chapter 4) is used to compute the data transfer cost incurred

by the user for using the MCEP service and SCEP service. The current rate of $0.05/MB,

offered by a major telecommunication company in Canada (Bell [178]) is used. For any

given λRE, a significantly lower data transfer cost is observed for the MCEP system in
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Figure 5.23: Impact of average raw event arrival rate on UCSCEP and UCMCEP

comparison to the SCEP system as in case of MCEP system only the complex events are

sent while in case of the SCEP application the complete raw event streams are forwarded.

It is interesting to note that at an arrival rate of 1000 events/second, the MCEP system pro-

vides a savings of $12.74/hour ($13.32/hour - $0.58/hour) which is a significant amount

for a user.



Chapter 6

Conclusions and Future Work

This chapter first provides a synopsis of the proposed approach for detecting complex

events in sensor-based systems (see Section 6.1). Then, the key characteristics of the

MCEP and the SCEP system are summarized in Section 6.2. An overview of the perfor-

mance comparison of the MCEP system and the SCEP systems is provided in Section 6.3.

Finally, Section 6.4 discusses the directions for future research.

6.1 Synopsis of the Proposed Research
The primary goal of the proposed approach was to investigate two different architectures

for performing complex event processing in sensor-based systems using two approaches:

SCEP (centralized server-based approach) and MCEP (edge device-based approach). In

2017, a high-level simulation-based approach, for the SCEP has been presented in [65],

which describes three main components for server CEP: Container Management System

(CMS), multi-cloud environment and multi-tenant design. We have described a SCEP

architecture and implementation of its prototype (in Chapter 4) which have more fea-

tures than the CEPaaS proposed in [65]. The proof-of-the-concept prototype for the SCEP

system is achieved by using the WSO2 IoT server running as the back-end server and em-

bedding Siddhi CEP on a Google Pixel mobile device [172]. Our SCEP system provides

many features such as device enrollment, device authentication, device authorization and

120
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multi-tenancy support. However, such SCEP system has some disadvantages that include

the necessity of a persistent network connectivity, high data transfer cost for the user and

a larger mobile device power consumption as discussed in Section 5.5.

In order to address these issues, we have devised a MCEP system which can effec-

tively handle the network unavailability problem by performing CEP on the edge device

instead of processing the sensor data streams on a remote cloud. This system has been

realized by successfully embedding a CEP engine on the mobile device to perform the

complete complex event detection on the edge device and send various complex events

(alerts) to a remote back-end server to notify the concerned personnel. The proof-of-

concept prototype for the proposed technique has been built successfully and tested us-

ing a synthetic dataset on a Google Pixel mobile device running on the Android Nougat.

This system leads to a reduction in user cost, lower mobile device energy consumption,

reduction in various latencies (such as processing latency, queuing delay, end-to-end la-

tency) and improvement of the overall performance of the system. To the best of our

knowledge, this is the first mobile CEP system which can perform the complete CEP on

the mobile edge device [179] [180].

The SCEP and MCEP systems have been tested for a remote patient monitoring

use case by varying various system/workload parameters as described in Section 5.5

and Section 5.6 respectively. A comparison of the proposed system with the centralized

approach is also provided in Section 5.7.

6.2 Characteristics of SCEP and MCEP systems
A comparison between the key characteristics of the MCEP system and the SCEP system

is presented next.

• Network connectivity requirement: The MCEP system does not mandate a persis-
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tent Internet connection with the back-end IoT server. Thus, if the network is not

available temporarily, the user can still receive the local alarms generated on the

mobile device.

• User cost: As shown in Section 5.7.8, the user cost for the MCEP system is signif-

icantly lower compared to the cost of the centralized server CEP system. For the

typical pricing data available at [178] that was used in the experiment (as discussed

in Section 5.7.8), the MCEP system provides savings of approximately $13/hour,

over the central server based CEPaaS system. This is because the data transfer is

reduced in the MCEP system, as only complex events are sent to the IoT server.

• Security and data privacy: As the mobile CEP system processes the sensor data

streams locally, thus the user has better data privacy in comparison to the SCEP sys-

tem. In order to ensure the data privacy and security of the SCEP system, various

authentication and authorization methods have to be employed on the IoT server

which can lead to additional delays. Ensuring data privacy and security of a central-

ized server comes at the expense of processing latency. Thus, the MCEP system has

an advantage over the SCEP system as it requires relatively lesser security mecha-

nism to be imposed on the system for ensuring data privacy.

• Out-of-order message delivery: As the SCEP gateway application forwards all the

sensor data streams, this can lead to synchronization issues among various sensor

streams at the back-end server. This issue is less evident in the MCEP system as

the sensor devices are locally connected to the edge device using Wi-Fi or bluetooth

connections.

These characteristics lead to the conclusion that the MCEP system has a significant num-

ber of benefits over the SCEP system. However, the SCEP system also has a few benefits
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over the MCEP system as described below.

1. Predictive analytics: In the MCEP system, only the complex events are sent to the

IoT server. This means that the historical data of the patient is not available. How-

ever, in the case of the SCEP system, the historical data can be further used by vari-

ous predictive analytics algorithms using machine learning to predict future alerts.

2. Easier to deploy security mechanisms: The IoT server comes with off-the-shelf au-

thentication and authorization features which are easy to configure. However, in

the case of mobile CEP, such features have to be manually added and customized.

6.3 Performance Comparison of SCEP and MCEP systems
A rigorous performance analysis of the prototypes systems for SCEP and MCEP is de-

scribed in Chapter 5. The key observations from the experiments described in the chapter

are summarized next.

• Energy efficiency: For the experiment described in Section 5.7.1, the MCEP system

provides up to 2% power savings in comparison to the SCEP system.

• Support for data rate: For the experiments described in this thesis, the mobile CEP

application saturates at the arrival rate of 2000 events/second in comparison to the

SCEP application which saturates at 1000 events/second. Thus, the MCEP system

is able to handle sensors with higher sampling frequencies.

• Delays: The MCEP system has a lower average CEP latency, average queuing de-

lay and average end-to-end delay in comparison to the SCEP system as shown in

Section 5.7.2, Section 5.7.3, and Section 5.7.4 respectively.

• Memory utilization of the mobile device: As shown in Figure 5.22, the MCEP appli-

cation results in a lower average memory usage, in comparison to the SCEP appli-



Chapter 6. Conclusions and Future Work 124

cation, as in the case of MCEP only the complex events need to be sent to the IoT

server.

• CPU utilization: For an arrival rate lower than 1000 events/second, the average

CPU utilization of the MCEP application is less than that of the SCEP application as

shown in Figure 5.21.

• Load on the back-end server: As shown in the Figure 5.20, at an arrival rate of 1000

events/second, the SCEP system consumes 34% more CPU in comparison to the

MCEP system.

6.4 Future Work
Directions for further research include the following:

• The sensor simulator module in the MCEP/SCEP system can be replaced with MySig-

nal wireless/wired sensors [136] which provide real health sensor data. The MySig-

nals system provides an Android-based API to receive and process the sensor data

streams sent by the various health sensors. Devising such a system can lead to the

development of a commercial prototype of an MCEP system.

• The MCEP system can be extended to form a hybrid CEP system such that real-time

analytics is performed on the mobile device and the predictive analytics is being

performed on the IoT server using the stored historical data. Investigation of such a

system forms an important direction for future research.

• The performance of the current system can be analyzed when multiple devices (one

device per user) are enrolled with the IoT server. This would test the scalability of

the system as the number of users using sensor-based systems is expected to grow.

• As shown in Figure 5.18, the problem of high queuing latency in the server CEP can
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be effectively handled by using a hybrid CEP system having a pre-processing com-

ponent on the mobile application, which could send the streaming average values

computed over a batch time window of some time unit (such as 1 second). This

hybrid CEP system can also reduce user cost as the data transfer to the IoT server is

reduced. Whether or not such an averaging approach that reduces user cost gives

rise to inaccuracies in complex event detection needs investigation.

• Investigation of systems that use a query partitioning methodology can be em-

ployed to partition the CEP query by following the principles of distributed CEP

[181]. This can effectively distribute the workload between the edge-device and the

IoT server.

• To the best of our knowledge, currently, the support for mobile CEP is only available

in Android and Raspberry-Pi devices. However, in future, other lightweight CEP

engines may be successfully embedded on other platforms such as iOS or Black-

berry. It will be interesting to extend the techniques described in this thesis to sys-

tems using such devices/platforms.

• A user-friendly feature for managing sensor devices (adding/removing sensor de-

vices) will be a good addition to the commercial version of the system.

• Using multiple mobile devices with one serving as the primary device and the

other(s) serving as backups may be helpful when the system is continuously used

without an opportunity for recharging the battery of the mobile device. The sec-

ondary device can replace the primary device when it runs out of battery power.

The investigation of such a system focusing on how to perform an effective “hand-

off” from one device to the other devices forms an interesting direction for future

research.
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Dependencies & Algorithms

A.1 Dependencies

Table A.1: Dependencies for the MCEP application

implementation(‘org.wso2.siddhi:siddhi-core:4.1.11’) transitive = false

implementation(‘org.wso2.siddhi:siddhi-query-api:4.1.11’) transitive = false

implementation(‘org.wso2.siddhi:siddhi-query-compiler:4.1.11’) transitive = false

implementation(‘org.wso2.siddhi:siddhi-annotations:4.1.11’) transitive = false

implementation(‘org.apache.log4j.wso2:log4j:1.2.17.wso2v1’) transitive = false

implementation ‘org.osgi:org.osgi.core:6.0.0’

implementation ‘org.eclipse.osgi:org.eclipse.osgi.services:3.3.100.v20120522-1822’

implementation ‘org.wso2.orbit.com.lmax:disruptor:3.3.2.wso2v2’

implementation ‘io.dropwizard.metrics:metrics-core:3.1.0’

implementation ‘org.slf4j:slf4j-api:1.7.21’

implementation(‘org.eclipse.paho:org.eclipse.paho.client.mqttv3:1.0.2’) transitive = false

implementation ‘org.eclipse.paho:org.eclipse.paho.android.service:1.1.1’

compileOnly ‘com.android.support:support-annotations:24.2.0’

annotationProcessor(’org.wso2.siddhi:siddhi-annotations:4.1.11’) transitive = false

testImplementation ‘junit:junit:4.12’

androidTestImplementation ‘com.android.support.test.espresso:espresso-core:3.0.1’

126



Appendix A. Dependencies & Algorithms 127

A.2 Algorithms

Algorithm A.1: Algorithm for computing average CPU utilization in MCEP

Counter=1
while [ $Counter −ge 1]
do

CurrentCPU=$ ( adb s h e l l top −n 1 | grep mcep | awk ‘{ p r i n t $5 } ’ )
TotalCPU=$ ( ( TotalCPU + CurrentCPU ) )
AverageCPU=$ ( echo ‘ ‘ s c a l e =2; $TotalCPU/$Counter ’ ’ | bc )
echo $AverageCPU
( ( Counter ++))

done

Algorithm A.2: Algorithm for computing average memory usage in MCEP

Counter=1
while [ $Counter −ge 1]
do

Data=$ ( adb s h e l l dumpsys meminfo | grep mcep | sed ‘ s / : . * / / ’ )
L i s t =$ ( echo $data | t r ‘ ‘ ’ ’ ‘ ‘\n ’ ’ )
Current =( $ L i s t )
Tuple=${Current [ 0 ]}
CurrentMemory=$ ( sed ‘ s | [ K , ] | | g ’ <<< $Tuple )
TotalMemory=$ ( ( TotalMemory + CurrentMemory ) )
AverageMemory=$ ( ( ( TotalMemory / Counter )/ 1 0 0 0 ) )
echo $AverageMemory
( ( counter ++))

done
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Sensor Simulator Algorithm

B.1 SensorX Generator Algorithm
The sensorX generator, shown in Algorithm B.1, generates the sensor data stream for

a single sensor. Initially, the StartTime is recorded with the nanosecond precision cur-

rent system time (Line 1). Further, the EndTime is set by adding the simulation runtime

(RuntimeX) for SensorX in nanoseconds (Line 2). As we need to send sensor data streams

to both the mobile device and the timekeeper, various objects such as a socket, server-socket,

and print-writer are initialized for both the mobile device (Line 3) and the timekeeper

(Line 4). As we are using TCP connections to send the sensor data streams, we need to

set the SoTimeout value to represent the re-transmission timeout. If the tuple acknowl-

edgment does not come in before the SoTimeout, then the tuple will be re-transmitted

(Line 5). This SoTimeout should be larger than the Round Trip Time (RTT). Setting a low

value of SoTimeout, will result in duplicate data stream tuples. To make sure that all the

data stream tuples are sent, the socket buffer size is increased to 2 GB which is limited

by the highest values of integer (232). Then, a nanosecond sleep time is computed using

the arrival rate of the stream (Line 6). Before sending the sensor data streams to the time-

keeper and the mobile device, a connection needs to be set up from the sensor simulator

to the mobile device and the timekeeper. If both connections are successful (Line 7), then
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Algorithm B.1: SensorX Generator Algorithm

1 StartTime← System.nanotime()
2 EndTime← StartTime + 109 * RuntimeX

3 Initialize SocketMD, ServerSocketMD, PrintWriterMD

4 Initialize SocketTK, ServerSocketTK, PrintWriterTK

5 Set SoTimeout() and SendBufferSize(232) for SocketMD and SocketTK

6 SleepTime← 109/λX

7 if SocketTK.isConnected() and SocketMD.isConnected() then
8 while System.nanotime() ≤ EndTime do
9 Read the next tuple from file and parse it

10 Time← System.nanotime()
11 MobileTuple← new MDEvent(Patientid, Sensorid, Tupleid, Value, Time)
12 MobileTupleString←MobileTuple.toString()
13 TimeKeeperTuple← new TKEvent(Tupleid) . a light-weight tuple

14 TimeKeeperTupleString← TimeKeeperTuple.toString()
15 PrintWriterMD.write(MobileTupleString)
16 PrintWriterTK.write(TimeKeeperTupleString)
17 Tupleid ← Tupleid + 1
18 Thread.Sleep(SleepTime)

19 end

20 end

the sensor data streams are sent to the mobile device and the timekeeper until the cur-

rent system time is less than or equal to the simulation end time (Line 8). The synthetic

data is read from a file and parsed in order to generate a tuple (Line 9). The current time

is computed using the system nanosecond time (Line 10) and appended with the values

read from the file in order to generate a tuple for the mobile device (Line 11). Further,

this tuple is converted to a JSON tuple using the toString function (Line 12). Similarly, a
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light-weight tuple for the timekeeper is generated consisting of a tuple id only (Line 13).

Two different tuples (for mobile device and the timekeeper) are generated as the time-

keeper is employed just to compute the end-to-end latency and thus does not require the

other tuple elements. Finally, a data stream tuple is sent to the mobile device (Line 15)

and timekeeper (Line 16) using the appropriate print writer objects. The tuple id is in-

cremented (Line 17) and then the thread sleeps for SleepTime nanoseconds (Line 18) after

which the next tuple can be generated.
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Timekeeper Algorithms

C.1 SensorX Listener Algorithm
Algorithm C.1 is responsible for listening to a particular sensor (SensorX) and append-

ing global time-stamps on it. The sensor listener daemon listens on a port PX (Line 1)

using a server socket object (Line 2). The buffer size of the socket object is set as 2 GB

(Line 3). The received raw events are saved to a CSV file located at PathX (Line 4) us-

ing a print writer object (Line 5). The server socket object waits for a connection request

from the client socket (Line 10). A linked blocking queue is initialized for the specified

buffer size (Line 7). Once the connection is successful (Line 11), then the incoming sensor

data stream tuple is read using a buffered reader (Line 13). As the raw event tuple is

received, it is appended to a linked blocking queue by an enqueue thread and then writ-

ten to the CSV file by a dequeue thread (Line 8) which is running on a separate thread.

A separate thread for writing to file is used to reduce the TCP acknowledgment latency

(as MQTT protocol is used to send the data to Timekeeper). If the write operation to

file is performed on the same thread (for both en-queuing and de-queuing), the effec-

tive arrival rate will be reduced due to the TCP acknowledgment delay. The dequeue

thread for SensorX (dequeThreadSensorX) is started on a new thread as discussed in Al-

gorithm C.2. The current system time is fetched (Line 15) and appended as the event
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Algorithm C.1: SensorX Listener Algorithm

1 ListeningPort← PX

2 SeverSocket← new ServerSocket(PX)
3 SeverSocket.setReceiveBufferSize(232)
4 FilePath← PathX

5 PrintWriter← new PrintWriter(PathX)
6 Running← true
7 LinkedBlockingQueue← new LinkedBlockingQueue(232)
8 Start DequeThreadSensorX() . on a new thread

9 while Running do
10 SeverSocket.accept()
11 if Socket.isConnected == true then
12 while true do
13 ReceivedData← BufferedReader.readLine()
14 if ReceivedData 6= null then
15 Tgg ← System.nanotime()
16 FileDataPacket← ReceivedData + “\t” + Tgg + “\n”
17 LinkedBlockingQueue.add(FileDataPacket)
18 end

19 end

20 end

21 end

global generation time (Tgg) to the received sensor data stream tuple (Line 16). Further,

this tuple is appended to a linked blocking queue (Line 17) which is then de-queued by

an DequeThreadSensorX algorithm as explained next.
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C.2 DequeThreadSensorX Algorithm
Algorithm C.2 dequeues the global timestamped raw event tuples for SensorX from the

linked blocking queue (Line 2) and then writes them to a file using a print writer object

(Line 3).

Algorithm C.2: DequeThreadSensorX Algorithm

1 while true do
2 Tuple← LinkedBlockingQueue.take()
3 PrintWriter.write(Tuple)
4 PrintWriter.flush()

5 end

C.3 ComplexEventListener Algorithm
Algorithm C.3 is a generic algorithm for receiving the complex event stream from vari-

ous event publishers such as IoT hospital server. For a particular architecture (MCEP or

SCEP), the topic name variable represents the topic on which the CE stream is published

(Line 1). The MQTT client (publisher in this case) is initialized on the localhost machine

by specifying the port number (Line 4). After the connection between the MQTT client

and the MQTT broker is successful (Line 5), the MQTT client subscribes to a topic TArch

on which the complex event stream is published by the IHS (Line 6). While the MQTT

client is connected to the MQTT broker (Line 9), the payload which consists of a complex

event data stream tuple is received (Line 10). Further, this tuple is parsed using regular

expressions (Line 12) and then the current system time is computed as global event noti-

fication time (Line 13). The file tuple is generated as tab-separated (Line 14) values and

further added to a linked blocking queue (Line 15). Another thread reads from this queue
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and writes the complex events to a file using the logic which is similar to Algorithm C.2.

Algorithm C.3: ComplexEventListener Algorithm

1 TopicName← TArch

2 FilePath← PathArch

3 PrintWriter← new PrintWriter(PathArch)
4 MqttClient← new MqttClient(“tcp:\\localhost:1883”)
5 MqttClient.connect()
6 MqttClient.subscribe(TArch)
7 LinkedBlockingQueue← new LinkedBlockingQueue(232)
8 Start DequeThreadCEP() . on a new thread

9 while MqttClient.isConnected == true do
10 ReceivedData←MqttClient.getPayload()
11 if ReceivedData 6= null then
12 Parse the input using regular expressions
13 Tgn ← System.nanotime()
14 FileTuple← ReceivedData + “\t” + Tgn + “\n”
15 LinkedBlockingQueue.add(FileTuple)

16 end

17 end
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